
TASK PARALLEL AND DATA PARALLEL COMPUTING FOR
SUBSURFACE INVERSE CHARACTERIZATION PROBLEMS

� � � � � � � � � � � 	
 � � � � � � � � � � �
� � � � � � � � � � �
 � 	 � �

� � � � � � � � � ! � " # $ " %
� � � � � & ' (") (' %) * + ($ � � � , & ' (") (' %) ($ * - � �)
 � � � & � 	
 � � . � � � � � � � / �

KEYWORDS

Parameter Identification, Parallel Computing, Genetic

Algorithms, Hydrology

ABSTRACT

We describe two subsurface inverse characteriza-
tion problems where both task parallel and data parallel com-
puting are used on massively parallel and workstation cluster
platforms. Both applications use genetic search algorithms
for finding the solution given input and output tracer signals.
The first application involves both task parallel and data par-
allel computing on a massively parallel platform and is for
subsurface source zone (biological activity zone) identifica-
tion. The second application involves task parallel comput-
ing on workstation clusters and is for subsurface character-
ization of fracture networks. Both applications are based on
the manager–worker model. Because of current limitations
in different message passing interfaces, the first application
required communication and I/O in MPI, PVM, and NX. We
expect most of the features that required the use of PVM and
NX to be available in the Globus (0 1 1 2 3 4 4 5 5 5 6 7 8 9 : ; < 6 9 = 7)
enabled version of MPI so that MPI could be exclusively
used. In the second application all communication is per-
formed with PVM. This application uses dynamic task
scheduling to improve load balancing within a heteroge-
neous workstation cluster. Here we present some perfor-
mance results related to speedup and scalability for both
these applications.

1. INTRODUCTION

The problem of deducing information about the
subsurface given experimental tracer signal measurements
can be classified as a subsurface inverse characterization
problem. The solution to such problems can be extremely
computationally demanding if the information required is
spatially distributed. The commonly used inverse methods
in subsurface science fall under two broad categories: sto-
chastic, and deterministic. Here we use genetic search algo-
rithms which fall under the deterministic category. The de-

terministic methods are based on minimizing the difference
between the observed and computed breakthrough curves at
the observation points by adjusting the values of the parame-
ters required (e.g. curve fitting).

Genetic algorithms (GAs) are search procedures
based on the mechanics of natural selection and natural ge-
netics. The GA was developed by John H. Holland in the
1960s to allow computers to evolve solutions to difficult
problems, such as function optimization and artificial intelli-
gence. The basic operation of a GA is conceptually simple:
(1) maintain a population of solutions to a problem (2) select
the better solutions for recombination with each other, (3)
use their offspring to replace poorer solutions. The combina-
tion of selection pressure and innovation (through crossover
and mutation) generally leads to improved solutions, often
the best found to date by any method (Goldberg 1989).

GA is being used in a wide range of applications in-
cluding pattern recognition and matching, inverse modeling,
and optimization. One of the drawbacks of GA is that it can
be computationally demanding if the objective function
evaluation is expensive. For example, in the simulations per-
formed here the objective function is the root mean square
error between the observed output signals and the computed
output signals. In order to compute the output signals (or
breakthrough curve) for each individual a forward transport
simulation need to be performed. Each GA generation can
consist of a population of hundreds of individuals implying
hundreds of forward transport simulations for each genera-
tion. Fortunately, todays massively parallel computers or
workstation clusters can be used to our advantage in these
situations. In a massively parallel computing environment
the objective function computations for an entire population
of individuals (or each generation) can be performed in par-
allel since they are all independent of each other.

2. SIMPLE GENETIC ALGORITHM

Implementing a simple genetic algorithm (SGA)
for a source identification problem is conceptually very sim-
ple. However, the performance of SGA for these problems

nodes are used for the computationally demanding 3D dual–
component transport simulations. Since the current version
of MPI does not support the spawn command where a code
executable can be spawned on multiple nodes of a parallel
machine we used the PVM (Parallel Virtual Machine) library
(e.g. Giest et al. 1994) for spawning the transport code on the
compute partition. The bit strings for each individual are also
transmitted via the PVM send command to the entire com-
pute partition. Once the entire compute partition is spawned
and the bit strings for all the individuals are received then
MPI communication library (much more efficient on mas-
sively parallel architectures than PVM) takes over. All sub-
sequent communications are performed using MPI group op-
erations. Transport simulation for each individual is then
assigned to a group of nodes (typically 4) by MPI. The data
parallel communications within each group is facilitated by
the MPI group communicators. Once all the groups com-
plete their transport simulations the computed objective
function (root mean square error) is transmitted back to the
master SGA code using PVM.

The average computation time taken for each trans-
port simulation in most of our test cases is about 500 seconds
on 4 processors of the Intel Paragon. Using the parallel envi-
ronment described above we can perform the transport simu-
lations for an entire generation requiring 128 individuals
(128 transport simulations) using 512 processors in one
sweep in about 650 seconds. Most of the additional 150 se-
conds are PVM spawn and clear operation overheads. The
SGA code operations take less than 10 seconds per genera-
tion for most of our simulations. A 50 generation simulation
takes about 9 hours on 512 processors of the Intel Paragon.
All our runs are performed using the overnight and weekend
batch queues on the 512 processor XPS/35 and 1024 proces-
sor XPS/150 Intel Paragons at ORNL. We have a restart op-
tion in the ’master’ code so that the simulation can be re-
started from the last completed generation.

Most of the PVM overhead is for spawning and
clearing the tasks. Once the results are received at the master
via PVM, the slaves had to be probed via the ’pvm_pstat’
command to make sure they have been freed so that the next
generation or sweep could be spawned. We replaced the
’pvm_spawn’ call in the pvm library from ’nx_loadve’ to
’nx_spawn’ to improve the performance of the PVM spawn
process on the Intel Paragon (more than 3 times improve-
ment). In addition to the regular ascii I/O where one proces-
sor reads the data (a small number of common parameters)

and broadcasts the results to the other processors, some
transport simulations (those involving heterogeneous flow
fields) also required parallel binary I/O to read the velocity
and flux fields. In order to improve this performance (by
more than 5 times) a new set of MPI groups had to be defined
so that only one group accesses the entire file and then trans-
mits the data to the appropriate processors in the other
groups. All parallel I/O is performed using the Intel Paragon
NX calls.

Slave – Main
PGREM3D Transport

Master
SGA Code

slaveslaveslave

Service N
ode (1)

?
Intel P

aragon

@

C
om

pute N
odes (12)

?

Intel P
aragon

@

M
P

I w
orld

A

C
om

m
unicator

B

M
P

I G
roup

C

C
om

m
unicators

D

12 nodes

group 1
4 nodes

group 2
4 nodes

group 3
4 nodes

P
V

M
 C

om
m

unication

E

M
P

I C
om

m
unication

E

Figure 2. Layout of the Parallel Environment. The
example shown here uses 1 service node and 12 com-

pute nodes of the Intel Paragon. The master SGA code
is executed on the service node. Each transport simula-

tion requires 4 compute nodes.

3.2. GA Performance

The performance of GA for identifying the loca-
tions of possible biological activity zones in the subsurface
is presented here. In the example shown in Figure 3 we are
interested in identifying the centroids of 3 zones. The small
spheres denote positions of GA individuals. The rectangular
gridded regions are the actual locations of the biologically
active zones.

Figure 3. Performance of GA for the biological activity zone
identification problem

The reference observed signals are precomputed
based on the actual locations of these 3 zones. Here we sim-
ply verify that GA can find these locations given only the in-
put and output signals corresponding to these locations.
From Figure 3 we see that GA converged to the exact solu-
tion in 45 generations.

We looked at several more scenarios for this prob-
lem including multiple activity zone problems in heteroge-
neous flow fields. For all problems tested we were able to pin
point to the exact locations in less than 100 GA generations.
More details are available in Mahinthakumar et al. (1998).

3.3. Parallel Performance

Here we present the computational performance re-
sults related to bilogical activity zone identifiction problem.
In Figure 4, we present timings for 2 GA generations as the
number of processors computing the objective function in-
creases from 1 to 8 (i.e., size of MPI groups). The number of
individuals in each generation is 128 and each generation is
completed with one PVM spawn sweep. PVM overhead in-
cludes time for spawning and clearing the tasks. The total
time decreases up to 512 processors but increases slightly to
1024 processors. This is mainly due to the increased PVM
overhead for spawning and clearing 1024 processors.

Figure

 4. Incr easing data parallelism. NP = number of proces-

sors. NP increases from 128 to 1024 processors. Timings are

shown for 2 GA generations. Each generation has 128 individ-

uals. The number of processors per individual (data parallel-

ism) increases from 1 to 8. The number of tasks per PVM
sweep is fixed at 128.

The best

 overall timing is for the case with 512 pro -

cessors where data parallel groups of 4 processors are usedto compute the objective function. For this case, the average

time for each transport simulation is about 5
0 seconds on4

 processors of the Intel Paragon. Using the parallel environ -

ment described earlier we can perform the transport
 simula-

tions for an entire generation requiring 128 individuals (128
transport simulations) using 512 processors in one sweep in
about 650 seconds. Most of the additional 150 seconds are
PVM spawn and clear operation overheads. The SGA code
operations take less than 10 seconds per generation for most
of our simulations.

In Figure 5, we show the effect of increasing task
parallelism. For the case with 64 processors 8 PVM sweeps
are required to complete a generation, while for the case with
512 processors 1 PVM sweep is required to complete a gen-
eration. Thus the PVM overhead decreases considerably for
the 512 processor case. Therefore we should try to chose the
number of processors so that an entire generation is com-
peted in a minimum number of PVM sweeps (best case is 1).

tained iteratively. All of these processes are currently imple-
mented using PVM on a cluster of SGI workstations in the
Center for Computational Sciences at ORNL. It is therefore
highly portable to other platforms and architectures.

4.1. GA Performance

The GA performance is presented for this problem
in Figure 7 for a hypothetical case involving a single frac-
ture. The GA does not know where the fracture is located ex-
cept for the corresponding input and output signals. For the
initial generation of individuals a random distribution of
fractures is assumed along grid lines. We see that GA finds
the exact solution for this problem in about 65 generations.

Figure 7. Performance of GA for the fracture network identifi-
cation problem.

4.2. Parallel Performance

Here we present some performance results related
to the second GA application where we use a workstation
cluster to do the computations. The times for the various pro-
cesses on the virtual machine are shown in Figure 8, for sim-
ulations using 64 individuals, 3 generations, and up to 6 SGI
100 MHz R4600 processors.

Figure 8. Virtual machine CPU times for 3 generations of GA
fracture application. Each generation contains 64 individuals.

The virtual machine essentially achieves super–
scalability. For example, adding one additional processor to
the existing one–processor virtual machine results in a speed
up of 2.29; adding two additional processors (a total of 4) re-
sults in a speed up of 4.75. Because the total number of SGA
individuals are the same regardless of the number of proces-
sors in the virtual machine, the total spawning times in the
master process are the same for all cases. However, the
spawning times in PREFRAC decrease with the number of

processors, caused by the decreasing number of FRAC-
TRAN simulations on each processor. Because the same
number of individuals are distributed to an increasing num-
ber of processors, the per–processor CPU times for the indi-
vidual processes, e.g., FRACTRAN, also decrease. The
per–processor communication time between FRACTRAN
and PREFRAC also decreases similarly. Also noticeable are
the times the master code spent on probing and communicat-
ing data with the slave processes. Percentage–wise they de-
crease slightly from 86% to 79%, indicating that the entire
virtual machine operates in an almost perfectly parallel
mode. This statistics corroborates the observations on
speed–up and scalability earlier.

5. CONCLUSION

We have shown that genetic algorithms can be effi-
ciently implemented in a parallel computing environment
for large search space inverse problems such as subsurface
source zone identification problems or fracture network
characterization problems. Depending on the complexity of
objective function evaluation, a purely task parallel imple-
mentation on a work station cluster or a combination of task
and data parallel implementation on a massively parallel ar-
chitecture can be adapted.

6. REFERENCES

Giest A., Beguelin A., Dongarra J., Jiang W., Manchek B.,
and Sundaram, V. (1994). PVM: Parallel Virtual Ma-
chine – A Users Guide and Tutorial for Network Paral-
lel Computing, The MIT Press, Cambridge, MA.

Goldberg, 1989. ”Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning”, Addison–Wesley, 412 pp.

Gropp, W., Lusk W., and Skjellum A., (1994). Using MPI:
Portable Parallel Programming with the Message–
Passing Interface, The MIT Press, Cambridge, MA.

Mahinthakumar G., Saied F., and Valocchi A.J., (1997).
”Comparison of some parallel krylov solvers for large
scale contaminant transport simulations”, High Perfor-
mance Computing 1997 (Editor: A. M. Tentner), Pro-
ceedings of the 1997 SCS Simulation Multiconference,

p. 134–139, Atlanta, GA, Apr 6–10, 1997.

Mahinthakumar G., and Saied F. (1999). ”Implementation
and Performance Analysis of a Parallel Multicompon-

ent Groundwater Transport Code”, Proceedings of the
1999 SIAM Parallel Processing Meeting, San Antonio,
TX.

Mahinthakumar G., Gwo J.P., and Moline G.R.. (1999).
”Subsurface biological activity zone detection using
genetic algorithms”, accepted for publication the
ASCE Journal of Environmental Engineering.

Saied F., and Mahinthakumar G. (1998). ”Efficient Parallel
Multigrid Based Solvers for Large Scale Groundwater
Flow Simulations”, Computers Math. Applic., Vol.
35, No. 7, p. 45–54, 1998.

Sudicky E. A., and McLaren R.G., (1992). ”The Laplace
transform Galerkin technique for large–scale simula-
tion of mass transport in discretely fractured porous
formations”, Water Resour. Res., 28, 499–512, 1992.

ACKNOWLEDGEMENTS

This work was sponsored by the Center for Com-
putational Sciences of the Oak Ridge National Laboratory
managed by Lockheed Martin Energy Research Corporation
for the U.S. Department of Energy under contract number
DE–AC05–960R22464. The authors gratefully acknowl-
edge the use of High Performance Computing Facilities at
the Center for Computational Sciences of Oak Ridge Nation-
al Laboratory.

BIOGRAPHIES

G. (Kumar) Mahinthakumar is a staff research sci-
entist at the Center for Computational Sciences of the Oak
Ridge National Laboratory. He received his Ph.D. in Civil
Engineering from the University of Illinois at Urbana–
Champaign in 1995. His research interests are parallel and
distributed computing, subsurface flow and transport model-
ing, and sparse matrix solvers.

J. (Jack) P. Gwo is a staff research scientist at the
Center for Computational Sciences of the Oak Ridge Nation-
al Laboratory. He received his Ph.D. in Civil Engineering
from Pennsylvania State University in 1992. His research in-
terests are subsurface flow and transport modeling, parallel
computing, and risk based decision making frameworks.

