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ABSTRACT

The investigation of a diagnostic method for
detecting and locating the source of structural
degradation in a mechanical system is described in
this paper. The diagnostic method uses a
mathematical model of the mechanical system to
determine relationships between system parameters
and measurable spectral features. These
relationships are incorporated into a neural network,
which associates measured spectral features with
system parameters. Condition diagnosis is
performed by presenting the neural network with
measured spectral features and comparing the system
parameters estimated by the neural network to
previously estimated values. Changes in the
estimated system parameters indicate the location
and severity of degradation in the mechanical system.

[. INTRODUCTION

Traditional monitoring methods can detect from
vibration signatures when mechanical degradation
has occurred but provide little indication of the
location and severity of the degradation. The main
advantages of the investigated method are (1) that
signature interpretation is based on mathematical
model results, allowing a direct association between
spectral changes and structural degradation, and (2)
that both the location and the magnitude of structural
changes are estimated. This approach removes much
of the subjectiveness often associated with signature
interpretation.

The diagnostic method combines a mathematical
model of the monitored system to relate system
parameters to measurable spectral phenomena, a
technique to extract the significant features from the
frequency spectra, and a neural network to match the
extracted spectral features with system parameters.
The steps comprising the technique are:
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1) Develop a mathematical model describing the
dynamics of the mechanical system.

2) Use the mathematical model to form a neural
network training set. The training set consists of
calculated model responses (i.e., spectral
features) as input and the corresponding spring
and damping constants (i.e., system or model
parameters) as output.

3) Design a neural network and train it to simulate
the relationship between the model’s input and
output.

4) Use the trained neural network to estimate the
system parameters corresponding to a set of
measured spectral features.

The modeling technique is independent of the
monitoring method. Thus, for some applications
relatively simple lumped-parameter approximations
may be suitable, while for others, detailed models
employing sophisticated modeling techniques may be
needed. The only requirement placed on the
mathematical model is that the significant and
measurable effects caused by changing system
parameters must be simulated.

The training set uses spectral features calculated
from the mathematical model as neural network input
and uses the corresponding model input parameters
as the neural network output. After training, the
neural network will effectively contain all of the
significant information available from the model and
will, in effect, perform the mathematical inverse of
the model.

The neural network output estimates the system
parameters. Comparison of the latest estimated
system parameters with previously estimated values
indicates if degradation has occurred and can also
indicate the severity of the degradation. The model
parameters experiencing changes indicate the
degradation location.



[I. APPLYING THE DIAGNOSTIC METHOD TO
COMPUTER-SIMULATED DATA

The computer simulation was intended to
address the following questions:
1) What effect does the training set composition
and size have on the accuracy of the model

parameter estimates made by the neural network.

2) Is the formation of the training set or the neural
network training so computationally intensive
that the diagnostic method is impractical.

3) Are eigenvalues and eigenvector components
practical choices for forming the neural network
training set and is this information sufficient for
accurate model parameter prediction.

4) Can the trained neural network solve the
"inverse problem", that is, can the neural
network accurately estimate the model
parameters corresponding to a given set of
eigenvalues and eigenvector components
(natural frequencies and mode shape
components).

When using computer-simulated data, a direct

comparison of the estimated and known model

parameters can be used to evaluate the accuracy of
the neural network interpolation.

A. Mechanical Model Description

A simple lumped-parameter model representing
a uniform beam supported by springs was used in
this investigation. The beam model is shown in
Figure 1. Mass points 2 and 3 each contain one third
of the beam’s mass and mass points 1 and 4 each
contain one sixth of the beam’s mass. Linear springs
KnmandK;,, attach the beam ends to ground. This
model was used to calculate the vibrational modes of
the beam, which are greatly affected by the mounting
springs K;,,andK;,,. The beam model was used to
calculate mode shapes and natural frequencies for
various combinations dof,,andK,. The
calculation results were used to form a neural
network training set.
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Figure 1. The simple mechanical system model.

B. Formation of the Training Sets, the Neural
Network, and Network Training

The training sets were selected so the effects of
the training set member increment size and the
effects of the number and type of model output
values on neural network prediction accuracy could
be examined. The number of model output values
determines the number of nodes in the neural
network input and hidden layers. The model input
value increment size affects the neural network
prediction accuracy because increment sizes result in
neural network interpolation over a harrower range
during the recall phase.

Training set input parameters were selected after
examining the effect of changing the spring rates on
the calculated natural frequencies and mode shapes.
Nine different training sets were created and used in
network training. Each training set used a different
combination of input parameters and input parameter
spacing.

The NeuralWorks Professional II/PLUS code,
distributed by NeuralWare, Inc. of Pittsburgh, PA.,
was used in this investigatiorBack propagation
networks with a single hidden layer were used. Each
network had two outputs corresponding to the spring
ratesk,,,,andK,,. Nine different training sets were
used. Training sets 1, 2, and 3 had four inputs
consisting of the first four natural frequencies.
Training sets 4, 5, and 6 had 20 inputs consisting of
the natural frequencies and mode shape components
for the first four natural modes. Training sets 7, 8,
and 9 had 45 inputs consisting of the natural
frequencies and mode shape components for the first
9 natural modes. Training sets 1, 4, and 7 had 27
members, sets 2, 5, and 8 had 125 members, and sets
3, 6, and 9 had 343 members.

It was found that a suitable number of hidden
layer nodes was approximately one-half of the input
dimension. Additional factors that must be
considered in the development of a back propagation
network are the nonlinear transfer function used and
the variation of the learning rule incorporated. For
our work the hyperbolic tangent function gave better
results than the sigmoid function and was used as the
nonlinear transfer function in all cases. Network
learning was achieved by using the cumulative delta
rule, a version of the gradient descent rule.



. Results Obtained from Applying the
iagnostic Method to Computer-Simulated
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be detected. For example, a 10% change in one of
the parameters would result in approximately a 10%
change in the estimated value regardless of the initial
agreement between the estimated and actual values.
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Figure 11. Estimated value f,, calculated while
holding the value oK, fixed.
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Figure 12. Estimated value Kf,, calculated while
holding the value o, fixed.

IV. SUMMARY AND CONCLUSIONS

Computer simulation results and a demonstration
using a bench-top test unit were used to determine
that the diagnostic method can be successfully
applied to detect and locate structural changes in a
mechanical system. In particular, it was shown that a
neural network, trained by using eigenvalues and
eigenvector components calculated from a
mathematical model, can estimate structural
condition from measurements of natural frequencies

and mode shape components. It is concluded that the
diagnostic method can be applied to monitor the
structural condition of a mechanical system with the
following characteristics:

1) The relationship between the measured
parameters (neural network input) and the monitored
parameters (neural network output) must be
single-valued if the neural network is to train

properly.

2) Changes in the monitored parameters must have a
significant effect on the values of the measurable
parameters.

The simulation results show that the accuracy of
the neural network parameter estimation depend
heavily on the composition and the increment size of
the training set. If the training set composition is
such that the relationship between the neural network
input and output is not single-valued, the resulting
model parameter estimation is poor. An example of
this behavior is the relatively high error associated
with training sets 1, 2, and 3 (Figure 6). Because
these training sets contained only natural frequencies
as input, in some cases more than one combination of
spring rates resulted in nearly identical natural
frequency values. Including mode shape components
in training sets 4 through 9 avoids this problem,
producing better parameter estimates, as shown by
the lower error values obtained by using these
training sets.

Figure 6 also shows that the increment size
affects the accuracy of the estimated spring rates.
Interpolation between training set members
performed by the neural network when estimating
spring rate values occurs over a smaller interval as
the training set member spacing decreases, resulting
in more accurate spring rate estimates.

The amount of computation required to form the
training set and train the neural network was not
prohibitively large in the applications of the
diagnostic method used in this work. Although the
applicability of this statement is obviously limited by
the relatively simple models and the small number of
parameters adjusted in this work, there appears to be
no reason to expect prohibitively large calculations
for significantly larger models. Thus, this question
remains open at this time but does not appear to pose
a great threat to the practical application of the
method.



The results from the computer simulation show
that the trained neural network can accurately solve
the inverse problem of determining model parameters
from the natural frequencies and mode shape
components. The computer simulation results
indicate that the diagnostic method is applicable to
real mechanical systems with a single-valued
relationship between the neural network input and
output.

The application of the diagnostic method to the
bench-top test unit was intended primarily as a
demonstration of the method on a simple mechanical
system. In addition to demonstrating the method, an
indication of the effect of modeling and measurement
errors on the method's accuracy was obtained.

The demonstration clearly shows the ability of
the diagnostic method to estimate values of the
mounting spring rates. Thus, it is concluded that the
diagnostic method can be used to detect, locate, and
estimate the magnitude of structural changes in
mechanical systems that have a single-valued
relationship between neural network input and output
and that have monitored parameters that significantly
affect the measured parameters.

The effect of modeling and measurement errors

on the method's accuracy are indicated by the results.

The three main error sources are modeling errors,
neural network errors, and measurement errors.
From the results shown in Section Il and in Figure 9,
the neural network errors are known to be on the
order of 2%. The model error, indicated by the
comparison of calculated and measured values
shown in Figure 8, is estimated to be on the order of
5%. The measurement errors, although not
guantified, are believed to be relatively large, on the
order of 5%. This error was due to difficulty with

the pressure regulators (which continuously bled air,
changing the air spring pressure), stickiness in one of
the pressure gauges, and the unavoidable unit-to-unit
variability that would introduce errors into the
pressure-to- spring rate equation. Both modeling and
measurement errors will cause a mismatch between
the measurements and the neural network input
values contained in the training set, resulting in poor
system parameter estimates.

Note that sensitivity to modeling error does not
necessarily mean that complicated mathematical
models are needed. The required model complexity
depends on the dynamic characteristics that need to

be measured to detect changes in the monitored
system parameters. If parameters such as the
mounting spring rates need to be monitored, as was
done in this work, the rigid body modes supply all
the information needed to detect and locate changes
in these spring rates. These modes can be accurately
modeled by using a relatively simple model, as
shown by the results in Section Ill. If, on the other
hand, system parameters that affect higher modes
need to be monitored a more complex model would
be needed.

Finally, it should be pointed out that, although
the diagnostic method has been presented only in
connection with vibration signature interpretation,
this is really a specific application of a more general
methodology. This methodology has a range of
application beyond vibration signature analysis. This
technique should be applicable to monitor parameters
in any system or process that satisfies the
requirements that the relationship between the
measured output and the monitored parameters be
single-valued, that shows sufficient sensitivity to the
parameters being monitored, and that can be
accurately modeled. Thus, the results in addition to
showing that the diagnostic method can be applied to
detect and locate the source of changes in vibration
signatures, also serves as a successful demonstration
of the more general methodology.
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