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ABSTRACT

We describe the implementation and analyze the performance of a parallel finite—-element multi-
component groundwater transport code on avariety of parallel architectures. The codeexhibitschar-
acteristicsthat are typical to many simulation codes such as explicit communication, global reduc-
tion operations, sparse matrix operations, and parallel 1/0. The parallel implementation is based on
domain decomposition with explicit message passing using MPI. We analyze performance on archi-
tectures such as the Intel Paragon, IBM SP, Origin 2000, Cray T3E, and Convex Exemplar
SPP-2000. Oneof our goalsistoinvestigate performance metricsthat are based on an entire applica-
tion code as opposed to kernels that perform specific operations. For the results presented here the
performance analysisis mainly limited to scalability and cache effects. We emphasize here that this
paper primarily focuses on the parallel performanceissues and details regarding the application has
been presented elsewhere.

Our resultsshow that theimplementation isscal able on architectureswhich haveagoodratio (> 2
) of communication bandwidth (MB/sec) to peak performance (Mflops). The single node perfor-
manceismainly affected by memory bandwidth and secondary cache size because sparse matrix op-
erations dominate the computations. On machines such as the Origin 2000 which have agood sized
(4 MB) secondary cachewe achievebetter percentage of the peak for small to moderate size problems
than machines which have no secondary cache. We have implemented certain computational and
memory saving features into this code which enables enhanced resolution of the model with rapid
solution times. We are now ableto solve nonlinear coupled partial differential equation systemswith
more than 100 million degrees of freedom in about 510 seconds per time step on machines such as
the 1024—processor Intel Paragon XPS/150. To our knowledge, solution to groundwater transport
problems of this size has not been reported before in literature.

BACKGROUND

Distributed memory implementation of finite-element codes is generally based on domain de-
composition [e.g. Fox, 1988; Gropp and Keyes, 1988] or element—by—element strategies[ Tezduyar
and Liou, 1989]. Element—by—element strategies which benefit from reduced communication and
higher floating point performance at the expense of increased storage and floating point operations
are mainly adapted for unstructured applications [e.g. Tzeduyar et a., 1993, Mahinthakumar and
Hoole, 1990]. We apply the domain decomposition strategy for parallelization of the structured fi-
nite—element application that is considered here. A similar strategy that was used in theflow module
of the same suite of codes has been published in Saied and Mahinthakumar, 1998. Our other past
related work includes cross—platform solver performance analysis for the single-component trans-
port problem[Mahinthakumar et al., 1997], and parallel 1/0 study of the same suite of codes[Mackay
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etal.,1998]. Thework that isbeing reported hereisdifferent in many aspectsinthat weareinvestigat-
ing multicomponent transport as opposed to single component transport, improved memory and
computational savingsfeaturesfor multicomponent transport, and we are anal yzing the performance
of the entire code as opposed to solver or I/O performance.

The multicomponent groundwater transport code that is the focus of this investigation is being
used in avariety of complex groundwater transport and remediation applications [ M ahinthakumar,
1998]. The general system of equations describing transport of nc dissolved components undergoing
reactionsin saturated porous mediais defined by anonlinear time—dependent coupled partial differ-
ential equation (p.d.e) system given by

aC,
ot

=V (D-VC)V - (C;v) + F(C-Cy)-R, i =1,23.,nc (1

where v isthe 3x1 velocity field vector, D isthe 3x3 dispersion tensor dependent on v, and G isthe
dissolved concentration of component i. The term q(Ci—Cg; )/0 represents the source term with volu-
metric flux g, medium porosity 8, and injected concentration Cy; (e.g. from injection wells). R is
the rate of mass loss of component i due to sorption and bioremediation reactions and is the main
coupling term for the system of equations. Theterm R may contain many terms and can be nonlin-
ear. For example, if only bioremediation reactions are present then R is given by
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WhereF; isthe stoichiometric ratio, X isthe biomass concentration, umay isthe maximum utilization
rate, and fj isafactor controlling component j’s contribution to component i’s biodegradation pro-
cess. If fij = 0 then component j does not participate in component i’s biodegradation process.

IMPLEMENTATION

The system of equations (1) are discretized using the Gal erkin finite element method with 8node
linear hexahedral elements. A logically rectangular grid structure is assumed but irregular geome-
triesare supported using distorted elements. A Crank—Nicol son approximation (central finite—differ-
ence) isused for thetimederivativeterms. A lumped massformulation [Huyakorn and Pinder, 1983]
isusedfor al time—derivativeand non—derivative (zeroth spatial derivative) terms. The coupled non—
linear system described by (1) is solved using amodified form of the Sequentia Iterative Algorithm
(SIA) with a semi—explicit method to decouple the system [Mahinthakumar et al., 1999]. In each
iteration afull matrix solve of the decoupled system is performed for the linear system arising from
equations(1). Iterationsare performed until thefully coupled systemissatisfied (typically 4-5itera-
tions per time step for a6 component system). A diagonal storage format is used for the global ma-
tricesarising for each component of the decoupled system. We have found that the matrix data stor-
age format had different effects on different architectures and here we have adapted a format that
performed reasonably well on most architectures. We have implemented BiCGSTAB, GMRES(k),
ORTHOMIN(k), and CGSiterative solversfor the matrix solution and the comparison of these solv-
ersarediscussed in Mahinthakumar et al. (1997). Our performanceresultsin this paper will be based
on the BiCGSTAB solver which performs reasonably well for most problems.

Becauseweusealumped massformulation to describethe coupling terms(e.g. equation (2)), the
coupling termsoccur only on themain diagonal sof the off diagonal blocksof thefull matrix. Wehave



achieved considerable memory and computational savingsby not replicating the storage or computa-
tion of matrix entries that are common to all components and updating only those entries which
changefromtimestep totime step. Based onthe user input datathe code will determinewhich matrix
entriesarecommon to all componentsand which entries change for the subsequent time step. In most
multicomponent transport scenari ostremendous savings can be achieved by carefully tracking these
needs. For exampl e, for the six component transport system weused for our simulationswewereable
saveafactor of 4in matrix storage and afactor of 2in matrix computations compared to the standard
approach which catersto the worst case scenario. Thisimplementation has enabled us rapid solution
of alarge number of componentsat amuch higher resolution than previously possible. The combina-
tion of lumped mass formulations, decoupling of the full matrix, and other special treatments for
memory and computational savingshasoneminor drawback: thisrestrictsusfrom reordering thefull
sparse matrix to form dense sub blockswhich may result in better floating point performance. There-
fore we lose some of the advantages that are traditionally associated with avector p.d.e (multicom-
ponent transport) as opposed to a scalar p.d.e (e.g. single component transport).

Parallel Implementation

For the parallel implementation we use atwo—dimensional (2-D) domain decompositioninthe x
and y directions (for more details see Saied and Mahinthakumar [1998]). A 2-D decomposition is
generally adequate for groundwater problems because common groundwater aquifer geometriesin-
volveavertical dimensionthat ismuch shorter than the other two dimensions. For thefinite—element
discretization such decomposition involves communication with at most 8 neighboring processors.
We note herethat a 3-D decomposition in this case will require communication with up to 26 neigh-
boring processors. We overlap one layer of processor boundary elements in our decomposition to
avoid additional communication during the assembly stage at the expense of someduplicationinele-
ment computations. There is no overlap in node points. In order to preserve the 27—diagonal band
structure within each processor submatrix, we perform alocal numbering of the nodesfor each pro-
cessor subdomain. This resulted in non—contiguous rows being allocated to each processor in the
global sense. For local computations each processor is responsible only for its portion of the rows
whicharelocally contiguous. However, such numbering givesriseto somedifficultiesduring explic-
it communication and 1/0O stages. For example, in explicit message passing, hon—contiguous array
segments had to be gathered into temporary buffers prior to sending. These are then unpacked by the
receiving processor. Thisbuffering contributes somewhat to the communication overhead. Whenthe
solution output iswritten to afile we had to make sure that the proper order is preserved in the global
sense. This required non—contiguous writesto afile resulting in some I/O performance degradation
particularly when alarge number of processorswereinvolved. All explicit communications between
neighboring processors are performed using asynchronous MPI calls. System calls were used for
global communication operations such asthose used in dot products. Parallel I/Oisperformed using
MPI- O calls(ROMIO) or optionally have asingle processor read/write datathrough message pass-
ing and atemporary buffer. Thesingleprocessor |/O optionwasbuilt for portability on systemswhere
MPI- O could not be used with native MPI. Parallel 1/0O using MPI-1O has been tested on the Origin
2000 and Intel Paragon systems. Recently we have incorporated Open MP directives in the solver
portion of the code. Options have been built to use the code in a pure Open MP mode, a pure MPI
mode, or a hybrid mode. All three modes have been tested on the Origin 2000 and a 4—processor
shared memory Intel Xeon system. We will not be presenting these results here since the results are



very preliminary. The codes are mainly written in Fortran 77 (with some C) using double—precision
arithmetic.
ARCHITECTURES

Our results are presented for the following architectures: Intel Paragon XPS/150 at ORNL, Cray/
SGI Origin 2000 at NCSA, Cray T3E at NERSC, IBM SPat ANL, and Convex Exemplar SPP—2000
at NCSA. The following table shows the main features of each architecture.

Feature Paragon Origin | Cray T3E | IBM SP Convex
2000
clock speed (MHZ) 50 250 450 62.5 180
peak performance per node (Mflops) 75 or 150 500 900 125 360
memory bandwidth (MB/sec) 170 720 1200 NA NA
communication bandwidth (MB/sec) 152 NA 600 35 NA
communication latency (us) 35 NA NA 63 NA
number of processors available to user 1024 128 512 64 16
data cache (L1) 16 KB 32KB 8KB 32KB 1MB
instruction cache (L 1) 16 KB 32KB 8KB 32KB 1MB
secondary cache (L2) none 4MB 96 KB NA none
Memory per node (MB) 64 256 256 128 256

Table 1. Main features of each architecture (NA = not available).

PERFORMANCE RESULTS

Our performance results are based on simulations with model parameters taken from a field scale
bioremediation problem reported by Sempirini and McCarty (1992) involving the aerobic biodegra-
dation of six organic components(TCE, VC, t-DCE, c-DCE, DO, and CH,). The problem sizescho-
sen hereis purely for performance analysis purposes and is not representative of the field problem.
The results presented here will be limited to scalability and cache effects. Detailed comparisons of
different solvers used in this code and aparallel 1/O performance analysis have been presented el se-
where [Mahinthakumar et al., 1997, Mackay et al., 1998]. For tests performed here we have used
optionsso that very minimal 1/0is performed (no check pointing and concentration field output only
at the final timestep).

Overall Scalability

In Figure 1 we compare the scalability of the entire code up to 64 processors. The Origin 2000
numbers are for the 250 Mhz processor (see Table 1). Thetotal timeincludes I/O, matrix assembly,
and matrix solution. Theloca problem sizeisfixed at 41x41x11. Notethat perfect scalability would
correspond to ahorizontal line. Scalability isvery good on the Intel Paragon, and Cray T3E and rea-
sonable onthe IBM SP. The Paragon results did not surprise us sinceit hasavery good communica-
tionto CPU performanceratio. Even though the Origin 2000 performed very well inthe single-node
performance category (to be addressed later), it did not exhibit good scalability at 64 processors. We
believethisisdueto increasing message contention which was not handled well by the Origin 2000.



Detailed analysisof communication timesindicated that the scalability and parallel performanceare
not affected by latency on all the machines. Furthermore, scal ability onthe Origin 2000 dramatically
improved (results not presented here) when thelocal problem size was reduced, thusindicating that
message sizes and message contention (affected by bandwidth) hasamore profound impact on com-
munication performance than the number of messages (affected by latency).
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Figure 1: Cross—platform scalability up to 64 processors. NP = number of processors. L o-
cal problem sizeisfixed at 41x41x11. Six transporting species are simulated to 10 time
steps with approximately 110,000 degrees of freedom per processor. Total execution time
includes all operations of the code.

Solver performance

The megaflop performance was not measured for the entire code but only for the BICGSTAB
solver. The’ssrun’ utility onthe Origin 2000 indicated that the sol ver performanceisindicative of the
overall performance for moderate number of processorsif minimal 1/0 is performed. The measured
64 processor solver performanceis asfollows: 890 Mflops on the Intel Paragon, 1.87 Gflops on the
IBM SP, 4.25 Gflops on the Origin 2000, and 2.78 Gflops on the T3E. Thisis about 10-15% of the
peak performance except for the T3E whichisabout 5%. The 10-15% rangeisnot unusual for sparse
matrix applications. It should be noted that we did not perform any special tuning other than compil-
er optimization for the single node performance of the code for each architecture.

Intel Paragon resultsfor large number of processors

In Figure 2 we show the scal ability up to 1024 processors of the Intel Paragon XPS/150. We note
here that the code is run in single threaded mode on the MP-nodes of the Paragon due to memory
bandwidth limitations in the sparse matrix operations. The peak performance in single-threaded
mode is about 75 Gflops on 1024 nodes. Excellent scalahility is observed up to 512 processors and
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manceof the codeisabout 10 Gflopsand the matrix solution portion achievesabout 12.5 Glops (20%
of peak).

Cache effects on the Origin 2000

Of all the architectures we have tested only Origin 2000 had any significant secondary cache (4
MB) to examine the cache effects. Since the matrix solution portion dominates the computation for
most practical simulationswe restrict thisanalysisto the BICGSTAB solver which has been used in
thesetests. Themost dominating component (over 80%) of the solver isthe sparse matrix multiplica-
tion operation. Since cache effects primarily affect the single node performance our testsaredone on
asingle CPU of the Origin 2000 (peak performance of 500 Mflops).
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Figure 3: Effect of cache on the single node performance of the BICGSTAB matrix solver
on the Origin 2000. Seetext for explanation of 'true’ and ’effective’ mflops.

In Figure 3 we show the single node performance of the solver asweincreasethe problemsize. In
thisfigure,” True” Mflopsindicatethefloating point performance based on the exact number of float-
ing point operations performed and " Effective’” Mflops indicate performance based on the useful
number of operations. Since we use padded arrays with "ghost” entries to simplify parallel imple-
mentation each processor performs dummy operations on these entries to ensure contiguity in
memory access and thereby improve performance. The best performance of 130 — 140 Mflops (25%
of peak) isachieved for problem sizesaround3000 and asthe problem sizeincreasesto about 100000
the performancelevel s off to about 70 Mflops. Since we have about 4 MB of cache the entire matrix
andtheassociated vectorscan easily fit inthecacheif the problem sizeislessthan 3000. Wenote here



that we are solving transport of 6 components and if we did not implement the memory saving fea-
tures mentioned earlier and decided to store the fully coupled matrix of al 6 components we would
not have benefitted as much from the available cache.

CONCLUSIONS

Our preliminary results show that the implementation is scal able on architectures which have agood
ratio (> 2) of communication bandwidth (MB/sec) to peak performance (Mflops). For example, on
the Intel Paragon XPS/150 we observe almost perfect scalability up to 512 processors (lessthan 5 %
loss) and reasonable scalability up to 1024 processors (about 15 % loss). The single node perfor-
manceismainly affected by memory bandwidth and secondary cache size because sparse matrix op-
erations dominate the computations. In terms of floating point performance the single node perfor-
mance is on the order of 10-15 % of peak (typical for sparse matrix computations) on most
architectures. On machines such asthe Origin 2000 which haveagood sized (4 M B) secondary cache
we achieve better percentage of the peak performance for small to moderate size problems than ma-
chines which have no secondary cache.

The special memory and computational savingsthat have beenimplemented in these codesenableus
to solve nonlinear coupled partial differential equation systems with more than 100 million degrees
of freedom in about 5-10 seconds per time step on machines such as the 1024—processor Intel Para-
gon XPS/150. To our knowledge, solution to groundwater transport problems of this size has not
been reported beforein literature. In thisimplementation we have not included geochemistry reac-
tions which isamuch easier problem from a performance point of view since the computations are
local in nature (no communication) involving small dense matrices (better cache reuse). We expect
theoverall floating point performancetoincreasesignificantly (25-30 % of peak) when geochemical
reactions are included in our multicomponent transport model .
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