PARALLEL SOLUTION OF THE BOUNDARY INTEGRAL
EQUATIONS FOR ELASTICITY'

Eng Siang Tan
GLCA/ACM ORSS
Denison University

Oak Ridge National Laboratory
Oak Ridge, Tennesee 37831

10 December 1999

Prepared in partial fulfillment of the requirements of the DOE Great Lakes
Colleges Association / Associated Colleges of the Midwest Oak Ridge Science
Semester under the directorion of Leonard Gray research advisor, in the Oak

Ridge National Laboratory Computer Science and Mathematics Division.

t Besearch sponsored by the U.S. Department of Energy at ORNL under contract
DE-AC05-960R22464 with Lockheed Martin Enery Besearch Corporation

Abstract

The primary motivation for this work is to have the ability to carry out crack propagation simulations
in materials at the meso-scale level. These analyses will incorporate multiple cracks, voids, and grain
boundaries, and this small scale structure naturally leads to a large scale calculation. As a consequence a
PC cluster implementation has been developed.

The two-dimensional linear elastic analysis is achieved by solving the boundary integral equations for
surface displacement and surface traction. The equations are numerically approximated using the symmetric-
Galerkin approximation employing quadratic elements. The matrix element generation and the solution to
the system of linear equations A - x = b, the two most processor intensive routines, are made to execute in
parallel. The I/O routines are left to run in serial to minimise overhead costs in inter-processes communica-
tions. The machines in the cluster were equipped with PVM on the message passing tier with ScaLAPACK
(and its dependencies) built on it.

Initially, the matrix element generation task is divided to a one-dimensional block row-distribution of
(NPROW x NPCOL) rows. The matrix elements are then redistributed to a two-dimensional block-cyclic
distribution by calling the PDGEMR2D routine to prepare for the PDGESV solver to obtain the desired
answers.

For large matrices (n > 400) with k processors in the cluster, the original computation time 7', can be

reduced to about 10-20% of T'/k.

1. Introduction

Along with finite elements and finite differences, the boundary element method is a fundamental technique
for solving partial differential equations that arise in science and engineering. An alternative to the widely
used collocation method to numerically solve the boundary integral equations is the Galerkin approximation.

The use of the Galerkin is particularly advantageous for evaluating the hypersingular integrals [1], which
is required for the analysis of crack [1-4] geometries.

An advantage of the Galerkin method is the symmetric-Galerkin [5, 6] method which gives the perfor-
mance achieved by the collocation method.

The symmetric-Galerkin method results in a symmetric coefficient matrix which may be exploited in
the Gaussian elimination operation [5, 7, 8].

For modelling of elastic materials at the level which incorporates the effects of voids, grain boundaries
and multiple cracks, the amount of computation and memory usage can be very large. While this may be
handled serially by supercomputers, such a facility may be lacking or inaccessible to most people.

An alternative to these supercomputers is a network of computers. This is increasingly becoming popular
due to the better price-performance ratio when compared to a single supercomputer. This is especially true

when there is a high-bandwidth network setup between these computers such as asynchronous transfer mode

2

(ATM) or gigabit ethernet. Nevertheless, with a distributed memory structure, the correct information has
to be fed to the appropriate processor, thus the need for effective message passing interface between the
processes. Message passing libraries [7, 12] such as Message Passing Interface (MPI) and Parallel Virtual
Machine (PVM) allows programmers to efficiently transmit the required information. Parallel and non-
parallel linear algebra packages are available to facilitate the handling and manipulation of such distributed
matrices [7, 8].

The objective of this paper is to present the implementation of a parallel symmetric-Galerkin boundary
integral algorith for 2-D elasticity, and to investigate the time reduction that can be achieved depending on
the number of machines in the cluster. The parallel code is also intended to overcome the memory limitation,
such as the available random access memory (IRAM), of a single-processor machine. With a scalable parallel
code, such limitations should be addressed by simply appending more machines to the cluster, and thus very

large problems can be solved.

2. Symmetric-Galerkin, serial implementation

For an elasticity problem, the boundary integral equations for displacement v and traction 7 are given by

[9-11]:

AT@QW@MQ—AU@QV@Mon 1)
ﬁﬁwaQW@MQ—ASmQV@MQ=m (2)

where U is the known Kelvin fundamental solutions, and T, W, and S are the appropriate derivatives of U.
The boundary functions u(Q) and 7(Q) are approximated in terms of simple shape functions (e.g. linear or

quadratic)

w(@) = u(@)%i(Q) (3)

l

Q) =) T(Q)¥(Q). (4)

l

Using the shape functions as weight functions, the Galerkin form of (1) and (2) is:

g zbk(P)/F T(P,Qu(@)dQdP — [¢x(P) [U(P,Q)7(Q)dQdP =0 (%)

Tp To

Y(P) [W(PQu(Q)dQdP — [u(P) [S(PQ)7(Q)dQdP =0. (6)

T'p FQ T'p FQ

These equations can be rewritten in a matrix form

Hq[u] = Go[7] (7)
Hp[u] = Go[7], (8)

where [u] and [7] denote the column vectors of boundary values of the displacement and traction respectively.

Equations (7) and (8) can be combined into a single equation

H[u] = G[r], 9)

where H and G are square matrices.
In the serial implementation of the symmetric-Galerkin, the code loops through the outer P integration

and inner (@) integration:

D0 Ep =1,Ng
DO Eg =1,Np

ve(P) | vi(Q)T(P,Q)dQdP
Ep Eo

Ye(P) [Q) U(P,Q)dQdP
Ep EQ

Ye(P) | (Q)W(P,Q)dQdP
Ep Eo

Ye(P) | $i(Q)S(P,Q)dQdP
Ep Eg
ENDDO

ENDDO
Ng denotes the number of elements. Each integral in the inner loop populate certain rows and columns
of the matrix ‘H and G. Ep determines the rows where the integrals are placed while Eg determines the
columns. For the quadratic approximation considered in this work, each element has 3 nodes and each node
has 2 dimensions, and thus Ep and Eg involves 6 rows and columns of the matrices H and G respectively.
The known and unknown values in H and G in equation (9) can be collected by swapping the elements

in the matrix columns and corresponding vector rows to obtain:

Az = b, (10)

where the coefficient matrix 4 is symmetric. Equation (10) is solved by calling LAPACK routines DSYTRF
(factorise) and DSYTRS (solve) [8].

3. Parallel Implementation

The parallel code is a modified version of the serial code, thus the steps taken by the parallel code are
identical to the serial code, with additional routines to handle message passing between the processes.

For the message passing routines, a core PVM [7, 12] layer was used, with BLACS [7, 13] built on it, and
PBLAS built on BLACS. Routine calls for message passing are called from BLACS and PBLAS only. This is
done for two reasons: (i) calling routines in BLACS and PBLAS is more efficient than calling PVM routines,
and (ii) the message passing tier (PVM) can be substituted with other message passing interface, such as
MPI, without altering the parallel code; however, if a different message passing tier is used, the BLACS
libraries would have to be changed to match the message passing tier. This would mean that a difference set
of BLACS libraries would have to be obtained and compiled, which is easier than editing the parallel code.
There are also additional benefits to (i) and (ii), highlighted in [13], such as the ID-less Communications.

Initially, the master program reads the file init.dat containing the initial conditions. Compared to the

data file in the serial code, init.dat should additionally contain

i. number of process rows in the process grid, NPROW
ii. number of process colums in the process grid, NPCOL

iii. global row and column block size for partitioning the global matrix, M B and NB

at the top of the file, in the given order. These three data items specify how the matrix should be distributed
prior to calling the ScaLAPACK routine.

Based on NPROW and NPCOL, the master program computes total number of processes in the
process grid, NPROCS = NPROW x NPCOL, and spawns an additional (NPROCS —1) processes. Note
that PVM must be running and the hosts configured prior to the execution of the master program, otherwise
an error message will be returned. The master will then perform some initial computations in serial, to
determine certain conditions, such as double nodes and double node pairs. These initial computations are
not processor intensive and use negligible amount of time compared to the main computation. The master
program will then distribute the initial conditions as well as computed results to the spawned slaves.

The processes are first lined up in one-dimensional block row distribution as illustrated in Figure 1.

Figure 1: 1-D block row distribution with NPROCS = 6

Then the master broadcasts the data by calling the BLACS xGEBR2D routines, and the slaves calling the
BLACS xGERV2D routines [13]. Based on the distributed information, each process is then able to perform
their own computation of the matrix elements in # and G. Figure 1 outlines how the task of matrix element
generation is divided. Each process is assigned rows of the global matrices # and G for which the process is
responsible. Based on this information, the process determines which elements it needs to compute in order
to obain the matrix elements in its assigned rows. Note that for a given row, all columns are computed;

thus, in comparison to the serial code, only the outer loop is altered:

Determine which rows to compute
Place all necessary elements in array, DO_.ELEMENT(I)

Determine how many elements to compute, ITEM S

D0 I =1,ITEMS
Ep = DO_.ELEMENT(I)
DO EQ =1,Ng

Ye(P) | i(Q)T(P,Q)dQdP
Ep Eq

Ye(P) [(Q)U(P,Q)dQdP
Ep Eq

Ye(P) | i(Q)W(P,Q)dQdP
Ep Eq

Ye(P) | i(Q)S(P,Q)dQdP
Ep Eq
ENDDO

ENDDO

There is an associated local row number and global row number to each row [7]. For columns, the local

column number and global column number are identical as there is only one column in the process grid. As

6

described earlier, the columns of # and G, and the corresponding rows of [u] and [7] in equation (9) are
swapped, and subsequently a matrix-vector multiplication performed to arrive at equation (10). PBLAS
routines PDSWAP, PDSCAL, and PDAXPY are used to reduce equation (9) to equation (10).

At this point, the distributed matrix A is distributed as shown in Figure 1. In this distribution, the row
block size, M B is not the same as the column block size, NB, with M B < N B. However, the ScaLAPACK
solver PDGESV requires that M B = NB. Moreover, a two-dimensional block cyclic distribution and an
efficient block size will enhance the performance of the ScaLAPACK solver. As such, the matrix A is
redistributed using PDGEMR2D to a two-dimensional block-cyclic distribtion (Fig. 2). Note that the vector b

is also redistributed into a one-dimensional block-cyclic distribution to match the block size of A.

Figure 2: 2-D block-cyclic distributions with NPROCS = 6

The ScaLAPACK routine PDGESV will then solve this system of linear equations. Although the matrix
A is symmetric, at present, no attempt is made to exploit this. In the serial code, LAPACK routines
DYSTRF-DSYTRS are used to solve equation (10). DSYTRF makes us of the Bunch-Kaufman diagonal pivoting
method for factorisation to obtain A = UDU?T or A = LDL? | which DSYTRS solves [8]. PDGESV uses LU
decomposition with partial pivoting and row interchanges to obtain the factorisation A = PLU, where P is
a permutation matrix [7]. The A = LU decomposition takes 2N flops while A = UDU” and A = LDL”
requires + N3 flops [7, 8]. PDGESV is used for the parallel code because the absence of PDSYTRF and PDSYTRS

3
routines in ScaLAPACK.

4. Timing Results

The parallel code was executed on the Tennessee/Oak BRidge Cluster (TORC). Each of the 8 machines tested

on has the following specifications:

Hardware
Dual Pentium I 300 MHz (Klamath)!
256MB RAM, 512MB swap space
Myrinet and 100-base T Ethernet
Software
Linux 2.2.12 SMP 1686
PVM 3.4.2
Intel BLAS for Linux?
LAPACK, BLACS, PBLAS, ScaLAPACK
GNU Fortran 0.5.24 egcs-2.91.66

Timing results are provided for the execution of the whole program: from reading of the data set from
init.dat to the output of the solution. Timing is done with the UNIX time command. Timing tests are

done with different numbers of nodes: 790, 1610, 3400, and different numbers of hosts and grid layouts.

In this work, a 3 x 1 layout is considered similar to a 1 x 3 layout. Thus, different grid layouts are possible

for NPROCS = 4,6,8.

NRPOCS =4 : 4x1, 2x2
NPROCS =6 : 6x1, 3x2
NPROCS =8 : 8x1, 4x2

However, it is found that the different grid layout had little or no effect on the time taken to complete the
program. Thus the reported times for NPROCS = n are assumed to be for a grid of n x 1, although for a

different layout (whenever possible), the time should almost the same.

L only one processor is used
2 available http://www.cs.utk.edu/ " ghenry/distrib/

NPROCS Times (s)
790 nodes 1610 nodes 3400 nodes

1 1214

2 643 3121

3 — 2167

4 339 1590 12977

5 — 1383 11182

6 238 1119 9787

7 — 1027 8726

8 191 890 8141

Table 1: Timing results

A ‘— in the column indicate that the timing is not taken for that set of conditions. A blank denote that
it is not possible to obtain the timing for that initial setup because of hardware limitation, such as limited
PRAM on each machine.

For each number of nodes, the timing from lowest possible NPROCS is taken to be ‘ideal case’. From
it, functions can be obtained to determine the ‘ideal time’ as a function of NPROCS, which neglects
inter-processor overhead. For 3400 nodes, the ‘ideal time’ function is not determined as the lowest possible
NPROCS is 4.

Time (s) against NPROCS, for 790 nodes

1400 T T T T T T

Obtained times <
Ideal times -----

1200 ¢ 1
1000 | .

800 F i

Time (s)

600 - i
400 | .

200 | - 7— |

NPROCS

Figure 3: Timing graph for 790 nodes

Time (s) against NPROCS, for 1610 nodes
4000 T T T T T T

\ Obtained times <
\ Ideal times -----

3500 - \ R

3000 N 1

2500 - .

2000 N —

Time (s)

1500 TS —

1000 | ° i

500 —

NPROCS

Figure 4: Timing graph for 1610 nodes

Time (s) against NPROCS, for 3400 nodes

T T T T T
Obtained times ¢

14000 - y

12000 1

10000 1

Time (s)

8000 o i

6000 1

6
NPROCS

Figure 5: Timing graph for 3400 nodes

A closer view in Figure 4 seems to suggest that for NPROCS = 4,6, 8, a greater marginal improvement is
obtained as opposed for NPROC'S = 3,5,7. This is due to the visually greater y-distance between the data
point to the ideal times function.

The results obtained in Figure 3 and Figure 4 indicate that time reduction as the number of machines

10

increases is quite good. A k-fold increase in the number of machines can effectively reduce the original
computation time from T' to 10-20% of T'/k. While the parallel code is implemented for a 2-D elasticity
equation, it is anticipated that a similar implementation for a 3-D code or for a different boundary integral

application (e.g. the a Laplace equation) will be useful in reducing the computation time.
5. Conclusion

The parallel code achieved its purpose of both enabling larger problems to be solved as well as reducing the
amount of time required. With 8 machines of 256MB BRAM each, problems on the order to 4000 nodes can

be solved. Larger problems can be handled by simply appending more machines to the cluster.
6. References

[1] G. Krishnasamy, F. J. Bizzo, and T. J. Budolphi. ‘Hypersingular boundary intergral equations: their
occurrence, interpretation, regularization and computation’ in Developments in Boundary Element
Methods—Advanced Dynamic Analysis P. K. Banerjee and S. Kobayashi (eds.) Vol. 7, Chap. 7.
1991. Elsevier Applied Science Publishers.

[2] H. D. Bui. ‘An integral equation method for solving the problem of a plane crack of arbitrary shape’,
J. Mech. Phys. Solids, 25, 29-39. 1997.

[3] T. A. Cruise, Boundary Element Analysis in Computational Fracture Mechanics. 1988. Kluwer Acad.
Pub., Boston.

[4] L. J. Gray, L. F. Martha, and A. B. Ingraffa. ‘Hypersingular integrals in boundary element fracture
analysis’. Int. J. of Numer. Meth., 29, 1135-1158. 1990.

[5] M. Bonnet, G. Maier, and C. Polizzotto. ‘Symmetric-Galerkin boundary element method’, ASME Appl.
Mech. Rev, 51(11), 669-703. 1998.

[6] J. H. Kane. Boundary Elements Analysis in Engineering Continuum Mechanics. 1991. Prentice Hall,
NJ.

[7] L. S. Blackford et al. ScaLAPACK Users’ Guide. 1997. Soc. for Ind. and Appl. Math., NY.

[8] E. Anderson et al. LAPACK Users’ Guide. 1997. Soc. for Ind. and Appl. Math., NY.

[9] L. J. Gray and G. H. Paulino. ‘Symmetric Galerkin boundary integral fracture analysis for plane
orthotropic elasticity’, Computational Mechanics, 20, 26-33. 1997.

[10] F. J. Bizzo and D. J. Shippy. ‘A Method for stress determination in plane anisotropic elastic bodies’.
J. of Composite Materials, 4, 36-61. 1970.

[11] L. J. Gray, C. Balakrishna, and J. H. Kane. ‘Symmetric Galerkin boundary integral fracture analysis’.
Eng. Analy. Boundary Elements, 37(19), 3229-3250. 1994.

[12] A. Geist et al. PVM: Parallel Virtual Machine. 1994. MIT Press, Mass.

[13] J. J. Dongarra and B. C. Whaley. LAPACK Working Note 94: A User’s Guide to the BLACS vl.1.
Tech. Report. 1997. Univ. of Tenn.

