




(the modelÕs dimensions). The time or sampling points are assumed to consist of a sequence of regularly
spaced integers from 1 to the length of the data set. If we wish to scale the sampling points, simply
include the scale factor as a (known) nonlinear parameter. Thus, the model for a single oscillatory term
might be

{1, cos(ωt), sin(ωt)} or {1, cos(2πωtκ), sin(2πωtκ)} (3)

where κ is a scaling factor that takes the integer samples represented by t to microseconds, for example,
letting ω represent the frequency in MHz. In the first expression, ω is the frequency in radians. Consider a
model of linear chirp:

{1, cos(2πωtκ+ακ2t2), sin(2πωtκ+ακ2t2)}.       (4)

Here, there are three explicit nonlinear parameters (α, κ, and ω) and three implicit amplitude parameters.
One of the nonlinear parameters is known, namely κ, as the time-scale parameter. The two unknown
parameters are α  and ω, leading to a two-dimensional search or optimization problem in the ω, α-plane.
Generally, if there are m unknown nonlinear parameters, the problem becomes a search in an m-
dimensional space for the peak of the likelihood function. Should this prove too much of a computational
burden, individual nonlinear parameters may be removed by integration in the usual manner. However,
this may prove more difficult than a high-dimensional search.

Log likelihood is the log of the Student-t distribution. This assumes integration over all the linear model
parameters. The Student-t is computed from the projection of the data onto the orthogonalized model,
which should be the same number as the projection of the data onto the model and the inner product of the
data vector with itself as
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The projection of the data onto the model is <d,m> and <d,d> is the projection of the data onto itself. The
number of functions in the model is represented by M, and N is the number of samples in the vector.

FEATURES OF IMPENDING CAVITATION (THEORY)

If cavitation started when the minimum flow pressure dropped below the vapor pressure of the liquid,
then the prediction of the inception of cavitation would be straightforward. However, many physical
effects cause the actual inception point to be further from that predicted by this criterion. One of the most
troublesome is the effect of surface tension at a nucleation site. Since the liquid can withstand tensions
below the vapor pressure, this has to be taken into account. A microbubble of radius, RN, and surface
tension, S, containing only vapor, is in equilibrium if the liquid pressure is p = pV Ð 2S/RN. The liquid
pressure must fall below this critical point for cavitation to start. Unfortunately, the liquid contains a great
many nucleation sites having a great many radii. These vary with the physical situation and the quality of
the fluid.5 Therefore, the onset of cavitation and its precursors must be observed directly.

One approach is to obtain the nuclei number distribution function, N(RN), such that N(RN)dRN is the
number of nuclei per unit volume with radii between RN and RN + dRN. The problem with this approach is
that there is no straightforward way to measure the nuclei distribution.6 [As an aside, it may be worth
considering using acoustic emission (AE)-based technologies to measure this distribution function.]



Air can cause cavitation. Dissolved air will contribute to the partial pressure of the cavitation bubble. As
the bubble moves to a region of higher pressure, the vaporized liquid will condense, leaving the air bubble
remaining. Air is slow to redissolve.6 Thus, one of the things that can go wrong with a cavitation
experiment in a test loop is that air bubbles from the first pass are not redissolved in the loop. The return
leg of the test loop must be long enough and at high enough pressure for the air bubbles to become
reabsorbed. Otherwise, the number of nucleation sites will grow rapidly as the experiment runs. It should
be noted that cavitation inception data taken without bubble population data are practically useless. Total
air content provides a good estimate of bubble population. The bubble population typically increases with
total air content.7 Do we have a practical way of measuring total air content in our experiments? If we
want our data to be taken seriously by the mechanical engineering community, we need a practical way of
estimating bubble population.

There are several other effects that contribute to resolving the complexity of cavitation.8 The first is
residence time. The cavitation bubble takes a finite time to form. Residence time depends on pump size,
flow rate, and temperature. However, if the cavitation nucleus is in the region of low pressure for less
than the residence time, the bubble will not form. This has the effect of lowering the critical cavitation
number. Turbulence causes localized low pressure significantly below the mean pressure of the flow and
is often the site of incipient cavitation. This effect is dependent on the Reynolds number, but is a separate
effect from the dependency of the pressure coefficient on the Reynolds number. Turbulence has the effect
of raising the critical value of the cavitation number. Surface roughness also creates localized low-
pressure perturbations. Localized low pressure is a departure from the simplifying assumption that the
pressure is uniform at an average value through a cross section of the stream.

Due to various effects, a pump will have its minimum cavitation inception number at its design flow rate.9

In the experiment, there is a need to run the flow loop driver pump near its design flow rate to minimize
pump cavitation. Even after the pump cavitation bubbles collapse, their residual air bubbles will remain
and could lead to excessive nucleation sites in the venturi chamber.

Practically everything that can be said about the properties of the cavitation bubble is based on the
Rayleigh-Plesset Equation.10 To find a solution for the equation is difficult. It may turn out to be more
computationally efficient to try to use Bayesian methods to do a direct estimate of the coefficients of this
nonlinear differential equation than to try to estimate parameters for its various approximate solutions.
The generalized differential equation gives the instantaneous bubble radius, R(t), in response to the
driving pressure far from the bubble, p∞(t).
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The equation is derived based on several simplifying assumptions that turn out to be reasonable in
practice. It assumes a single, spherical bubble in an infinite liquid domain whose remote temperature, T∞,
is constant in time. There is no uniform heating of the liquid due to radiation or internal heating. Liquid
density, ρL, is assumed constant. Dynamic viscosity, µL, is assumed constant and uniform. The bubble
contents are homogeneous and the temperature, TB(t), and pressure, pB(t), inside the bubble are
independent of location. It is also assumed the bubble contains a contaminant gas with a partial pressure,



pGo, given a reference bubble radius, R0, and temperature, T∞, and that there is negligible mass transfer
between the liquid and the contaminant gas.

The driving term depends on the pressure in the liquid far from the bubble, p∞(t). The remote vapor
pressure of the liquid, pνT(∞), depends only on the liquid and the remote temperature. The liquid density is
a property of the liquid. The second term is the thermal term. If thermal effects are to be neglected, then
TB(t) = T∞, and pν(TB)-pν(T∞) = 0. When this term is nonzero, it can greatly affect the growth rate of the
bubble. The sixth term depends on the kinematic viscosity of the liquid, νL. The sixth term depends on the
surface tension of the liquid, S.

A consequence of the Rayleigh-Plesset Equation is bubble instability. If the bubble radius is greater than a
critical radius, any small perturbation in pressure will cause it to grow without bound. The critical radius
is approximately 4S/3(pν-p∞). As the pressure, p∞, drops, the critical radius drops, which means that more
nuclei in a given distribution are induced to cavitate. This is why there is a rapid increase in the number of
visible bubbles in a cavitating flow as the pressure drops.11

In the most simplified case, the solution of the Rayleigh-Plesset Equation will lead to an oscillating
response in which the contracting part of the bubble represents a catastrophic collapse. In reality, the
oscillation does not occur. As the bubble approaches zero radius, it becomes unstable to nonspherical
perturbations; it shatters into a cloud of even smaller bubbles during the first collapse. This generates
powerful shock waves that produce AE.12 The cloud will then expand and collapse and this will also
produce powerful shock waves.13

The collapse of a bubble near a hard surface produces a microjet directed toward the hard surface and
then a collapsing bubble cloud. Due to its high local pressure, the microjet emits noise and causes
damage. The collapsing remnant bubble cloud causes even more noise and damage than the microjet,
although the mechanism by which it does so is not understood.14

The natural frequency at which an isolated bubble oscillates in a quiescent liquid can also be determined
from the Rayleigh-Plesset Equation.15 This suggests the natural frequency should be between 10 kHz and
1 MHz. Acoustic pressure goes as second derivative of bubble volume.

ω
ρ ρP

L E L E E

p pv
R R

v
R

= − + −





3 4 8
2 3

2

4

1
2S (7)

For an isolated bubble, the second order nonlinear effects have been determined by Kumar and Brennen.16

The nonlinear differential equation is Equation 8. The solution is Equation 9, as clarified by Equations 10-
13. This may be a crude model for a first try at Bayesian estimation. The bubble radius will oscillate at
integral harmonics of the excitation, if the excitation is a remote pressure oscillating at a single harmonic
frequency. Because the response goes inversely with the order of the harmonic, only the first 50
harmonics contribute to the response. For weak excitation, this model tracks fairly well with a direct
numerical solution of Equation 7. More accurate solutions appear in the literature, but this one is easily
extended to bubble clouds.
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It is noteworthy that in a bubbly liquid medium for natural frequencies above 200 kHz, the attenuation of
the pressure wave is about 5 dB/cm, as compared to 25 dB/cm at the average bubble natural frequency of
100 kHz. Thus, even if the higher frequency effects may occur less commonly, they may still be as easy
to observe as the low frequency events that start out stronger. Another way to interpret this is to note that
although most of the energy is generated near the average bubble natural frequency, these bubbles act as
absorbers. Energy from the collapse of bubbles far away from the average size is smaller. But since it is
not so strongly absorbed, it may be easier to detect.19

In a bubbly flow, there is a shock wave. Viscosity will affect the properties of the shock wave and lead to
damping effects. For reasonably low void fractions, the shock wave ringing effect occurs at about half the
natural frequency of the isolated bubble. In the time domain, at a stationary observation point, the shock
wave will be perceived as a rising and then damped nonlinear oscillation. The shock wave contributes to
the acoustic signature in cavitating flows. Equation 14 may be particularly relevant to the Bayesian
analysis suggested for Phase II.20
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The situation that is likely to be encountered is the oscillating, flowing bubble cloud. This will have a
number of modes and a number of natural frequencies, all lower than the natural frequency of an isolated
bubble. For a small void fraction, all the cloud natural frequencies will be in a narrow range just below
the isolated bubble natural frequency. For a large void fraction, the cloud natural frequencies will occupy
a large range below the bubble natural frequency. Since damping is strong near the isolated bubble natural
frequency and since the outside of the cloud shields the rest of the world from effects inside the cloud, the
dominant effect in a cloud in a damping medium is the response at the lowest cloud natural frequency.
Thus, the response will be seen as a large peak at the lowest cloud natural frequency and a smaller peak at
the bubble natural frequency, with the strength and frequency of the cloud response decreasing with
increasing void fraction.21

Notice the foregoing paragraph only describes the linear effects of a bubble cloud in a flow. Other effects
at higher frequencies occur when nonlinear effects are taken into account. Harmonic cascading is the
effect of harmonics at relatively low frequencies exciting the natural frequencies of smaller bubbles,
leading to higher frequency effects. Whereas the linearized analysis of bubble cloud dynamics showed the
lowest cloud natural frequency as the dominant effect. Nonlinear analysis says the low-order harmonics
of the lowest cloud natural frequency are also strongly present. This can stimulate harmonic cascading if
the fluid contains nucleation sites over a range of small sizes. Fine resolution at high frequencies is
needed to observe harmonic cascading. Previous researchers typically used Fourier analysis at 1/3-octave
resolution to analyze experimental data.16 Bayesian methods should dramatically reveal harmonic
cascading. In addition, if the bubbles are not spherical, super-resonant effects can occur.22

Note that the isolated bubble natural frequency is the key to understanding the expected acoustic effects
of a cavitating flow. The distribution of sizes of nucleation sites will cause AE to be spread out about the



natural frequency of the average nucleation radius. The shock wave will produce a strong signature in the
region 0.1-0.9 of the isolated bubble natural frequency. The cloud effects will produce more energy just
below the natural frequency.16

If the strength of excitation is such that the weakly nonlinear solution applies, then the response will be
one of the following conditions. The response is subresonant if the excitation is at a frequency lower than
the lowest natural frequency of the bubble cloud. The response is transresonant if the excitation is at a
frequency higher than the lowest natural frequency of the bubble cloud, but lower than the natural
frequency of the average bubble in the cloud. The response is super-resonant if the excitation is at a
frequency higher than the natural frequency of the average bubble in the cloud. Super-resonance response
decays fairly rapidly with distance from the source of excitation. It is strongest in the center of the cloud
and weakens toward the edges.16

The harmonic cascade is predicted by Kumar.16 Harmonic cascades should be a common occurrence in
practical experiments. High-resolution frequency spectra should reveal them.23

EXPERIMENTAL RESULTS

The observables measured in this experiment are the broadband AE signatures of a venturi chamber in a
flow loop. The AE data are known to contain features of incipient cavitation and are suspected of
containing features of impending cavitation.23 Previous experimenters have reported unmistakable
features of incipient cavitation, but concluded that much richer information was being lost due to the
limitations of the then-available hardware.

To search for features of impending and incipient cavitation in AE data, the experiment reported in this
paper began where the work of Neill et al. left off. The authors used a flow loop at Oak Ridge National
Laboratory that is routinely used for calibrating various flow devices. The source of AE signatures was a
venturi chamber inserted into the flow loop. The venturi chamber was designed specifically for this
experiment and is similar to the one described by Neill et al.

The authors used a Vallen Systeme AMSY4-MC6 AE monitor (Vallen ID number 40900) to collect the
data. A complete set of AE signatures at various flow rates was collected with broadband piezo-electric
AE sensors (Vallen SE-1025-H, usable frequency response from 10 kHz through greater than 400 kHz).
Another complete set of AE signatures at various flow rates was collected with narrowband piezo-electric
AE sensors (Vallen SE-9125-M, usable frequency response from 20 kHz through 200 kHz). Sampling
rate was 10 million samples per second. Dynamic range was approximately 80 dB. This paper includes
highlights from the experimental data.

A typical example of the time-domain signature of a cavitation event seen in the AE data is shown in
Figure 1. This type of signature occurs very frequently at high flow rates (thousands of instances per
second at flow rates above 20 gallons per minute (gpm)). This is a particularly clean instance from the
unrefined raw data of the many cavitation events observed at 30 gpm and is used to derive a model of the
cavitation event. The amplitude is normalized to 1 at the peak value of the signature. The time-axis is in
units of µ sec.



Figure 1. AE signature at 30 gpm.

A linear-chirped damped sinusoid is easily fitted to these data. The model is {e-γt cos(ωtκ+ακ2t2), e-γt

sin(ωtκ+ακ2t2)}. Assume κ=1. Bayesian parameter estimation computes the most probable nonlinear
parameter values are ω = 0.0877091, α = -0.000923205, and γ = 0.00553404. As shown in Figure 2, this
provides a very good first order fit to the data. The damped chirp model is used in the subsequent analyses
in this paper. The utility of a more sophisticated model (nonlinear chirps and other decay envelopes) to
describe these data will be investigated in future research.

Figure 2. Fitted damped chirp model and observed data.

Figure 3 shows a typical frame of data captured at 30 gpm with the narrowband sensor. From the audible
crackling from the venturi chamber, we know that severe cavitation was occurring. Figure 3 shows a little
over 2000 µ sec of data with maximum amplitude of approximately 20,000 µV. [Note: In Figures 3, 5, 7,
and 9, the vertical-axis is the raw AE sensor output in µV.]

Figure 3. Several cavitation events at 30 gpm.

Likelihood is computed for each set of 240 data points in the signature data as the model (used as a
matched filter) is swept forward one sample at a time. The nonlinear parameters and then the linear
parameters are calculated for the model and the goodness of the fit is determined by computing the log
(likelihood) in dB. As shown in Figure 4, the signature of Figure 3 includes four events that are very
likely damped chirp events. Similar data are shown in Figures 5 and 6 at a 20 gpm flow rate.



Figure 4. Likelihood of damped chirp events in the signature in Figure 3.

Figure 5. Several cavitation events at 20 gpm.

Figure 6. Likelihood of damped chirp events in the signature in Figure 5.

At flow rates below 18 gpm, damped chirp features are very rare occurrences. As Figures 7 and 8 show, a
typical data set collected at 17 gpm is practically indistinguishable from the electronic noise of the
experimental setup. [Note: The noise floor of the electronics is 1 µV root mean square.]

Figure 7. Typical data set at 17 gpm.



Figure 8. Likelihood of damped chirp events in the signature in Figure 7.

Compare Figures 7 and 8 with Figures 9 and 10. Figure 9 is a typical time domain signature with the
sensors mounted on the venturi section, but with zero flow through the flow loop. This is the AE
signature of the noise from the environment plus the experimental apparatus itself. As seen in Figure 10,
if the log likelihood measure is below 750, it is very unlikely that a damped chirp feature is present in the
data.

Figure 9. Typical data set at zero flow.

Figure 10. Likelihood of damped chirp events in the signature in Figure 9.

Although damped chirps are rare at 17 gpm, they do occur occasionally. Figure 11 (time domain shown
higher, likelihood shown lower) shows the only event captured at 17 gpm with the broadband sensors that
do not look just like noise. Bursts are apparent in the time domain data; a stronger burst near the
beginning and a weaker one just after the strong one. Both are only a little stronger than the background
noise.

Figure 12 shows more details of the log likelihood plot from Figure 11. It is noteworthy that the weaker
burst between times 700 and 900 is more likely to be a damped chirp than the stronger burst between
times 200 and 400. If the Òthreshold of cavitationÓ is between 17 and 18 gpm, it is possible the very weak
damped chirp (amplitude on the order of 10 µV) in the 17 gpm data is a precursor to the very strong



damped chirp (amplitude on the order of 10 mV) signature in the data at 18 gpm and above. This needs to
be investigated in more detail in subsequent research.

Comparing the 17 gpm data with the zero flow data, it appears that a crude way to distinguish between the
presence and absence of damped chirps is to use the log likelihood of 750 as a threshold. The damped
chirp appears to be a cavitation signature, although this remains to be confirmed by further investigation.
Weak damped chirps (amplitudes of approximately 10 µV with this experimental setup) with a high log
likelihood (greater than 750) appear to be a useful cavitation precursor.

In future work, a less crude (and more reliable) method of deciding whether or not the cavitation signature
is present would be a Rosen anticipation engine. The interacting models in the Rosen anticipation engine
would be derived from experimental data similar to these and the theory already described. Such a system
would inductively learn the signature of cavitation, with the effectiveness of the learning improving over
time as the anticipation engine gains experience.

Figure 11. A possible damped chirp at 17 gpm.

Figure 12. Log likelihood of damped chirp at 17 gpm.

A bit of interpretation of the data yields some useful guidance at this point. The dominant frequencies of
the damped chirps are in the digital frequency range of 0.08 <= ω <= 0.1 radians. The sampling rate is 107

samples per second, meaning the digital frequency of π corresponds to 5 MHz. Thus, the underlying
dominant frequency of the physical chirps is in the range of 127-159 kHz. This is well within the flat
response range of the broadband AE sensors. It is also in the resonance peak of the narrowband sensors
whose sensitivity in the resonant band tends to be 5-15 dB greater than the sensitivity of the broadband



sensors. This suggests that at flow rates below 17 gpm, we should see occasional weak high-likelihood
damped chirps with the narrowband sensors. We did.

For example, consider the data set shown in Figure 13, observed at 14 gpm with the narrowband sensors.
Note that the two bursts most likely to be damped chirps are barely stronger than the noise and the
matched filter does not show a strong response to the much stronger signal that is unlikely to be a damped
chirp.

Figure 14 shows more details of the log likelihood plot. It is noteworthy that three very weak damped
chirps (amplitude below 10 µV) in the 14 gpm data are very likely to be damped chirps. It is also
noteworthy that the strong burst at the beginning of the time domain signal is unlikely to be a damped
chirp. Among other things, this illustrates that Bayesian parameter estimation does not confuse strong
undesired signals with the damped chirp. Similar results are seen at 13 gpm, but the events are rarer and
weaker than at higher flow rates.

Figure 13. Likely damped chirps at 14 gpm in narrowband data.

Figure 14. Log likelihood of damped chirps at 14 gpm.

CONCLUSIONS AND FURTHER RESEARCH

The conclusions drawn from this study are listed below.



1. Damped chirped AE signatures are a distinguishing feature for cavitation occurring above and below
the inception threshold.

2. Damped chirped signals are easy to detect and hard to confuse with other events using Bayesian
parameter estimation.

3. These features (or descriptors) can be used as event precursors to eliminate inception of cavitation,
considered a catastrophic event.

4. At flow rates below the threshold of cavitation, occasional damped chirps are observed with weak
amplitudes (virtually indistinguishable from noise), but high log-likelihood measures.

These conclusions have utility in two aspects of cavitation detection. First, it appears the sudden
appearance of strong damped chirps in response to a small increase in flow rate is a strong and reliable
indicator of the inception of cavitation. Second, weak damped chirps at low flow rates appear to be
cavitation precursors. This suggests the Bayesian-derived damped chirp may be well suited to be a model
in the anticipation engine.
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