
 ORNL/NRC/LTR-00/11

Computational Physics and Engineering Division (10)

Contract Program or
Project Title:

Development and Application of Criticality Safety
Software for Licensing Review

Subject of this Document: Production of Probability Tables for the Unresolved-
Resonance Region Using the AMPX Cross-section
Processing System

Type of Document: Letter Report

Authors: M. E. Dunn

Date Published: October 2000

Responsible NRC Individual
and NRC Office or Division:

D. D. Ebert (301) 415-6501
U.S. Nuclear Regulatory Commission

Prepared for the
U.S. Nuclear Regulatory Commission

Washington, D.C. 20555-0001
under Interagency Agreement DOE 1886-C647-9W

NRC JCN No. W6479

Prepared by the
OAK RIDGE NATIONAL LABORATORY

P.O. Box 2008
Oak Ridge, Tennessee 37831-6370

managed and operated by
UT-Battelle, LLC

for the
U.S. DEPARTMENT OF ENERGY

under Contract No. DE-AC05-00OR22725





ORNL/NRC/LTR-00/11

Computational Physics and Engineering Division (10)

Production of Probability Tables for the Unresolved-Resonance
Region Using the AMPX Cross-section Processing System

M. E. Dunn
Oak Ridge National Laboratory

P.O. Box 2008
Oak Ridge, TN 37831-6370

Manuscript Completed:  October 2000
Date Published:  October 2000

Prepared for the
U.S. Nuclear Regulatory Commission

Washington, D.C. 20555-0001
under Interagency Agreement DOE 1886-C647-9W

NRC JCN No. W6479

Prepared by the
OAK RIDGE NATIONAL LABORATORY

P.O. Box 2008
Oak Ridge, Tennessee 37831-6370

managed and operated by
UT-Battelle, LLC

for the
U.S. DEPARTMENT OF ENERGY

under Contract No. DE-AC05-00OR22725



    



iii

CONTENTS

Page

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

I.  INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
I.1  Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
I.2  Purpose and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

II.  METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
II.1  Historical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
II.2  PURM Calculational Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II.2.1  Resonance-parameter Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
II.2.2  Dyson and Mehta )3-Statistics Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
II.2.3  Cross-section Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

II.2.3.1  Unbroadened Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
II.2.3.2  Broadened Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

II.2.4  Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

III.  RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

IV.  SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

V.  REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



iv



v

LIST OF FIGURES

Figure Page

III.1.  Calculated average total cross section by batches run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

III.2.  Calculated average total cross section by batches skipped . . . . . . . . . . . . . . . . . . . . . . . . . 21

III.3.  Frequency distribution for 235U total cross-section calculation at 2.25 keV . . . . . . . . . . . . . . 22

III.4.  Calculated probability table for 235U at 2.25 keV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

III.5.  Calculated probabilities as a function of cross-section band for 235U at 2.25 keV . . . . . . . . . 24

III.6.  Calculated total cross section as a function of cross-section band for 235U at 2.25 keV . . . . . 25

III.7.  Calculated capture cross section as a function of cross-section band for 235U at 2.25 keV. . . 26

III.8.  Calculated fission cross section as a function of cross-section band for 235U at 2.25 keV . . . 27

III.9.  Calculated scatter cross section as a function of cross-section band for 235U at 2.25 keV . . . 28

III.10. Probability-table comparison between PURM and NJOY for 235U at 2.25 keV . . . . . . . . . . 30

III.11. Total cross-section comparison between PURM and NJOY for 235U at 2.25 keV . . . . . . . . 31

III.12. Capture cross-section comparison between PURM and NJOY for 235U at 2.25 keV . . . . . . 32

III.13. Fission cross-section comparison between PURM and NJOY for 235U at 2.25 keV. . . . . . . 33

III.14. Scatter cross-section comparison between PURM and NJOY for 235U at 2.25 keV . . . . . . . 34



vi

LIST OF TABLES

Table Page

II.1.  Example probability-table format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

III.1  Calculated 235U (ENDF/B-VI) average cross-section values in the unresolved-resonance 
region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18



vii

ACKNOWLEDGMENTS

Special appreciation is expressed to D.D. Ebert and D. E. Carlson of the Nuclear Regulatory Commission
for their support of this effort.  Appreciation is also expressed to L. C. Leal who is the author of the
URR code that served as the basis for this work.



viii



HCurrently, NJOY3 is the only production-level code system that has the capability to process ENDF/B-VI cross-
section evaluations.
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I.  INTRODUCTION

I.1  Background

The tasks associated with the "Development and Applicability of Criticality Safety Software for Licensing
Review" are documented in the DOE Laboratory Project and Cost Proposal for NRC Work (JCN W6479).1

Six tasks are documented that address the upgrade to the AMPX code system.2  

The AMPX upgrade is intended to facilitate independentH processing of Version VI formats of the Evaluated
Nuclear Data File (ENDF) using state-of-the-art procedures.  Consequently, a comprehensive and alternative
processing capability would be available to generate neutron cross-section data for criticality safety licensing
applications.  Task 8 of the cost proposal addresses the development of the capability to generate probability
tables for treating resonance data.  To date, a substantial amount of code development is complete, and in
accordance with the reporting requirements for Task 8 of the cost proposal, this letter report documents the
capabilities for generating probability-table data for neutron transport applications.

For resonance isotopes, the resonance region is typically divided into a resolved- and unresolved-resonance
region (i.e., RRR and URR, respectively).  The boundaries of the different energy ranges are extremely
material dependent.  The RRR is an energy region that is characterized by well-defined resonances.  In other
words, the experimental resolution is sufficient to permit the determination of the resolved-resonance
parameters by area or shape analysis.  In the RRR, cross-section functions can be generated as continuous
or pointwise functions with respect to energy.

In contrast to the RRR, the URR is an energy region in which the experimental resolution is inadequate for
determining the resonance parameters of individual resonances.  As a result, the unresolved-resonance
parameters are averages of resolved-resonance parameters over specific energy intervals; however, the
values of the parameters vary as a function of the different energy intervals. As a result, the conventional
approach for the URR is to calculate effective or average cross sections at an energy point within a specified
energy-averaging interval.  Consequently, the energy-dependent cross sections have a relatively smooth
structure in the URR relative to the RRR.  The smooth structure in the URR is nonphysical because the
resonance structure can extend into the URR.  

Due to the statistical nature of the unresolved-resonance parameters, probability tables can be used to provide
cross-section probability distribution functions for energy ranges at specific temperatures within the URR.
In particular, the tables provide a distribution of cross-section values and corresponding probabilities for a
specified energy range within the URR.  During a continuous-energy Monte Carlo neutron transport
calculation, the requiste cross-section values can be sampled from the probability distribution at the neutron
energy during the random walk.  As a result, the self-shielding effects within the URR can arise naturally
during the random walk, and the resulting Monte Carlo simulation is more analogus to the actual particle
transport relative to using the effective or average cross-section value.
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I.2  Purpose and Scope

Although probability tables can be generated for both the resolved- and unresolved-resonance regions, this
work focuses on the calculation of probability tables for the unresolved region.  Prior to this work, the
capability for generating probability tables was not available in AMPX.  In an effort to satisfy the objective
of Task 8 under JCN W6479, a new module, PURM (Probability tables for the Unresolved Region using
Monte Carlo), has been developed for the AMPX cross-section processing system.  As implied by the name
of the new module, a Monte Carlo approach is used to calculate probability tables for the URR, and a
descriptive overview of the methodology is presented in Section II of this letter report.  The purpose of this
letter report is to document the capability for producing probability tables in the URR.  In order to demonstrate
the computational capability for this work, the probability tables that are generated with PURM are compared
with probability tables that are calculated using NJOY.  Comparisons with NJOY are sufficient to establish
the computational capability for generating probability tables using the AMPX code system.

Note that the objective of Task 10 under JCN W6479 is to demonstrate the capability for AMPX to produce
continuous-energy neutron cross-section data for use with MCNP.4  Since MCNP has the capability to utilize
probability tables in the unresolved region, the completion of Task 8 provides the foundation for
implementation of the probability-table method in a continuous-energy Monte Carlo code such as MCNP.
Furthermore, future testing associated with Task 10 will demonstrate the implementation of probability tables
in MCNP and provide a mechanism for testing the probability tables in criticality safety benchmark
calculations.
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II.  METHODOLOGY

The objective of the probability-table method is to calculate a distribution function for the cross-section values
in a specific energy range within the unresolved-resonance region (URR).  The approach is in direct contrast
with the procedures of the resolved-resonance region (RRR) in which the neutron cross section is obtained
at a specific energy using the appropriate resonance formula.  The cross-section distribution function is
characterized by having a mean value that is equivalent to the infinite-dilution cross-section value for the
energy range of interest.  

Since other methods exist for the calculation of probability tables, a brief description of the most common or
conventional approach is presented prior to describing the procedures that are used by PURM.  Following
the brief review of the conventional approach for calculating probability tables is a description of the
procedures used by PURM to calculate probability tables in the URR.

II.1  Historical Approach

Different approaches can be used to generate probability tables for the isotope/nuclide of interest.  The
conventional or historical approach is to generate continuous-energy cross-section data from a "ladder" of
resonances and determine contributions to a probability table based on the point data.  This process is then
repeated over additional ladders of resonances until the desired number of ladders is processed.  The ladder
approach, which is described by Levitt,5 is the basis for the probability-table method in NJOY.3  For the
energy range of interest in the URR, a random energy grid is generated over the desired energy range.
Subsequently, a ladder of resonances is generated over the energy range, and the spacing distribution of the
resonances is sampled according to a Wigner spacing distribution.  In order to complete the specifications for
each resonance, the resonance widths are sampled according to a Chi-square distribution.  Once the energy
grid and set of resonance parameters are determined, cross sections are calculated at each grid point by
summing over the resonances for each spin sequence.  For the URR, the single-level Breit-Wigner (SLBW)
resonance formalism is used to calculate the cross-sections in the unresolved range.  The calculated cross-
section values are accumulated into a probability table, and the mean cross-section value is obtained by
averaging over the calculated cross-section values in the energy range of interest.  After completing the
calculation for one ladder of resonances, another ladder of resonances is generated, and the cross sections
are calculated on the random energy grid.  The process is repeated over as many ladders as specified by the
user.
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II.2  PURM Calculational Procedure

II.2.1  Resonance-parameter Sampling

A slightly different procedure relative to the "ladder" approach is used in the new module PURM.  PURM
uses a Monte Carlo procedure to calculate probability tables on the evaluator-defined energy grid in the URR.
The Monte Carlo procedure used in PURM is based on the methodology in the code URR6 that was
developed at the Oak Ridge National Laboratory in the late 1980s.  As opposed to generating a ladder of
resonances, PURM determines pairs of resonances surrounding the reference energy or energies for each
table.  As in the ladder approach, the resonance spacings are sampled from a Wigner spacing distribution:

where

and
R =  relative neutron-nucleus angular momentum,
J =  spin of the resonance,
DR,J =  resonance spacing corresponding to R and J,
<DR,J> =  mean spacing of the DR,J level series that is provided in the ENDF data.

The spacing distribution in Equation (2.1) is a probability density function (PDF) that has the following
property:

In order to sample Equation (2.1) for the resonance spacing (i.e., DR,J), the PDF is converted to a cummulative
distribution function (CDF) by integrating Equation (2.1) from 0 to x.  As a result, the following CDF is
obtained for sampling the resonance spacing:
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p(xN) '
1
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A value for x is obtained by setting F(x) equal to a random number between 0 and 1.  Once a value for x is
obtained, the resonance spacing can be calculated based on Equation (2.2).

Once the spacing is sampled from the Wigner distribution, the position of the reference energy in the spacing
is selected from a uniform distribution:

After converting the PDF in Equation (2.5) to a CDF, the following expression is obtained for the position of
the reference energy in the spacing distribution:

In Equation (2.6), R is a random number, and the positions of the first and second resonances relative to the
reference energy, E0,  are obtained by the following expressions:

and

As noted previously, the first pair of resonances that are located above and below the reference energy are
determined by Equations (2.7) and (2.8).  For the remaining pairs of resonances to be processed, the
resonance spacings are sampled from the Wigner distribution, and the location of the resonances are
determined using a procedure that is analogous to the steps for the first pair of resonances.  Although the
procedure for sampling the resonance spacing is straightforward, the code must determine the appropriate
number of pairs of resonances to sample.  In an effort to estimate the number of resonances to sample,
PURM uses the )3-statistics test which is described in Section II.2.2.

Once the distribution of energy levels is sampled, the resonance widths must be sampled for each resonance.
In the unresolved region, the ENDF data provide average widths for reference energies in the URR.  The
distribution function for the resonance widths follow a Chi-square (i.e., P2) distribution with a designated
number of degrees of freedom:
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y '
'8c

<'8c >
, (2.10)

)3 ' Min(a,b) 1
2L m

E f

E i

(N(E) & aE & b )2dE , (2.11)

where

and
c = type of width (e.g., f -fission, n -neutron, etc.),
'8c = resonance width for energy level 8,
<'8c> = average width for a given energy range,
< = number of degrees of freedom,
G(</2) = mathematical gamma function.

For the neutron width, < is typically equal to 1, and Equation (2.9) has the form of the Porter-Thomas
distribution law of the neutron width.8, 9  Fission is regarded as a few-channel process, and two or three
degrees of freedom (< = 2 or 3) are typically assumed for the fission width distribution.  Regarding neutron
capture, there are a large number of capture channels that are available, and the number of degrees of
freedom is assumed to approach infinity (< 64), and the P2 -distribution becomes a Dirac-delta function
centered at '8( = < ' >.  As noted previously, the ENDF data provide the average resonance widths along
with the number of degrees of freedom for the corresponding P2-distribution.  During the Monte Carlo
simulation, PURM obtains the widths for each resonance by sampling the P2-distribution with the
corresponding number of degrees of freedom.

II.2.2  Dyson and Mehta )3-Statistics Test

One of the essential tasks for constructing the resonance distribution for a given spin sequence (i.e., R, J pair)
is the determination of the appropriate number of pairs of resonances to process.  A useful tool for evaluating
the distribution of resonances is the )3-statistics test that was developed by Dyson and Mehta.7,8  PURM
uses the )3 test to determine the appropriate number of pairs of resonances to process for each spin
sequence.  Prior to describing the implementation of the )3 test in PURM, the methodology for the )3 test
is presented in the subsequent discussion.

The )3 test provides a measure of the mean-square deviation between the number of observed energy levels
(i.e., resonances) within an energy interval from Ei to Ef .  The definition for the )3 statistics is given by the
following expression:8

where
2L = the total number of resonances,
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b '
(2
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&
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N(E) = the observed cumulative number of resonances as a function of energy.
a = the slope for a linear fit to the observed cumulative number of resonances

as a function of energy.
b = the constant for a linear fit to the observed cumulative number of

resonances as a function of energy.

The procedures for calculating a and b are provided in the following discussion.  A numerical representation
for Equation (2.11) is presented in Ref. 8 and is provided by the following equation:

where
8 = the index for the number of resonances,
E8 = resonance energy corresponding to index 8,
-L = the first resonance in the series,
+L = the last resonance in the series.

In Equation (2.12), the quantities (1 and (2 are defined as follows:

and

As indicated by Equation (2.11), the )3 test also provides a linear fit for the cumulative number of levels as
a function of energy.  The slope and constant for the linear fit are provided by the following equations:

The definitions for the variables "1, "2, $1 and $2 are provided by the following expressions:
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and

For each spin sequence, Equation (2.12) can be used to calculate a )3 value for the sampled distribution of
resonances.  The Dyson and Mehta )3 test also predicts that the theoretical average value for )3 is given
by the following expression:

where 
n = number of energy levels observed in the interval from Ei to Ef.

The variance of <)3> is given by the following equation:

The objective of the )3 test is to determine a resonance spacing distribution that provides a )3 value that is
in agreement with the theoretical value provided by Equation (2.20).  In addition to the comparison between
the calculated and theoretical values for )3, the linear fit for the cumulative number of levels (i.e., N(E) =
aE + b) should agree with the observed number of levels in the sampled distribution.  

Based on experience, there is a two-part convergence problem for the implementation of the )3-statistics test.
One part involves the linear fit for N(E) as a function of energy, and the second part involves the convergence
of the )3 values.  In other words, reasonable )3 values (i.e., within 2 standard deviations of theoretical value)
may be obtained for a sampled distribution; however, the cumulative number of resonances that are predicted
by the linear fit may not correspond to the observed number of resonances for the distribution.  In contrast,
an acceptable linear fit for the cumulative number of resonances may be obtained for a sampled distribution,
but the )3 value for the sampled distribution may disagree with the theoretical value by more than two
standard deviations.  The )3 test is extremely sensitive to the location of each level in the distribution.  As a
result, sampling a sufficient number of resonances does not insure that the correct location of each level is
obtained in the distribution.
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Regarding implementation of the )3 test, PURM determines the number of levels (i.e., pairs of resonances)
to sample for each spin state based on a linear fit for the cumulative number of observed levels.  In other
words, PURM samples a Wigner distribution to obtain a distribution of resonances using some initial value
for the pairs of resonances to sample about the reference energy.  The linear fit for the cumulative number
of levels is compared with the observed number of levels of the sampled distribution.  The number of pairs
of resonances to sample is incremented until the observed number of levels in the sampled distribution is
predicted to within 0.1% by the linear fit for N(E).  The )3 value is also calculated for the sampled
distribution; however, PURM currently does not attempt to find a resonance distribution that has a )3 value
within two standard deviations of the theoretical value as well as an acceptable linear fit for the cumulative
number of levels.  Extensive CPU times would be required to seek convergence for both the )3 value and
an acceptable fit for the cumulative number of levels.  In an effort to reduce computational times, PURM
searches for the distribution that provides an acceptable linear fit for the cumulative number of levels.  Based
on calculational experience, accurate cross-section values can be obtained by seeking convergence for the
cumulative number of levels.  Note that the partial implementation of the )3-statistics test provides a
substantial improvement for the resonance spacing sampling procedure in PURM.

II.2.3  Cross-section Formulae

Sections II.2.1 and II.2.2 provide an overview of the procedures for sampling the resonance spacings and
corresponding resonance widths in the unresolved region.  The sampled widths and spacings are used to
calculate cross sections in the URR using the single-level Breit-Wigner (SLBW) formula.  PURM has the
capability to calculate unbroadened cross sections (i.e., 0 K) as well as temperature-dependent cross sections
in the unresolved region.  Using the sampling procedures from Section II.2.2, resonance parameters can be
obtained for individual resonances.  Subsequently, the sampled resonance parameters can be used to calculate
temperature-dependent cross sections.  The following two sections provide the appropriate formula for
calculating cross sections from the resonance sampled parameters.

II.2.3.1  Unbroadened Cross Sections

Regarding the unbroadened cross sections, the scattering cross section at energy E is calculated with the
following expression:

where

R = relative neutron-nucleus angular momentum,
NLS = total number of R-states,
k = neutron wave number at energy E,
NR = angular momentum hard sphere phase shift at energy E,
J = spin of the resonance,
gJ = statistical spin factor,
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8 = resonance index,
NRJ = number of resonances with spin J,
'n8 = neutron line width at energy E,
'8 = total resonance width at energy E,
E8 = resonance energy.

Expressions for the hard sphere phase shift are provided in Ref. 10.

The statistical spin factor, gJ, for neutrons is given by the following equation:

where 
I = spin of the target nucleus.

The neutron wave number, k , in Equation (2.21) is implicitly denoted as a function of energy and is calculated
with the following relation:

where

AWRI = ratio of the target isotope mass to the neutron mass,
E = energy in the laboratory system.

Regarding capture and fission, the SLBW representations for capture and fission are provided by the
expression:

where

'c8 = capture ( c = ( ) or fission ( c = f ) width at energy E.

The total cross section at E is obtained by summing each of the partial cross sections (i.e., scatter, capture
and fission).
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II.2.3.2  Broadened Cross Sections

Doppler broadening of the cross sections is approximated by averaging the unbroadened cross sections over
a Maxwellian distribution of velocities.6  The scatter cross section is provided by the formula:

where

In Equation (2.25), ) is the Doppler width, and U and V are related to the complex probability integral that
is defined as follows:

Likewise, U and V are related to the symmetric- and antisymmetric-line-shape functions (i.e., R and P,
respectively) as follows:

and

The parameters 2 and X in Equations (2.30) and (2.31) are defined as follows:



HA history denotes a single calculation or estimate of the total cross-section at an energy E from
the sampled resonances and corresponding widths.  Note that the capture, fission and scatter cross
sections are also calculated as part of a single history.
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2 '
A

4k TE8

'8 , (2.32)

X '
2(E & E8)

'8

. (2.33)

Fn,c(E) '
2B3/2

k 2 j
J

gJ j
NR J

8'1

'n8'c8

'8

U
)

, (2.34)

The capture and fission cross section as a function of temperature are provided by the following equation:

where c denotes either capture ( ( ) or fission ( f ).  As for the unbroadened case, the total cross section at
E is obtained by summing each of the partial cross sections (i.e., scatter, capture and fission).

II.2.4  Monte Carlo Simulation

Since the URR is an energy region where the parameters for individual resonances cannot be determined,
the resonance parameters for the unresolved region are averages of resolved-resonance parameters over an
evaluator-defined energy region within the URR.  Therefore, Monte Carlo procedures can be used to
randomly sample the resonance-parameter distributions for individual resonances within the URR.  Sections
II.2.1 through II.2.3 provide an overview of the procedures for sampling the resonance parameters and
calculating cross sections in the unresolved region.  

Since random variables are used in the sampling procedures for the resonance parameters, different
resonance parameters and cross sections can be obtained from different random number sequences.
However, the Monte Carlo simulation of the problem can estimate the desired cross-section quantity by
observing the behavior of a large number of individual histories.H  In other words, the exact solution can be
approximated if a sufficiently large number of histories are processed.  This concept is often referred to as
The Law of Large Numbers.

To illustrate the Law of Large Numbers, the first moment or mean value of a probability density function f(x)
has the following definition:
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$x ' m
4

&4

x f(x)dx . (2.35)

x̄ '
1
n j

n

i'1
xi . (2.36)

x̄ 2 '
1
n j

n

i'1
x 2

i . (2.37)

F2
x i
'

1
n&1 j

n

i'1
( xi & x̄ )2 . (2.38)

F2
x̄ '

1
n

F2
xi

, (2.39)

F2
x̄ '

1
n (n&1) j

n

i'1
( xi & x̄ )2 . (2.40)

Fx̄ ' F2
x̄ . (2.41)

If n random variables (i.e., x1, x2, ...., xn) are selected according to the PDF f(x), the Monte Carlo estimate
of the mean value is given by

The estimate, xG, will approach x $ as n approaches 4.  In like manner, the second moment of f(x) is estimated
by

The dispersion of xi with respect to xG can be estimated with the following expression:

Likewise, the variance of xG is provided by

or

The standard deviation of xG is given by

In Equation (2.36), the value of xG is obtained from n estimates of the mean value.  For the purposes of
discussion, let the quantity defined by Equation (2.36) constitute a "batch" estimate of the mean value.
Furthermore, the ith estimate of the mean value represents a single history.  As a result, there are n histories
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1
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x̄ '

1

N (N&1 ) 1/2 j
N

j'1
( x̄ j & x̄ )2

1/2

. (2.47)

in the batch estimate for xG.  Using the terminology of a batch, the j th batch estimate for the mean value can
be expressed in the following form:

In Equation (2.42), xij represents the ith estimate in the j th batch for the mean value.  If a different set or batch
of n random samples are taken, a different value for xG would be calculated.  Based on the Central Limit
Theorem,11 if N batch estimates for xG are obtained, the distribution of xG will approach a normal distribution
as N increases.  The Central Limit Theorem implies that the statistical nature of the distribution of xG is
independent of the actual distribution of the individual sample, xij.  If N batches are processed, the "grand
mean" is calculated by averaging over all the batches:

The dispersion of xGj with respect to xG is given by

The variance of the grand mean, xG, is calculated as follows

or

For N batches, the standard deviation of xG is given by

Prior to describing the procedures for constructing a probability table, an explanation of the probability-table
structure is needed.  The format of a generic  probability table with K bands is provided in Table II.1.  The
band limits in Table II.1 are cross-section band limits that are based on total cross-section values.  Note that
the determination of the cross-section band limits is provided after the description of the probability-table
structure.  The band limits increase in value with a corresponding increase in band number.  Therefore, the
lower cross-section band value for the first band is the minimum band value for the table, and the upper cross-
section band value for the last band is the maximum band value for the table.  By virtue of the table
construction, the cross-section band limits, Bk, increase monotonically (i.e., B1 < B2 < ... < BK < BK+1).  Since
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Bk ' Bmin

Bmax

Bmin

k &2
K&2 ; k ' 2,3, ..... ,K , (2.48)

the table construction is based on the total cross section, the average value of the total cross section in each
band should also increase monotonically with increasing band number (i.e., F Gt, 1 < F Gt, 2 < .... < F Gt, K).  Note that
the band averages for the remaining reaction cross sections are conditional averages corresponding to the
average total cross section for the band.  Consequently, the band-average cross-section values for capture,
fission and scatter will not necessarily increase monotonically.

Table II.1.  Example probability-table format

Band (k) Band limits Probability F Gt, k F G(, k F Gf, k F Gs, k

1 B1 P1 F Gt, 1 F G(, 1 F Gf, 1 F Gs, 1

2 B2 P2 F Gt, 2 F G(, 2 F Gf, 2 F Gs, 2

3 B3 P3 F Gt, 3 F G(, 3 F Gf, 3 F Gs, 3

@ @ @ @ @ @ @
@ @ @ @ @ @ @
@ @ @ @ @ @ @
@ @ @ @ @ @ @
K BK PK F Gt, K F G(, K F Gf, K F Gs, K

BK+1

As noted previously, the cross-section band values for each probability table are based on the total cross
section.  In PURM, the user has the option to specify the band values for each table or allow the code to
determine the appropriate cross-section band values for each table.  The determination of the cross-section
bands for each table is a rather arbitrary process.  For instance, bands may be constructed to be equally
spaced or increase in a geometric pregression (e.g., B1, B2 = cB1, B3 = c2B1, etc., where c is a constant).  In
PURM, the cross-section band values are calculated with the following expression:

where
Bmin = lower bound for the second band (i.e., B2),
Bmax = lower bound for the last band (i.e., BK).

The values of Bmin and Bmax can be specified by the user or determined by the code.  If the user does not
specify the values of Bmin and Bmax,  PURM estimates these values by performing a Monte Carlo simulation
using up to 50 histories prior to performing the actual calculation.  Once the values of Bmin and Bmax are
established, PURM uses Equation (2.48) to construct the cross-section band limits for each probability table.
Note that B1 and BK+1 are not determined prior to the calculation of a probability table.  The values of B1 and
BK+1 represent the absolute minimum and maximum cross-section values of the Monte Carlo simulation.  As
a result, the absolute minimum and maximum cross-section values are determined during the calculation of
each probability table.  The value of B1 must be $ 0 and < B2, and the value of BK+1 can be any value that is
greater than BK. 
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Once the cross-section band limits are established for a table, PURM performs a Monte Carlo simulation for
each table using a specified number of iterations or histories for a specified number of batches.  For a single
history in PURM, the procedures of Section II.2.1 and II.2.2 are used to sample the resonance parameters
for the reference energy point in the URR.  Subsequently, the formulae of Section II.2.3 are used to calculate
the scatter, capture, fission and total cross sections at the reference energy.  As noted previously, the
calculation of the total cross section and corresponding partial reactions at the reference energy constitute
a single history.

For each history in a batch, the calculated total cross-section value is compared with the cross-section band
limits for the table.  The total cross-section is added to the appropriate cross-section band (i.e., k th band)
within the probability table.  In addition, a counter assigned to the band is advanced by unity.  The
corresponding band values for the scatter, capture and fission cross sections are also added to the appropriate
registers for the k th band.  Note that the band selection for the partial reactions is based on the value of the
total cross section.  At the completion of the number of histories for the batch, the mean value for the total
cross section for the k th band (i.e., F Gt, k) is calculated by dividing the cumulative sum for the band by the
number of tallies within the band.  The corresponding average band values for the scatter, capture and fission
cross sections are calculated in a similar manner to the total cross-section.  The batch estimate for the
probability for each band is obtained by dividing the number of tallies for the band by the number of histories
in a batch.  Once the initial batch is completed, the next batch is processed using the same procedure for each
history in a batch.  The calculation for a table is complete when all of the batches have been processed.

Due to the nature of the calculational procedures, PURM provides a mechanism for monitoring the
convergence of the cross-section calculation.  During the Monte Carlo calculation for a table, PURM stores
a "running" average (i.e., by batch processed) of the total, capture, fission and scatter cross section for the
entire probability table.  Plotting routines were developed and added to PURM to plot the cross-section
calculation by batches run and skipped.  The plotting subroutines are based on the subroutines in KENO
V.a;12  however, the subroutines were re-written for implementation in PURM.  

For each reaction, a plot of the calculated cross section is provided by batches run and skipped.  In a
Monte Carlo simulation for a radiation transport problem, an initial number of batches are skipped to ensure
that the particle source distribution is converged and not "contaminated" by the initial guess for the source
distribution.  For the calculation of probability tables, the Monte Carlo procedure does not deal with a source
distribution of particles; therefore, skipping an initial number of batches does not have an analogous physical
interpretation as described for a radiation transport problem.  Nonetheless, the user has the option to specify
an initial number of batches to skip in the calculation, and the code may increase the number of batches to
skip based on the calculated standard deviation within the first few batches.  In particular, the code calculates
the average cross-section value by skipping additional batches.  Each time the number of batches to skip is
increased, the code calculates the average cross-section value and standard deviation for the remaining active
batches.  Subsequently, PURM evaluates the calculated average cross section as a function of batches
skipped up through 2/3 the number of batches processed (i.e., skip up to 2/3 the number of batches run). The
code searches for the calculated average cross section with the smallest standard deviation and prints this
average value with the corresponding skipped number of batches in the plot by batches skipped. The cross-
section plots for the Monte Carlo simulation permit the user to evaluate the convergence of the calculation.
After plotting the average cross section by batches run and skipped, PURM provides histogram frequency
plots for each reaction and performs a P2-test for normality for each reaction.
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III.  RESULTS

In an effort to test the code, PURM was used to calculate probability tables for ENDF/B-VI 235U (MAT =
9228).  Results are provided in this section to demonstrate the capabilities of PURM.  In addition, comparisons
are made with the NJOY module PURR to verify the calculational results obtained with PURM.  

For ENDF/B-VI  235U, the unresolved-resonance region extends from 2.25 keV to 25 keV, and the evaluation
has 14 reference energies in the URR.  PURM was used to calculate 14 probability tables that correspond
to the reference energies in the evaluation.  Each probability table was calculated at 300 K using 200 batches
with 50 histories per batch for a total of 10,000 histories per table.  The total number of histories is relatively
low compared with typical Monte Carlo radiation transport calculations (e.g., deep-penetration shielding
problems, eigenvalue calculations, etc.).  Fortunately, probability-table calculations do not have the
complexities that are associated with radiation transport problems (e.g., complex geometry, particle streaming,
etc.).  As a result, the calculation of probability tables is a generally well-behaved problem.  Therefore, a
relatively large number of histories is not required to obtain acceptable statistics in a probability-table
calculation.

The average cross-section values that were calculated by PURM at each of the 14 reference energies are
provided in Table III.1.  The average cross sections provided by PURM represent the average cross-section
values for the probability table at each reference energy point.  For comparison purposes, the AMPX module
PRUDE was used to calculate infinite-dilution cross sections at each energy point in the URR, and the
PRUDE-calculated infinite-dilution values are also presented in Table III.1.  PRUDE calculates average
cross-section values as a function of temperature and dilution in the URR from the average unresolved-
resonance parameters that are provided in an ENDF/B evaluation.  Consequently, the average infinite-dilution
cross-section values from PRUDE should agree with the average cross-section values (i.e., average cross-
section values for a table) from PURM.  Based on the results in Table III.1, the average cross-section values
from PURM agree with the infinite-dilution values that were calculated with PRUDE.
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As noted previously, a probability table was calculated for each reference energy in the URR.  To illustrate
the results from PURM, the calculated results for the probability table at 2.25 keV are presented in this
section.  Since the results for the remaining 13 tables are similar to the results for the first table, all 14 tables
are not presented in this report.  The results for the first table are presented to demonstrate the calculational
capabilities in PURM.

Because of the nature of the Monte Carlo calculation, PURM provides a mechansim for monitoring the
convergence of each probability-table calculation.  For the probability table at 2.25 keV, Figures III.1 and III.2
provide a plot of the total cross-section calculation as a function of batches run and skipped, respectively.
As shown in Figure III.1, convergence for the total cross section is achieved after completion of the specified
number of batches processed.  Similar results are obtained for the capture, fission and scatter cross sections.
Figure III.3 provides a frequency plot distribution for the batches processed during the total cross-section
calculation.  In addition, Figure III.3 provides the results for the P2-test for normality.  As indicated in
Figure III.3, the frequency distribution for the total cross-section calculation satisfies the P2-test for normality
at the 95% confidence level.

The calculated probability table at 2.25 keV is provided in Figure III.4.  As shown in Figure III.4, PURM
provides the MAT number, temperature and energy value for the probability table.  For the 235U calculation,
PURM was instructed to calculate probability tables with 20 cross-section bands.  Although the user can
specify the boundaries of each cross-section band, the cross-section bands that are presented in Figure III.4
were determined by PURM during the Monte Carlo calculation.  The probability and standard deviation
associated with each band are also provided in Figure III.4.  Moreover, the average cross-section values and
standard deviations for the total, capture, fission and scatter cross-sections are provided for each band within
the probability table.  Following the probability-table values in Figure III.4 are the average cross-section values
for the calculated probability table and the results of the )3-statistics test.  

To help visualize the calculated results for the probability table in Figure III.4, the probabilities as a function
of the cross-section bands are plotted in Figure III.5.  Likewise, the average total, capture, fission and scatter
cross sections are plotted in Figures III.6 through III.9, respectively.  Note that the average total cross section
as a function of band number in Figure III.6 increases monotonically with increasing band number.  For some
of the cross-section plots, the error bars for some of the cross-section values may be too small relative to the
cross-section value to display in the plot.
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1                          total                                                                           
0                      plot of average cross sect. by  batches run.
      the line represents xsec  =  1.9602E+01 + or - 4.1455E-02 which occurs for   200   batches   run.
0                           1.9404E+01               1.9731E+01               2.0058E+01
      |-------------------------|------------------------|------------------------|------------------------
      |
    5 +                         I              |*               I                                           
      |                                        I                                 *                          
      |                                        |         I                        *                       I 
      |                                        |      I                   *                    I            
      |                                        | I                 *                 I                      
   10 +                                        |    I              *               I                        
      |                                        |             I                *               I             
      |                                        |            I              *              I                 
      |                                       I|               *                 I                          
      |                                        |I               *               I                           
   15 +                                    I   |           *              I                                 
      |                                   I    |         *             I                                    
      |                                     I  |         *            I                                     
      |                                      I |          *           I                                     
      |                                     I  |        *           I                                       
   20 +                                      I |        *          I                                        
      |                                      I |       *          I                                         
      |                                      I |       *         I                                          
      |                                     I  |      *        I                                            
      |                                  I     |  *         I                                               
   25 +                               I        *         I                                                  
      |                                I       |*        I                                                  
      |                             I        * |      I                                                     
      |                         I         *    |   I                                                        
      |                            I         * |      I                                                     
   30 +                            I        *  |     I                                                      
      |                           I        *   |    I                                                       
      |                            I       *   |    I                                                       
      |                             I       *  |    I                                                       
      |                              I       * |     I                                                      
   35 +                             I       *  |    I                                                       
      |                              I       * |    I                                                       
      |                               I      * |    I                                                       
      |                              I      *  |   I                                                        
      |                              I      *  |   I                                                        
   40 +                             I      *   |  I                                                         
      |                              I      *  |   I                                                        
      |                                I      *|     I                                                      
      |                               I      * |    I                                                       
      |                                 I      *      I                                                     
   45 +                                 I      *      I                                                     
      |                                I      *|    I                                                       
      |                               I      * |    I                                                       
      |                               I      * |   I                                                        
      |                               I     *  |  I                                                         
   50 +                               I     *  |  I                                                         
    .
    .
    .
    .   
  175 +                                     I  *   I                                                        
      |                                     I  |*  I                                                        
      |                                      I |*   I                                                       
      |                                      I |*  I                                                        
      |                                     I  |*  I                                                        
  180 +                                     I  *   I                                                        
      |                                     I  *   I                                                        
      |                                     I  |*  I                                                        
      |                                     I  |*  I                                                        
      |                                      I |*  I                                                        
  185 +                                     I  |*  I                                                        

Figure III.1.  Calculated average total cross section by batches run.
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1                          total                                                                           
0                      plot of average cross sect. by  batches skipped.
      the line represents xsec  =  1.9585E+01 + or - 4.1345E-02 which occurs for    11   batches   skipped.
0                           1.9288E+01               1.9490E+01               1.9691E+01
      |-------------------------|------------------------|------------------------|------------------------
      |
      |                                                          I  | *    I                                
    5 +                                                          I  |  *    I                               
      |                                                          I  | *    I                                
      |                                                         I   | *    I                                
      |                                                         I   |*    I                                 
      |                                                         I   |*    I                                 
   10 +                                                         I   |*     I                                
      |                                                         I   |*    I                                 
      |                                                        I    *    I                                  
      |                                                        I    *    I                                  
      |                                                         I   |*    I                                 
   15 +                                                         I   |*    I                                 
      |                                                         I   |*    I                                 
      |                                                         I   |*    I                                 
      |                                                         I   |*    I                                 
      |                                                         I   |*    I                                 
   20 +                                                         I   |*    I                                 
      |                                                         I   |*    I                                 
      |                                                         I   |*    I                                 
      |                                                         I   |*    I                                 
      |                                                         I   |*     I                                
   25 +                                                         I   | *    I                                
      |                                                          I  | *     I                               
      |                                                          I  | *     I                               
      |                                                          I  |  *    I                               
      |                                                           I |   *    I                              
   30 +                                                           I |  *    I                               
      |                                                           I |  *    I                               
      |                                                           I |  *     I                              
      |                                                           I |  *     I                              
      |                                                           I |  *     I                              
   35 +                                                          I  |  *    I                               
      |                                                           I |  *     I                              
      |                                                          I  |  *     I                              
      |                                                          I  |  *     I                              
      |                                                           I |  *     I                              
   40 +                                                           I |  *     I
      |                                                           I |   *     I                             
      |                                                           I |  *     I                              
      |                                                          I  |  *    I                               
      |                                                          I  |  *     I                              
   45 +                                                         I   | *     I                               
      |                                                         I   | *     I                               
      |                                                          I  |  *     I                              
      |                                                          I  |  *     I                              
      |                                                          I  |  *     I                              
   50 +                                                           I |   *     I                             
    .
    .
    .
    .
  175 +                                            I             *  |         I                             
      |                                         I             *     |       I                               
      |                                    I             *          | I                                     
      |                                I            *            I  |                                       
      |                               I            *             I  |                                       
  180 +                                  I             *            I                                       
      |                                       I             *       |    I                                  
      |                                     I             *         |   I                                   
      |                                 I             *             |I                                      
      |                            I             *             I    |                                       

Figure III.2.  Calculated average total cross section by batches skipped.
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0  cross sect. satisfies the chi**2 test for normality at the 95 % level

 total                                                                           
0                               frequency for batches   12 to  200
  1.7876E+01 to  1.8187E+01     *
  1.8187E+01 to  1.8497E+01     ***
  1.8497E+01 to  1.8808E+01     ************
  1.8808E+01 to  1.9119E+01     ***********************
  1.9119E+01 to  1.9429E+01     ****************************************
  1.9429E+01 to  1.9740E+01     *******************************************
  1.9740E+01 to  2.0051E+01     *************************
  2.0051E+01 to  2.0361E+01     **********************
  2.0361E+01 to  2.0672E+01     ***************
  2.0672E+01 to  2.0983E+01     ****
  2.0983E+01 to  2.1293E+01     *
0                               frequency for batches   59 to  200
  1.7876E+01 to  1.8187E+01     *
  1.8187E+01 to  1.8497E+01     *
  1.8497E+01 to  1.8808E+01     *********
  1.8808E+01 to  1.9119E+01     *************
  1.9119E+01 to  1.9429E+01     **********************************
  1.9429E+01 to  1.9740E+01     ******************************
  1.9740E+01 to  2.0051E+01     *******************
  2.0051E+01 to  2.0361E+01     ******************
  2.0361E+01 to  2.0672E+01     ************
  2.0672E+01 to  2.0983E+01     ****
  2.0983E+01 to  2.1293E+01     *
0                               frequency for batches  106 to  200
  1.7876E+01 to  1.8187E+01
  1.8187E+01 to  1.8497E+01     *
  1.8497E+01 to  1.8808E+01     ******
  1.8808E+01 to  1.9119E+01     ***********
  1.9119E+01 to  1.9429E+01     *********************
  1.9429E+01 to  1.9740E+01     ******************
  1.9740E+01 to  2.0051E+01     **************
  2.0051E+01 to  2.0361E+01     **************
  2.0361E+01 to  2.0672E+01     ******
  2.0672E+01 to  2.0983E+01     ***
  2.0983E+01 to  2.1293E+01     *
0                               frequency for batches  153 to  200
  1.7876E+01 to  1.8187E+01
  1.8187E+01 to  1.8497E+01     *
  1.8497E+01 to  1.8808E+01     ***
  1.8808E+01 to  1.9119E+01     ***
  1.9119E+01 to  1.9429E+01     **********
  1.9429E+01 to  1.9740E+01     **********
  1.9740E+01 to  2.0051E+01     *******
  2.0051E+01 to  2.0361E+01     *********
  2.0361E+01 to  2.0672E+01     ***
  2.0672E+01 to  2.0983E+01     **
  2.0983E+01 to  2.1293E+01

Figure III.3.  Frequency distribution for 235U total cross-section calculation at 2.25 keV.
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 Probability Tables for MAT:  9228
           Temperature (K):  3.000E+02
 ======================================================================================================================
 Table   1 Energy Point for Table:    2.25000E+03 eV
 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 Band   Band limits     Probability       Std. Dev.         Total              Std. Dev.         Capture         Std. Dev.         Fission           Std. Dev.          Scatter           Std. Dev. 
 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
   1      1.1921E+01    6.7005E-03    8.7828E-04    1.2675E+01    2.9362E-02    4.2952E-01     2.1405E-02    1.2673E+00    4.3068E-02    1.0991E+01    4.9198E-02
   2      1.3018E+01    2.4264E-02    1.4588E-03    1.3459E+01    1.6643E-02    5.2254E-01     1.6204E-02    1.6695E+00    3.1193E-02    1.1265E+01    3.6077E-02
   3      1.3741E+01    4.6497E-02    1.8325E-03    1.4223E+01    1.1407E-02    6.9073E-01     1.6126E-02    2.1465E+00    3.2474E-02    1.1390E+01    3.7881E-02
   4      1.4505E+01    7.7157E-02    3.3293E-03    1.5037E+01    9.3146E-03    8.6082E-01     1.4011E-02    2.6825E+00    2.2085E-02    1.1493E+01    2.6287E-02
   5      1.5310E+01    9.4213E-02    3.0515E-03    1.5906E+01    8.5090E-03    1.0720E+00    1.7995E-02    3.2613E+00    2.6666E-02    1.1578E+01    2.8329E-02
   6      1.6161E+01    1.0051E-01    3.3825E-03    1.6825E+01    1.1116E-02    1.2835E+00    2.0811E-02    3.9222E+00    2.8543E-02    1.1618E+01    3.2344E-02
   7      1.7058E+01    1.0162E-01    3.6525E-03    1.7822E+01    9.5516E-03    1.5563E+00    2.1998E-02    4.5318E+00    3.7133E-02    1.1729E+01    3.2315E-02
   8      1.8006E+01    1.0508E-01    3.1872E-03    1.8863E+01    1.2467E-02    1.8421E+00    2.4150E-02    5.2154E+00    3.3944E-02    1.1812E+01    2.8696E-02
   9      1.9006E+01    9.5939E-02    3.1619E-03    1.9969E+01    1.0160E-02    2.0899E+00    3.3737E-02    5.9838E+00    4.8687E-02    1.1895E+01    2.8160E-02
  10     2.0061E+01    8.0609E-02    2.7258E-03    2.1109E+01    1.4049E-02    2.3322E+00    5.0809E-02    6.7551E+00    5.9422E-02    1.2013E+01    3.8397E-02
  11     2.1176E+01    6.7716E-02    2.8857E-03    2.2374E+01    1.8752E-02    2.6047E+00    4.7779E-02    7.6429E+00    6.9972E-02    1.2115E+01    4.7998E-02
  12     2.2352E+01    6.1320E-02    2.1342E-03    2.3642E+01    1.7964E-02    2.9610E+00    6.3559E-02    8.2799E+00    1.0026E-01    1.2384E+01    4.8154E-02
  13     2.3593E+01    4.6396E-02    2.0981E-03    2.5054E+01    2.5821E-02    3.4068E+00    7.4735E-02    9.1864E+00    1.1121E-01    1.2447E+01    4.7947E-02
  14     2.4904E+01    3.4924E-02    1.6065E-03    2.6496E+01    2.6593E-02    3.7403E+00    9.1238E-02    1.0173E+01    1.1995E-01    1.2580E+01    6.9898E-02
  15     2.6287E+01    2.4365E-02    1.5716E-03    2.8120E+01    2.8053E-02    4.1111E+00    1.0631E-01    1.1104E+01    1.7389E-01    1.2952E+01    8.4353E-02
  16     2.7747E+01    1.5228E-02    1.0609E-03    2.9690E+01    3.6419E-02    4.8580E+00    1.4322E-01    1.1886E+01    2.5025E-01    1.2959E+01    1.1861E-01
  17     2.9288E+01    8.8325E-03    9.3345E-04    3.1369E+01    5.0699E-02    5.1322E+00    1.7892E-01    1.2935E+01    2.9275E-01    1.3282E+01    1.5762E-01
  18     3.0915E+01    4.0609E-03    5.7617E-04    3.3304E+01    1.0428E-01    5.6434E+00    2.9659E-01    1.3817E+01    4.0444E-01    1.3799E+01    2.3423E-01
  19     3.2632E+01    3.0457E-03    5.3591E-04    3.5110E+01    1.1511E-01    6.5815E+00    4.0004E-01    1.4790E+01    5.9847E-01    1.3767E+01    2.3685E-01
  20     3.6358E+01    1.5228E-03    3.7488E-04    3.9257E+01    7.8542E-01    8.3592E+00    6.2110E-01    1.5744E+01    9.3549E-01    1.5155E+01    2.9463E-01
           4.9043E+01
 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 Average Cross Sections for Table: 
 Total:  1.9585E+01 ( 3.7760E-02)
  Scat:  1.1911E+01 ( 8.1690E-03)
  Fiss:   5.6682E+00 ( 2.6932E-02)
  Cap:   2.0094E+00 ( 1.1436E-02)
 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 DYSON AND MEHTA LONG-RANGE CORRELATION OF DELTA-3 STATISTICS TEST for isotope: 1 of 1

 L   J     Delta3-Theory     Std. Dev.           Delta3      No. of Levels  No. of Pairs    N(E)=a*E(nres)+b          a                     b      
 0  3.0    6.61332E-01   1.09549E-01   5.86945E+00       732               468               7.31995E+02      1.04831E+00  -1.99632E+03
 0  4.0    6.76594E-01   1.09549E-01   1.50460E+01       851               701               8.50993E+02      1.21404E+00  -2.30781E+03
 1  2.0    6.30321E-01   1.09549E-01   3.64359E+00       539               394               5.39019E+02      7.69246E-01   -1.46205E+03
 1  3.0    6.61470E-01   1.09549E-01   1.89352E+01       733               382               7.33008E+02      1.03600E+00  -1.96334E+03
 1  4.0    6.81475E-01   1.09549E-01   5.85654E+00       893               725               8.93026E+02      1.26270E+00  -2.39375E+03
 1  5.0    6.92127E-01   1.09549E-01   1.04993E+01       992               732               9.91992E+02      1.40947E+00  -2.67617E+03
 ======================================================================================================================

Figure III.4.  Calculated probability table for 235U at 2.25 keV.     
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Figure III.5.  Calculated probabilities as a function of cross-section band for 235U at 2.25 keV.
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Figure III.6.  Calculated total cross section as a function of cross-section band for 235U at
2.25 keV.
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Figure III.7.  Calculated capture cross section as a function of cross-section band for 235U
at 2.25 keV.
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Figure III.8.  Calculated fission cross section as a function of cross-section band for 235U
at 2.25 keV.
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Figure III.9.  Calculated scatter cross section as a function of cross-section band for 235U
at 2.25 keV.
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As noted previously, the NJOY module PURR uses the "ladder" approach to calculate probability tables in
the unresolved-resonance region.  In order to compare the calculated probability tables between NJOY and
PURM, NJOY99.14 was used to calculate probability tables for 235U at 300 K.  For the NJOY calculations,
NJOY was instructed to generate tables with 20 cross-section bands.  Subsequently, the cross-section bands
that were generated by NJOY were specified in the PURM input file, and PURM was used to re-calculate
the probability tables with the cross-section bands from NJOY.  By using the same cross-section bands, a
more accurate comparison can be made between the two codes. The probabilities that were calculated by
NJOY and PURM at 2.25 keV are presented in Figure III.10.  Based on the results in Figure III.10, the
PURM-calculated probabilities agree with the NJOY values.  Likewise, the NJOY and PURM average total,
capture, fission and scatter cross sections are plotted in Figures III.11 through III.14, respectively.  For each
cross-section band in Figures III.11 through III.14, the PURM cross-section values are in agreement with
the NJOY values.  Note that similar results are obtained for the remaining 13 probability-table calculations.
Based on the verification studies with NJOY, the probability tables as calculated by PURM are suitable for
use in nuclear applications.

At this point, extensive studies of the computation times for PURM have not been performed; however, for
the 235U test case, the probability tables were calculated using 10,000 histories per table, and PURM requires
~7.1 minutes of CPU time for each table on a DEC Alpha AS 500/500 workstation.  In comparison with
NJOY, the 235U test case was calculated using 10 ladders of resonances per table, and the computational
times are ~8.6 seconds per table on the DEC Alpha.  Although the computational times for NJOY are much
faster for the test case, the two computational approaches are vastly different, and the longer CPU times for
PURM are attributed to the number of histories processed, as well as the implementation of the )3-statistics
test.  Note that NJOY does not use the )3-statistics test to evaluate the distribution of resonances sampled
from a Wigner distribution.  Consequently, NJOY does not have a mechanism for assessing the adequacy
of the sampled resonance distribution.  In addition, acceptable probability tables may be calculated with
PURM using far fewer histories; thereby, reducing the CPU time for each table. However, a parametric
study of the number of histories has not been performed for the test case.

Although an advantage in computation time may not be attained with PURM, the procedures in PURM are
significantly different from the "ladder" approach used by NJOY.  As a result, AMPX provides an
independent approach for calculating probability tables for the unresolved-resonance region; thereby,
satisfying the AMPX-upgrade objective to facilitate independent processing of ENDF/B data.
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Figure III.10.  Probability-table comparison between PURM and NJOY for 235U at 2.25 keV.                            
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Figure III.11.  Total cross-section comparison between PURM and NJOY for 235U at 2.25 keV.                             



32

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Cross-section Band

C
ap

tu
re

 (b
ar

n
s)

PURM +/- 1 sigma

NJOY99.14/PURR

U-235 300 K; 2.25 keV

Figure III.12.  Capture cross-section comparison between PURM and NJOY for 235U at 2.25 keV.                       



33

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Cross-section Band

F
is

si
o

n
 (b

ar
n

s)

PURM +/- 1 sigma

NJOY99.14/PURR

U-235 300 K; 2.25 keV

Figure III.13.  Fission cross-section comparison between PURM and NJOY for 235U at 2.25 keV.                               .
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Figure III.14.  Scatter cross-section comparison between PURM and NJOY for 235U at 2.25 keV.
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IV.  SUMMARY

The DOE Laboratory Project and Cost Proposal for NRC Work (JCN W6479) identifies various subtasks
for upgrading the AMPX code system to process ENDF/B-VI data.1  The overall objective of the upgrade
is to facilitate independent processing of Version 6 formats.  Task 8 of the cost proposal addresses the
development of the capability to generate probability tables for neutron transport applications in the
unresolved-resonance region (URR).  In accordance with the reporting requirements for Task 8, this letter
report documents development and testing of the capability to generate probability tables for the URR.

A new module for the AMPX code system has been developed to satisfy the objective of Task 8.  The new
module is named PURM (Probability tables for the Unresolved Region using Monte Carlo).  PURM
calculates probability tables in the URR using Monte Carlo procedures to sample the resonance spacings and
widths.  The Monte Carlo procedure used in PURM is based on the methodology in the URR6 code that was
developed at ORNL in the late 1980s.  

PURM samples pairs of resonances surrounding a reference energy for each probability table.  The
resonance spacings are sampled from a Wigner distribution.  PURM uses the )3-statistics test that was
developed by Dyson and Mehta7,8 to determine the number of resonances to sample for each spin state.  For
each resonance, PURM samples the resonance widths from a P2-distribution for a specified number of
degrees of freedom.  Once the resonance parameters are sampled, PURM calculates the total, capture,
fission and scatter cross sections at the reference energy using the single-level Breit-Wigner formalism with
appropriate treatment for temperature effects.  

For the cross-section calculation and corresponding probability-table calculation, PURM performs the Monte
Carlo simulation for a user-specified number of batches with a corresponding number of histories or iterations
per batch.  For each history, PURM calculates the total, capture, fission and scatter cross section at the
reference energy, and the corresponding contribution to the probability table is determined for each history.
After completing the number of histories for a batch, a batch estimate for the probability for each cross-
section band is obtained by dividing the number of tallies for the band by the total number of histories
processed.  Additional batches are processed until the user-specified number of batches are complete.  Once
the total number of batches have been processed, the average cross-section values for the entire table should
converge to the corresponding infinite-dilution values.

In an effort to establish the capabilities of PURM, probability tables have been calculated for the unresolved-
resonance region of 235U (ENDF/B-VI).  PURM was used to calculate a probability table for each reference
energy (i.e., 14 reference points) specified in the ENDF/B evaluation.  Each probability table was calculated
at 300 K using 200 batches with 50 histories per batch for a total for 10,000 histories per table.  The average
cross-section values for the 14 different probability tables were compared with the infinite-dilution values
generated by the AMPX module PRUDE.  Based on the comparison studies, the average cross-section
values for each probability table agree with the infinite-dilution values that were calculated by PRUDE.  

As an additional test, the PURM-generated probability tables for 235U were compared with probability tables
generated using the NJOY module PURR.  For the comparison studies with NJOY, both codes used the
same cross-section bands for each table, and the probability tables and cross-section values that were
calculated by PURM and NJOY are in agreement.  As a result, the verification studies with NJOY establish
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the computational capability for generating probability tables using the new AMPX module PURM.  In
addition, the probability tables calculated by PURM are suitable for use in nuclear applications.
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