
1

IMPLEMENTATION AND PERFORMANCE ANALYSIS OF A
PARALLEL MULTICOMPONENT GROUNDWATER TRANSPORT CODE

�
G. Mahinthakumar, Center for Computational Sciences, Oak Ridge National Laboratory., phone:

423–241–5628, fax: 423–241–2850, e–mail: kumar@ornl.gov.

F. Saied, National Center for Supercomputing Applications (NCSA), Urbana, IL,

phone: 217–244–9481, fax: 217–244–2909, e–mail: fsaied@ncsa.uiuc.edu.

ABSTRACT

We describe the implementation and analyze the performance of a parallel finite–element multi-
component groundwater transport code on a variety of parallel architectures. The code exhibits char-
acteristics that are typical to many simulation codes such as explicit communication, global reduc-
tion operations, sparse matrix operations, and parallel I/O. The parallel implementation is based on
domain decomposition with explicit message passing using MPI. We analyze performance on archi-
tectures such as the Intel Paragon, IBM SP, Origin 2000, Cray T3E, and Convex Exemplar
SPP–2000. One of our goals is to investigate performance metrics that are based on an entire applica-
tion code as opposed to kernels that perform specific operations. For the results presented here the
performance analysis is mainly limited to scalability and cache effects. We emphasize here that this
paper primarily focuses on the parallel performance issues and details regarding the application has
been presented elsewhere.

 Our results show that the implementation is scalable on architectures which have a good ratio (> 2
) of communication bandwidth (MB/sec) to peak performance (Mflops). The single node perfor-
mance is mainly affected by memory bandwidth and secondary cache size because sparse matrix op-
erations dominate the computations. On machines such as the Origin 2000 which have a good sized
(4 MB) secondary cache we achieve better percentage of the peak for small to moderate size problems
than machines which have no secondary cache. We have implemented certain computational and
memory saving features into this code which enables enhanced resolution of the model with rapid
solution times. We are now able to solve nonlinear coupled partial differential equation systems with
more than 100 million degrees of freedom in about 5–10 seconds per time step on machines such as
the 1024–processor Intel Paragon XPS/150. To our knowledge, solution to groundwater transport
problems of this size has not been reported before in literature.

BACKGROUND

Distributed memory implementation of finite–element codes is generally based on domain de-
composition [e.g. Fox, 1988; Gropp and Keyes, 1988] or element–by–element strategies [Tezduyar
and Liou, 1989]. Element–by–element strategies which benefit from reduced communication and
higher floating point performance at the expense of increased storage and floating point operations
are mainly adapted for unstructured applications [e.g. Tzeduyar et al., 1993, Mahinthakumar and
Hoole, 1990]. We apply the domain decomposition strategy for parallelization of the structured fi-
nite–element application that is considered here. A similar strategy that was used in the flow module
of the same suite of codes has been published in Saied and Mahinthakumar, 1998. Our other past
related work includes cross–platform solver performance analysis for the single–component trans-
port problem [Mahinthakumar et al., 1997], and parallel I/O study of the same suite of codes [Mackay�

An updated version of this paper will be available for viewing at http://www.ccs.ornl.gov/staff/kumar/siam99.html

2

et al., 1998]. The work that is being reported here is different in many aspects in that we are investigat-
ing multicomponent transport as opposed to single component transport, improved memory and
computational savings features for multicomponent transport, and we are analyzing the performance
of the entire code as opposed to solver or I/O performance.

The multicomponent groundwater transport code that is the focus of this investigation is being
used in a variety of complex groundwater transport and remediation applications [Mahinthakumar,
1998]. The general system of equations describing transport of nc dissolved components undergoing
reactions in saturated porous media is defined by a nonlinear time–dependent coupled partial differ-
ential equation (p.d.e) system given by� � �� � � � � 	
 � � � �
 � � � 	 � � � � � � � 	 � � � � � �
 � � � � � � � � � � � � � � � � � 	 �

where v is the 3x1 velocity field vector, D is the 3x3 dispersion tensor dependent on v, and Ci is the
dissolved concentration of component i. The term q(Ci–C0i)/

�
 represents the source term with volu-

metric flux q, medium porosity
�

, and injected concentration C0i (e.g. from injection wells). Ri is
the rate of mass loss of component i due to sorption and bioremediation reactions and is the main
coupling term for the system of equations. The term Ri may contain many terms and can be nonlin-
ear. For example, if only bioremediation reactions are present then Ri is given by

� � � � � ! " � # $% & ' (
% &) * % � � %+ % � � % � � � � � � � � � � � � � � 	 �

Where Fi is the stoichiometric ratio, X is the biomass concentration, � max is the maximum utilization
rate, and fji is a factor controlling component j’s contribution to component i’s biodegradation pro-
cess. If fji = 0 then component j does not participate in component i’s biodegradation process.

IMPLEMENTATION

The system of equations (1) are discretized using the Galerkin finite element method with 8–node
linear hexahedral elements. A logically rectangular grid structure is assumed but irregular geome-
tries are supported using distorted elements. A Crank–Nicolson approximation (central finite–differ-
ence) is used for the time derivative terms. A lumped mass formulation [Huyakorn and Pinder, 1983]
is used for all time–derivative and non–derivative (zeroth spatial derivative) terms. The coupled non–
linear system described by (1) is solved using a modified form of the Sequential Iterative Algorithm
(SIA) with a semi–explicit method to decouple the system [Mahinthakumar et al., 1999]. In each
iteration a full matrix solve of the decoupled system is performed for the linear system arising from
equations (1). Iterations are performed until the fully coupled system is satisfied (typically 4–5 itera-
tions per time step for a 6 component system). A diagonal storage format is used for the global ma-
trices arising for each component of the decoupled system. We have found that the matrix data stor-
age format had different effects on different architectures and here we have adapted a format that
performed reasonably well on most architectures. We have implemented BiCGSTAB, GMRES(k),
ORTHOMIN(k), and CGS iterative solvers for the matrix solution and the comparison of these solv-
ers are discussed in Mahinthakumar et al. (1997). Our performance results in this paper will be based
on the BiCGSTAB solver which performs reasonably well for most problems.

 Because we use a lumped mass formulation to describe the coupling terms (e.g. equation (2)), the
coupling terms occur only on the main diagonals of the off diagonal blocks of the full matrix. We have

3

achieved considerable memory and computational savings by not replicating the storage or computa-
tion of matrix entries that are common to all components and updating only those entries which
change from time step to time step. Based on the user input data the code will determine which matrix
entries are common to all components and which entries change for the subsequent time step. In most
multicomponent transport scenarios tremendous savings can be achieved by carefully tracking these
needs. For example, for the six component transport system we used for our simulations we were able
save a factor of 4 in matrix storage and a factor of 2 in matrix computations compared to the standard
approach which caters to the worst case scenario. This implementation has enabled us rapid solution
of a large number of components at a much higher resolution than previously possible. The combina-
tion of lumped mass formulations, decoupling of the full matrix, and other special treatments for
memory and computational savings has one minor drawback: this restricts us from reordering the full
sparse matrix to form dense sub blocks which may result in better floating point performance. There-
fore we lose some of the advantages that are traditionally associated with a vector p.d.e (multicom-
ponent transport) as opposed to a scalar p.d.e (e.g. single component transport).

Parallel Implementation

For the parallel implementation we use a two–dimensional (2–D) domain decomposition in the x
and y directions (for more details see Saied and Mahinthakumar [1998]). A 2–D decomposition is
generally adequate for groundwater problems because common groundwater aquifer geometries in-
volve a vertical dimension that is much shorter than the other two dimensions. For the finite–element
discretization such decomposition involves communication with at most 8 neighboring processors.
We note here that a 3–D decomposition in this case will require communication with up to 26 neigh-
boring processors. We overlap one layer of processor boundary elements in our decomposition to
avoid additional communication during the assembly stage at the expense of some duplication in ele-
ment computations. There is no overlap in node points. In order to preserve the 27–diagonal band
structure within each processor submatrix, we perform a local numbering of the nodes for each pro-
cessor subdomain. This resulted in non–contiguous rows being allocated to each processor in the
global sense. For local computations each processor is responsible only for its portion of the rows
which are locally contiguous. However, such numbering gives rise to some difficulties during explic-
it communication and I/O stages. For example, in explicit message passing, non–contiguous array
segments had to be gathered into temporary buffers prior to sending. These are then unpacked by the
receiving processor. This buffering contributes somewhat to the communication overhead. When the
solution output is written to a file we had to make sure that the proper order is preserved in the global
sense. This required non–contiguous writes to a file resulting in some I/O performance degradation
particularly when a large number of processors were involved. All explicit communications between
neighboring processors are performed using asynchronous MPI calls. System calls were used for
global communication operations such as those used in dot products. Parallel I/O is performed using
MPI–IO calls (ROMIO) or optionally have a single processor read/write data through message pass-
ing and a temporary buffer. The single processor I/O option was built for portability on systems where
MPI–IO could not be used with native MPI. Parallel I/O using MPI–IO has been tested on the Origin
2000 and Intel Paragon systems. Recently we have incorporated Open MP directives in the solver
portion of the code. Options have been built to use the code in a pure Open MP mode, a pure MPI
mode, or a hybrid mode. All three modes have been tested on the Origin 2000 and a 4–processor
shared memory Intel Xeon system. We will not be presenting these results here since the results are

4

very preliminary. The codes are mainly written in Fortran 77 (with some C) using double–precision
arithmetic.

ARCHITECTURES

Our results are presented for the following architectures: Intel Paragon XPS/150 at ORNL, Cray/
SGI Origin 2000 at NCSA, Cray T3E at NERSC, IBM SP at ANL, and Convex Exemplar SPP–2000
at NCSA. The following table shows the main features of each architecture.

Feature Paragon Origin
2000

Cray T3E IBM SP Convex

clock speed (MHZ) 50 250 450 62.5 180

peak performance per node (Mflops) 75 or 150 500 900 125 360

memory bandwidth (MB/sec) 170 720 1200 NA NA

communication bandwidth (MB/sec) 152 NA 600 35 NA

communication latency (, s) 35 NA NA 63 NA

number of processors available to user 1024 128 512 64 16

data cache (L1) 16 KB 32 KB 8 KB 32 KB 1 MB

instruction cache (L1) 16 KB 32 KB 8 KB 32 KB 1 MB

secondary cache (L2) none 4 MB 96 KB NA none

Memory per node (MB) 64 256 256 128 256

Table 1: Main features of each architecture (NA = not available).

PERFORMANCE RESULTS
Our performance results are based on simulations with model parameters taken from a field scale
bioremediation problem reported by Sempirini and McCarty (1992) involving the aerobic biodegra-
dation of six organic components (TCE, VC, t–DCE, c–DCE, DO, and CH4). The problem sizes cho-
sen here is purely for performance analysis purposes and is not representative of the field problem.
The results presented here will be limited to scalability and cache effects. Detailed comparisons of
different solvers used in this code and a parallel I/O performance analysis have been presented else-
where [Mahinthakumar et al., 1997, Mackay et al., 1998]. For tests performed here we have used
options so that very minimal I/O is performed (no check pointing and concentration field output only
at the final timestep).

Overall Scalability

In Figure 1 we compare the scalability of the entire code up to 64 processors. The Origin 2000
numbers are for the 250 Mhz processor (see Table 1). The total time includes I/O, matrix assembly,
and matrix solution. The local problem size is fixed at 41x41x11. Note that perfect scalability would
correspond to a horizontal line. Scalability is very good on the Intel Paragon, and Cray T3E and rea-
sonable on the IBM SP. The Paragon results did not surprise us since it has a very good communica-
tion to CPU performance ratio. Even though the Origin 2000 performed very well in the single–node
performance category (to be addressed later), it did not exhibit good scalability at 64 processors. We
believe this is due to increasing message contention which was not handled well by the Origin 2000.

5

Detailed analysis of communication times indicated that the scalability and parallel performance are
not affected by latency on all the machines. Furthermore, scalability on the Origin 2000 dramatically
improved (results not presented here) when the local problem size was reduced, thus indicating that
message sizes and message contention (affected by bandwidth) has a more profound impact on com-
munication performance than the number of messages (affected by latency).

Figure 1: Cross–platform scalability up to 64 processors. NP = number of processors. Lo-
cal problem size is fixed at 41x41x11. Six transporting species are simulated to 10 time

steps with approximately 110,000 degrees of freedom per processor. Total execution time
includes all operations of the code.

Solver performance

The megaflop performance was not measured for the entire code but only for the BICGSTAB
solver. The ’ssrun’ utility on the Origin 2000 indicated that the solver performance is indicative of the
overall performance for moderate number of processors if minimal I/O is performed. The measured
64 processor solver performance is as follows: 890 Mflops on the Intel Paragon, 1.87 Gflops on the
IBM SP, 4.25 Gflops on the Origin 2000, and 2.78 Gflops on the T3E. This is about 10–15% of the
peak performance except for the T3E which is about 5%. The 10–15% range is not unusual for sparse
matrix applications. It should be noted that we did not perform any special tuning other than compil-
er optimization for the single node performance of the code for each architecture.

Intel Paragon results for large number of processors

In Figure 2 we show the scalability up to 1024 processors of the Intel Paragon XPS/150. We note
here that the code is run in single threaded mode on the MP–nodes of the Paragon due to memory
bandwidth limitations in the sparse matrix operations. The peak performance in single–threaded
mode is about 75 Gflops on 1024 nodes. Excellent scalability is observed up to 512 processors and

6

reasonable scalability up to 1024 processors. Here we also show timings for the dominating compo-
nents of the code, matrix solution (BiCGSTAB solver) and matrix assembly/computation. Commu-
nication time which includes explicit message passing and global reduction operations is also shown.
In general, explicit message passing takes about 65% of the total communication time. In the explicit
message passing time we have included temporary buffering operations (see parallel implementation
section) where memory to memory copies are made. Since the results shown here are only up to 10
time steps, matrix assembly and computation takes about 34% of the total time and matrix solution
takes about 57% of the total time. As we increase the number of time steps matrix solution time be-
gins to dominate even more (up to 72%) and matrix assembly is less dominant (20%). This is primari-
ly because in our implementation most of the assembly computations are performed in the first time
step and in subsequent time steps only updates of changing entries are performed.

Figur e 2: Paragon scalability up toS1024 pr

ocessors. NP = number of pr ocessors. Localproblem size is fixed at 41x41x1 1. All parameters same as Figur e 1.The largest problem we have solved on theS1024 node Paragon is a 1401x1401x1 1 problem (2115million

 nodes) with 6 transporting components (130 million unknowns). In theSnumber of unknownswe only include moving components which require full matrix solves. The other components such as

biomass and sorbed phase concentrations are not included. The total time forS100 time steps of thissimulation is 71 msecs. This averages toSabout 7.1 msecs per time step which includes several matrixsolves forSnonlinear iterations. As we increase theSnumber of time steps toS1000 theSaverage timereduces

 toS5.l
seconds. Such lar

ge problems and rapid solution times are only possible with thememory and computational saving features we have implemented in this code. The overall perfor-

7

mance of the code is about 10 Gflops and the matrix solution portion achieves about 12.5 Glops (20%
of peak).

Cache effects on the Origin 2000

Of all the architectures we have tested only Origin 2000 had any significant secondary cache (4
MB) to examine the cache effects. Since the matrix solution portion dominates the computation for
most practical simulations we restrict this analysis to the BiCGSTAB solver which has been used in
these tests. The most dominating component (over 80%) of the solver is the sparse matrix multiplica-
tion operation. Since cache effects primarily affect the single node performance our tests are done on
a single CPU of the Origin 2000 (peak performance of 500 Mflops).

Figure 3: Effect of cache on the single node performance of the BICGSTAB matrix solver
on the Origin 2000. See text for explanation of ’true’ and ’effective’ mflops.

In Figure 3 we show the single node performance of the solver as we increase the problem size. In
this figure, ”True” Mflops indicate the floating point performance based on the exact number of float-
ing point operations performed and ”Effective” Mflops indicate performance based on the useful
number of operations. Since we use padded arrays with ”ghost” entries to simplify parallel imple-
mentation each processor performs dummy operations on these entries to ensure contiguity in
memory access and thereby improve performance. The best performance of 130 – 140 Mflops (25%
of peak) is achieved for problem sizes around3000 and as the problem size increases to about 100000
the performance levels off to about 70 Mflops. Since we have about 4 MB of cache the entire matrix
and the associated vectors can easily fit in the cache if the problem size is less than 3000. We note here

8

that we are solving transport of 6 components and if we did not implement the memory saving fea-
tures mentioned earlier and decided to store the fully coupled matrix of all 6 components we would
not have benefitted as much from the available cache.

CONCLUSIONS

Our preliminary results show that the implementation is scalable on architectures which have a good
ratio (> 2) of communication bandwidth (MB/sec) to peak performance (Mflops). For example, on
the Intel Paragon XPS/150 we observe almost perfect scalability up to 512 processors (less than 5 %
loss) and reasonable scalability up to 1024 processors (about 15 % loss). The single node perfor-
mance is mainly affected by memory bandwidth and secondary cache size because sparse matrix op-
erations dominate the computations. In terms of floating point performance the single node perfor-
mance is on the order of 10–15 % of peak (typical for sparse matrix computations) on most
architectures. On machines such as the Origin 2000 which have a good sized (4 MB) secondary cache
we achieve better percentage of the peak performance for small to moderate size problems than ma-
chines which have no secondary cache.

The special memory and computational savings that have been implemented in these codes enable us
to solve nonlinear coupled partial differential equation systems with more than 100 million degrees
of freedom in about 5–10 seconds per time step on machines such as the 1024–processor Intel Para-
gon XPS/150. To our knowledge, solution to groundwater transport problems of this size has not
been reported before in literature. In this implementation we have not included geochemistry reac-
tions which is a much easier problem from a performance point of view since the computations are
local in nature (no communication) involving small dense matrices (better cache reuse). We expect
the overall floating point performance to increase significantly (25–30 % of peak) when geochemical
reactions are included in our multicomponent transport model.

ACKNOWLEDGEMENTS

This work was sponsored by the Center for Computational Sciences of the Oak Ridge National
Laboratory managed by Lockheed Martin Energy Research Corporation for the U.S. Department of
Energy under contract number DE–AC05–960R22464. The authors gratefully acknowledge the use
of High Performance Computing Facilities at the Center for Computational Sciences of Oak Ridge
National Laboratory, Mathematics and Computer Science Divison of the Argonne National Labora-
tory, National Energy Research Supercomputing Center (NERSC), and the National Center for Su-
percomputing Applications (NCSA). The authors thank Dr. Pat Worely of ORNL for his assistance
in the T3E runs at NERSC.

REFERENCES- . / 0 1 2 3 2 0 4 5 6 7 8 9 : ; < 5 6 = 5 > 8 ? 8 5 9 8 9 : 8 > ? @ 8 A B ? ; : 7 9 : > C 7 @ ; : 6 ; 6 5 @ D ; 9 E 8 @ 5 9 6 ; 9 ? > F G H B 9 8 I 5 @ 6 : ; J< 5 6 = 5 > 8 ? 8 5 9 7 9 : = ; @ I 5 @ 6 7 9 < ; 7 9 7 K D > 8 > I 5 @ ? C ; L M N O P 7 9 : Q R S T 7 @ U C D = ; @ < B A ; > 2 0 V W X Y Z [Y W \] [^ _ ` Y a X b c d e f g h i c j g h e k 0 g d l l 2
1 m . n n o 2 p 2 0 q r s p 2 t 2 u v w v x 0 M 5 6 = K ; y 8 ? D 5 I = 7 @ 7 K K ; K 8 6 = K ; 6 ; 9 ? 7 ? 8 5 9 5 I : 5 6 7 8 9 : ; < 5 6 = 5 > 8 ? 8 5 9 ? ; < C J9 8 z B ; > I 5 @ ; K K 8 = ? 8 < = 7 @ ? 8 7 K : 8 I I ; @ ; 9 ? 8 7 K ; z B 7 ? 8 5 9 > G 0 a { | } ~ � a X b a Y � Y] [^ _ � 0 d � c � f k g c j k c � 2 � q m g d l l 2

� � w q � . m r 0 � 2 � 2 0 q r s 1 2 - 2 � � r s v m 0] [^ _ ` Y � Y b [� � � } W Y � [� \ b � a ` � \ ` � � � X W � � [� 0 � � q s v � � � � m v x x 0 � v �� . m � 0 � 2 � 2 0 g d l k 2
� q � � q w 0 p 2 0 t 2 - 2 p � � � v � v s . 0 q r s 1 2 � q � � r � � q � � � q m 0 g d d l 2 0 H > ? B : D 5 I � ¡ 8 9 7 = 7 @ 7 K K ; K I 8 9 8 ? ; ¢ ; K ; J6 ; 9 ? £ @ 5 B 9 : ¤ 7 ? ; @ ? @ 7 9 > = 5 @ ? < 5 : ; 0 { � Y � ~ � [� ¥ b ¦ � § W � � [� ^ � � X W] [^ _ ` Y b � ¦ | _ _ � b X � Y b [� \ ¨ © ª « ¬ ­ ¨ � � � �© ® ® ¯ ¨ _ � ¬ ° ± ² ¬ © ® 2

9

³ ´ µ ¶ · ¸ µ ´ ¹ º » ´ ¼ ½ ¾ ¿ ½ À ´ ¼ Á Â ¶ · Ã Ä Ã Å Ã Æ Ç È ¸ Ã É Ã · Æ ½ Ê Â Å Ã ¼ ¸ Ë ¿ Ì ´ Â Á Í Í µ ¶ ½ ´ · Î Ï ´ ¶ Æ ´ Â È ´ ¶ Ã Î ½ Ð Ñ Ñ Ò Ó Ò Ô Õ Ö × Ø Ù Ú Ö Ò Ø ÕØ Ñ Ù Û Ü Ý Ô × Ó Û Ù Ô Þ Ú Ù Ö Ò Ó Ø Þ ß Ø Õ Ô Õ Ö Ö Ü Û Õ × ß Ø Ü Ö × à × Ö Ô Þ × ½ á â â â ã ä å æ æ ç ç è é ê ë ì ê í ì î ï ð è ñ è é ì ê ñ ò ä ó ó ð ç ó é êô ç ì ó õ é ç ê õ ç ó ö ô ã â â ÷ ½ È ´ · Ê · ¸ Á · ¶ Á ½ Ä Ã ø ´ Æ ½ ³ ´ ¼ Í µ ù ú ú ú ¿
³ ´ µ ¶ · ¸ µ ´ ¹ º » ´ ¼ ½ ¾ ¿ ½ ù ú ú û ¿ ü ý þ Ð ÿ � � � ÿ Û × × Ò � Ô Ù à ü Û Ü Û Ù Ù Ô Ù � Ø � Ô × Ñ Ø Ü ý Ü Ø Ú Õ � � Û Ö Ô Ü � Ü Û Õ × ß Ø Ü Ö Û Õ � þ Ô �Þ Ô � Ò Û Ö Ò Ø Õ ½ 	 ñ
 � é � ë ç
 ñ è é ì ê ñ ò � ñ � ì � ñ è ì � � � ç õ � ê é õ ñ ò � ç ï ì � è � º · Î Ã ¼ ¼ Ã É ¶ Ã � � ½ � � � � � Ä ³ Ç ù � � � � ¿
³ ´ µ ¶ · ¸ µ ´ ¹ º » ´ ¼ ½ ¾ ¿ ½ ´ · Î È ¿ � ¿ � ¿ � Á Á Â Ã ½ ü Û Ü Û Ù Ù Ô Ù Ò ! Ô � Ð Ù Ô Þ Ô Õ Ö " # à " Ð Ù Ô Þ Ô Õ Ö $ Û Ó Ø # Ò � Ø Õ % Ú Ý Û Ö Ôý Ü Û � Ò Ô Õ Ö × Ù Ý Ø Ü Ò Ö & Þ Ñ Ø Ü ' Ò Ô Ù � ü Ü Ø # Ù Ô Þ × Û Õ � Û � Ø Þ ß Û Ü Ò × Ø Õ � Ò Ö & (Ö & Ô Ü) Ó & Ô Þ Ô × ½ å ï ï ò é ç � * ò ç õ è � ì +î ñ ë ê ç è é õ ó é ê æ ñ è ç � é ñ ò ó ½ Ì Á Â ¿ ù ½ � Á ¿ ù ½ ù � Ç , û ½ Ë º Â ù ú ú - ¿
³ ´ µ ¶ · ¸ µ ´ ¹ º » ´ ¼ ½ ¾ ¿ ½ Ï ¿ È ´ ¶ Ã Î ½ ´ » Î Ê ¿ Ë ¿ Ì ´ Â Á Í Í µ ¶ ½ � Ø Þ ß Û Ü Ò × Ø Õ Ø Ñ × Ø Þ Ô ß Û Ü Û Ù Ù Ô Ù . Ü à Ù Ø � × Ø Ù � Ô Ü × Ñ Ø Ü Ù Û Ü Ý Ô× Ó Û Ù Ô Ó Ø Õ Ö Û Þ Ò Õ Û Õ Ö Ö Ü Û Õ × ß Ø Ü Ö × Ò Þ Ú Ù Û Ö Ò Ø Õ × ½ / é ë � 0 ç � 1 ì � î ñ ê õ ç í ì î ï ð è é ê ë á â â 2 � 3 Î ¶ ¸ Á ¼ 4 Ê ¿ ³ ¿ Ä Ã · 5¸ · Ã ¼ � ½ 6 ¼ Á Í Ã Ã Î ¶ · 7 Æ Á 8 ¸ µ Ã ù ú ú 9 È ¶ » º Â ´ ¸ ¶ Á · ³ º Â ¸ ¶ Í Á · 8 Ã ¼ Ã · Í Ã ½ : ¿ ù � � Ç ù � ú ½ Ê ¸ Â ´ · ¸ ´ ½ ¾ Ê ½ Ê : ¼ ; Ç ù - ½ù ú ú 9 ¿
Ä Ã < Î º = ´ ¼ ½ Ä ¿ 3 ¿ ½ ´ · Î � ¶ Á º Ë ¿ ½ ý Ü Ø Ú ß Ô � Ô Ù Ô Þ Ô Õ Ö " # à " Ô Ù Ô Þ Ô Õ Ö Ò Ö Ô Ü Û Ö Ò Ø Õ × Ó & Ô Þ Ô × Ñ Ø Ü Ò Õ Ó Ø Þ ß Ü Ô × × Ò # Ù Ô Ñ Ù Ø �Ó Ø Þ ß Ú Ö Û Ö Ò Ø Õ × ½ í ì î ï > 0 � � ó > í ì î î ð ê > � � 4 � ù Ç � � � � ù Ç � � � ³ ´ = ù ú û ú ¿
Ä Ã < Î º = ´ ¼ ½ Ä ¿ ½ Ê Â ¶ ´ Å ´ Î ¶ È ¿ ½ ? Ã µ ¼ ³ ¿ ½ Ë Á µ · Æ Á · Ê ¿ ½ ´ · Î ³ ¶ ¸ ¸ ´ Â È ¿ ½ ü Û Ü Û Ù Ù Ô Ù ' Ò Õ Ò Ö Ô Ô Ù Ô Þ Ô Õ Ö Ó Ø Þ ß Ú Ö Û Ö Ò Ø Õ × Ø Ñ

� � Ñ Ù Ø � × ½ í ì î ï ð è ç � , ; 4 � ù - � , 9 Ç � ; ½ � Í ¸ Á Å Ã ¼ ù ú ú � ¿
È ´ ¶ Ã Î ½ Ï ¿ ½ ´ · Î ¾ ¿ ³ ´ µ ¶ · ¸ µ ´ ¹ º » ´ ¼ ½ Ð Ñ Ñ Ò Ó Ò Ô Õ Ö ü Û Ü Û Ù Ù Ô Ù ÿ Ú Ù Ö Ò Ý Ü Ò � @ Û × Ô �) Ø Ù � Ô Ü × Ñ Ø Ü A Û Ü Ý Ô) Ó Û Ù Ô ý Ü Ø Ú Õ � �

� Û Ö Ô Ü ' Ù Ø �) Ò Þ Ú Ù Û Ö Ò Ø Õ × í ì î ï ð è ç � ó æ ñ è � > å ï ï ò é õ > ½ Ì Á Â ¿ � � ½ � Á ¿ 9 ½ : ¿ � � Ç � � ½ ù ú ú û ¿

