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Brief Review of the R-Matrix Theory
L. C.Lea and N. M. Larson
I ntroduction

Resonance theory dedls with the description of the nucleon-nucleus interaction and ams at the
prediction of the experimental structure of cross sections. Resonance theory is basicaly an interaction
model which treats the nucleus asablack box, whereas nuclear models are concerned with the description
of the nuclear properties based on models of the nuclear forces (nuclear potentia). Any theoretical method
of caculating the neutron-nucleusinteractions or nuclear propertiescannot fully describethe nuclear effects
indde the nucleus because of the complexity of the nucleus and because the nuclear forces, acting within
the nucleus, arenot known in detail. Quantitiesrelated to interna propertiesof the nucleusaretaken, inthis
theory, as parameters which can be determined by examining the experimentd results.

The general R-matrix theory, introduced by Wigner and Eisenbud in 1947, is a powerful nuclear
interaction modd. Despite the generdity of the theory, it does not require information about the interna
dructure of the nucleus; ingteed, the unknown interna properties, gppearing as dements in the R-matrix,
are treated as parameters and can be determined by examining the measured cross sections.

A brief review of the R-mairix theory will be given here and the interaction models which are
gpecidizations of the generd R-matrix will be described. The practical aspects of the generd R-matrix
theory, as well as the relationship between the collison matrix U and the level matrix A with the R-matrix,
will be presented.

Overview of the R-Matrix Theory

The generd R-matrix theory has been extensvely described by Lane and Thomas. An overview
is presented here as introduction for the resonance formalisms which will be described later.

To understand the basic points of the generd R-matrix theory, we will consider a smple case of
neutron collison in which the spin dependence of the congtituents of theinteractionsis neglected. Although
the mathematics involved in this specid case is over-amplified, it nevertheless contains the essentid
elements of the generd theory.

As mentioned before, the nuclear potentid insidethe nucleusisnot known; therefore, the behavior
of thewave functionin theinterna region of the nucleus cannot be calculated directly from the Schrodinger
equation. Inthe R-matrix andysstheinner wave function of the angular momentum | isexpanded inalinear
combination of the eigenfunctions of the energy levesin the compound nucleus. Mathematically spesking,
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To proceed to the construction of the R-matrix, Eq. (xx-2) ismultiplied by f | (ExrNand Eq. (xx-3)
is multiplied by f (Exr). Subtracting and integrating the result over the range0 toa (as in Eq. (xx-6))
produces the expression for the coefficients A»:
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InsartingAy» into Eq. (xx-1) for r=aa the surface of the nudeus and using Eq. (xx-4), gives the
following expresson for the wave function:
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Equation (xx-8) reates the value of the inner wave function to its derivative a the surface of the
nucleus. The R matrix is defined as

. £2 _ |F(Eaf(EQ)
R gyl | EAE ©)
or
.
R § Byl (10)

where 7%, the reduced width amplitude for the level ? and angular momentum |, is defined as

2, ’ % f(E,) . (12)

The reduced width amplitude depends on the vaue of the inner wave function at the nuclear
surface. Both Esand 75 are the unknown parameters of the R matrix which can be evaluated by examining
the measured cross sections.



The generdization of Eq. (xx-10) isobtained by including the neutron-nucleus spin dependenceand
severa possihilities in which the reaction process can occur. The concept of channd is introduced to
designate a possible pair of nucleus and particle and the spin of the pair. The channd containing theinitia
state is called the entrance channd (channe c), wheress, the channd containing the fina date is the exit
channe (channd c'). The dements of the R matrix in the generd case are given by

? 72
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where the reduced width amplitude becomes
- £ 2
P oma f (E,a) - (13)

The next objective isto relate the R-matrix to the cross-section formalism so that cross sections
can be computed once the dements of the R-matrix are known.

Relation between the R-matrix and the Collison Matrix U

The generd expressions for the neutron-nucleus cross sections are based on the collison matrix,
aso known as U-matrix, whose e ements can be expressed in terms of the dements of the R-matrix. From
basic quantum mechanics theory the cross sections for the neutron-nucleus interaction can be given as a

function of the matrix U asfollows

(1) Elastic Cross Section

- 2 _ 2
s,"p¥ § @HDI11&U,F, (1
(2) Reaction Cross Section
s,"p¥ § @%D(1&]U,f) (15)
3) Total Cross Section

where & isthe neutron reduced wavelength given by
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Wefirg derive the relaionship between the U and R matrices, for asmple case of spinlessneutra

particles. The total wave function in the region outside the nuclear potential can be expressed as a linear
combination of the incoming and outgoing wave functions. If ,"°(")andf (r) are the incoming and

outgoing wave functionsfor afree particle, respectively, the solution of theradid Schrédinger equation can
be written as

£, climmeu f’“t(r)] forr$a, (19)

where C, isanormdization constant.

The presence of the U-matrix in Eq. (xx-18) (in this case amatrix of one eement) indicates that
the amplitudes of theincoming and outgoing wave functionsare, in generd, different. Thecaseof|U, | © 1
corresponds to pure eagtic scattering which means that no reaction has occurred.

The Schrodinger equation for f"(r) and f *(r) is the same as Eq. (xx-2) with /() * 0 since

the potentid outsde the nucleus is zero. The solution is a combination of the sphericd Bessdl (j 1) and
Neumann (") functions

£ = kr[n(kn) %1, (k)] (19)

) K[k & jkn] (20)

where i * /&1.

The relation between the U and the R-matrices is obtained by first noting that Eq. (xx-8) can be
written as

f (Ea)" &Bf (Er)
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where R isgivenin Eq. (xx-9).



Equation (xx-21), when combined with Eg. (xx-18), provides the relation between R and U-

matrices as
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We define the logarithmic derivative as
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Since from Eqgs. (xx-19) and (xx-20), f," and f ™" are complex conjugates
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Equation (xx-22) becomes
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Equation (xx-25) represents the desired relationship between the collison matrix U and the matrix R.

The representation of the neutron cross sectionswill depend on the reduced width amplitudes 7~
and E, which are unknown parameters of Eq. (xx-25). Those parameters are obtained by fitting the

experimenta cross section.

The generd relaion between the matrices U and R is Smilar to Eq. (xx-25) with each term

converted to matrix form:
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[I&R(L&B)E [I&R(L&B)f  *12. (26)

All matricesin Eq. (xx-26) are diagonal except theR matrix. Thematrix dementsof 2V aregiven
by (kc ac)1/2.

It should be noted that no gpproximation was used in deriving Eq. (xx-26). That equation
represents an exact expresson relating U and R, and leads to the determination of the cross section
according to Egs. (xx-14, xx-15, and xx-16).

To avoid dealing with matrices of large dimensions, saverd gpproximations of the R-matrix theory
have been introduced. We will discuss various of these cross-section formaismsin the pagesto come; we
begin by introducing the level matrix A.

Relation between U, R, and A

Another presentation of Eq. (xx-26) may be obtained by introducing the following definitions

Lo ™ Sy%iP, (27)

L,"L&B , (29)
and

S,"S&B, (29)

v!here S and P are red matrices which contains the shift and the penetration factors, respectively and
Lo"L& 2iP.

FromEgs. (xx-20, xx-23, and xx-27), the penetration factorscan bewrittenasP = 2(f, _f )%
and Eq. (xx-26) becomes

U™ O[l%2iPY(1&RL)*RPYO , (30)



with O = f 2§ 812,

It should be redlized that the R-matrix is a channel matrix; i.e. it depends on the entrance and
outgoing channdls ¢ and ¢'. The level matrix concept introduced by Wigner attemptsto relate the U matrix
to amatrix in which theindices are the energy leves of the compound nucleus, the level matrix of dements
Ap. In rdlating the channel matrix to the level matrix we recall thet the R matrix is defined as

?2.xX?
R* = 22 (31)
¥ ERE

where %%, indicates the direct product between two vectors.

?x?
Theexpression | &RL, " 1& & ——Z=L . can be written as
p 0 _! E&E 0
?2X M3,
I&RL, " 1& § ——— |
° B ERE (32)

where we have defined 13," Ly?,, and L isasymmetric matrix. Theform of Eq. (xx-32) suggests the
following relation

(& RLO)&l' 1% ;} (?ux ??)Au,_, : (33)
where theindices M and ? refer to energy levelsin the compound nucleusand A is determined asfollows:

Multiplying Egs. (xx-32) and (xx-33) and using the identity (xxy)(zxw) " (y.2)(xxw), we obtain
the following expresson,

B G

J e B Eae W0 (34)

_;) (7 X B)A &

Factoring theterm 7,% 13, in the above equation, we find that the level matrix A stidfies the equation
ApE&E)& § (Lo2% 2)A,"dy, . (35)
u



The evaluation of thematrix (I & RL ;)**R which appearsin Eq. (xx-30) is obtained by combining
Egs. (xx-31) and (xx-33) which gives

? X?
(I&RL)*R™ = |——2% = (2x2) 5 (B,.2)A . (36)
0 ¥ |E,¢E ELER "W 7B e
Using Eq. (xx-35) as J; (B,-2) A ™ &y % (B, &E)A,, gives
&lp = _
(1& RLY¥'R i CX2A, - 37

Hence, the callison matrix is rdated to the leve matrix as

u 'O[I %2i Pl/z( i (2x2)A m) Pl/Z]O . (38)

The dements of the collision matrix for entrance and exit channelsc and ¢, respectively, are given

as
. . / /
UCC) OC [dc C)%I {_) ( 2A|»p G,l)cz)) OC) y (39)
where
Gﬁf - 7“0 (2 Pc)l/z (40)
isthe levd width, and from Eq. (xx-35) the levd matrix is
&l w
Ap (E,& E)du?& B (’?uC Loc 20 - (41)
C

It should be remembered that no gpproximation has been introduced intheforma derivation of the
colligon matrix up to this point.

Simplified M odels Derived from the General R-Matrix Theory



Inthis sesson we will present the approximationsintroduced to the R-matrix and, likewise, tothe
level matrix A which leads to various smplified resonance formaisms. The cross section formalisms
frequently used are the sngle-level Breit-Wigner (SLBW), the Multilevel Breit-Wigner (MLBW), the
Adler-Adler (AA), andtheReich-Moore(RM) formaism (al soknown asthereduced R-matrix formalism).
A new methodology, caled multipole representation of the cross section, was developed at Argonne
Nationa Laboratory by R. N. Hwang; in this approach the cross section representation is done in the
momentum space (JE). We will address the gpproximations needed to obtain these smplified R-matrix
models.

The garting points in deriving these formdisams will be the level matrix A and its relation to the
collison matrix U.

The collison matrix is given by

&i(f f ) 12 12
U %2 P 22 A 200 P (42)

cc

The level matrix is represented as

&la _
Ay (E,& E)d?“& _]C [ LOc?uc : (43)
1. Multilevel Breit-Wigner (MLBW) Formalism

Inthe MLBW approximetion the level matrix is assumed to be diagond, which meansthat the off-
diagond dements of the second term in the matrix given in Eq. (xx-43) are neglected, i.e,

i (P2 Los?0)- o, i Loc%e - (44)
Hence Eq. (xx-43) becomes
&1l w
Ay " (E.&E& Lo 72) d,, - (45)
C

2P’

From Egs. (xx-27) and (xx-40) we have Lo~ (S:&B.)%i P, and %" which leadsto
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Ayt (B8 E%??&—iZG_,) dy, . (46)

S.&B .
where 2, & g - d " @ Cx. Redefining

E,+~E%?,, thelevd matrix becomes

- dm .
E&E&LG, (47)
; 5
The collison matrix given by EQ. (xx-42) becomes
12 112
. &) _ Gl)c G;C)
Uyop~e dcc)%lj _ . (48)

? E?&E&lzG?

From this point, we proceed to the derivation of the cross section formdism in the MLBW
representation. For areactioninwhich cOc¢) (fisson, capture, or indastic scattering channels) the collision
matrix and the reaction cross section are given respectively by

. p 2 Al/2
& (f f )& =) Gl,C G1L

cc) © i 49
¥ ceeelic E?&E&EG_, 49)

U

- 2y
So " P& U ™ P& U0 U (50)

where we have used the identity i * e'P"2 in Eq. (xx-49). Inserting Eq. (xx-49) into Eq. (xx-50) gives

11



12 /2 12112
. &2 G}’C G})c) G’l?)ce’l?)c)

S pe | ’
AR (eaE)E&E)

(51)

. i . [ ) ) - .
where we have made €, E?&E G and e§ E?%E G,. Thisexpresson can be further modified by using
the following identity

1 .1 [ 1 1
( - = & c , (52)
(e?& E) (e?) & E) (e?) & e'7) [ (e?& ) (e?) & E)
which gives
) )
e Mmoo My (53
S.o0 PE 1B 3 |
“ TP Ege)esE) 7 (ae)E&E)

where M,;:;) - G}f G2GI2G2 . Thesecond termin Eq. (xx-53) isthecomplex conjugate of thefirst term,

) )¢ 2c)
hence
)
MCC
1 o)
s " 208 Req 3 j — 54
o P ! ecE Y elae, &
Theterm in the summation on ?) can be expanded to give
S, " 4p%’ S B (ReC,%)?,%(IMC.*) 2], (55)
where
g 2 (G L )

: i ?
20?7 ‘¢ E?)&E%LZ(G?)%G?) )

and the line shapes ?» and ?» are defined as

12



Gl4

75" - : 57
(E,&E)%G;/4 7
and
(E,&E)G/2
7 EREP%CI4 8)

Equation (xx-55) is the MLBW cross section form for the reaction cross section. A smilar
procedure can be followed to derive the elastic cross section.

2. Single Leve Breit-Wigner (SLBW) Formalism

The SLBW crosssection formalismisaparticular case of Eq. (xx-55) when the second termin Eq.
(xx-56) is zero, that is, Cfc) " 1.

3. Adler-Adler (AA) Formalism

The AA agpproximation condsts of applying an orthogona complex transformation which
diagondizesthe level matrix as given in Eq. (xx-43). We are looking for a transformation such that

OA% Q%" e& E (59)

or

A" 0% (e& E)4LO (60)

where 004! " 0410 ™ |. Here O isaorthogona complex matrix and € is a diagona matrix of complex
elements. The dements of the matrix in Eq. (xx-60) are given as

O

. _ 0,0
& Ry

Ll’?-

(61)

The collison matrix of Eq. (xx-42) then becomes
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g1/2 1/2
= T (62)

1/2 w 12 1/2 w 12
o) G

whee 9%~ § O»Cx and %0~ O Gp). Thedementsof the O matrix are determined from
!

?

(E,&E) dh& § xlo?e” § On€0p (63)
C ¢

where Eq. (xx-43) has been used.

Because of the energy dependence of Lo through the penetration factor Py, theelementsOx, will,

in generd, be energy-dependent. In the AA approach, the energy dependence of Lq. is neglected. This
assumption works very well for fissle isotopeswherethe resonance region is predominantly described by
s‘wave resonances (angular momentum corresponding to | ™ 0) for which the penetration factor is energy
independent. However, the assumption bresks down when p-wave (I* 1) or other neutron partiad wave
functions with angular momentum | greater than 1 are presen.

The reaction cross section in the AA formalism can be obtained in asmilar way to that developed
for the MLBW. Thereaultis

, %Gy % (L&E)HS”

S 2p3 , (64)
* # (WL&EY% 7,
where the following definitions were made
cc) g~ w _ 02.9292:0.)
H,” &iG, % — (65)
' e?)&e?
ad
8" h&i?, . (66)
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4. Reich-M oor e Formalism

The gpproach proposed by Reich and Moore for treating the neutron-nucleus cross sections
consigsof eiminating the off-diagona contribution of the photon channels. Therationdefor thisassumption
is this. systematic measurements of the resonance widths, mainly in the case of the neutron and fisson
widths, show strong fluctuations among resonances of the same tota angular momentum and parity. It

should beexpected, from Eq. (xx-40), that thesefluctuations are connected either to the reduced widths 2,
or to the penetration factors P.. However, it isimprobablethat such fluctuations are dueto the penetration
factors because they are either constant or a smooth function of the energy. Hence, the fluctuations must
be related to the reduced widths. Porter and Thomas noted that the reduced widths 72 of Eq. (xx-13) are
functions of the channl functions f ((E»@,) which, in tumn, are projections of the eigenfunctions of the
compound nucleus onto the nuclear surface and exhibit random size variations. Consequently, the large
number of gamma channdsimpliesthat § 0> % 72 isvery small for pO?. The second term of the level
matrix in Eq. (xx-43) is divided in two parts as

J 7 Loc °m'J Pacloc? /"J %cloc e (67)

and in the RM approximation

— _ ?
g? ??CLOC ?uc dll"Joo LOc ¢ (68)
The levd matrix becomes
&l [ _
Ay T Bk E%?”&EG,?) d, % i ZcLoc e (69)

where, smilarly to the MLBW, the following definitions were made:

S.&B,
?2" & § cor—=— G (Energy shift factor), and G» " o Cre. Note that these quantities are

different from that in the MLBW formdism. Again, redefining E, = E>% 7, we have

15



] i
Ayl (B,E&-Gr) dy%  xlogs - (70)
CO*

From this point we are going to derive a reaion between the collison and the level matrix in the
RM representation. Multiplying Eq. (xx-70) by A,» and summing over ? gives

d, A2 L. ?
v IA & - - a? "?c —0c V' )
(E &E&l ) A (E &E&l ) (71)
H ZG“’ H ZGI—O

Multiplying Eq. (xx-71) ontheleft by Zac) and ontheright by Zac» and summing over a and i gives

IR WA I AR T
H H ~a H
EH&E&EGP'-’ EH&E&EGU’
If we define
d.,d,y
RC)C)) — L )
“ E &E& Gh”
and
Q" B J %0 Pap e (74)
m
then EQ. (xx-72) becomes
Rc)c)) ) j Qc)c (dcc))& LOc Rcc))) . (75)

co?

Note that this R matrix is an gpproximation, not to be confused with the exact R-matrix defined earlier.

Rearranging EQ. (xx-75) gives

16



. _ &1
Qo _# Ry @& Loy Ronp)™™ (76)

c)6?
Hence, from Eq. (xx-42) the collison matrix in the RM approximation becomes

. &i (fc%fc) . / /
UoTe ) {dcc>%2| Pclz[_g Ro» (dc))c)&LoC))F%»C))&l} Pcl) 2}- (77)
c’6?

Equation (xx-77) relates the collison matrix to the Reich-Moore R-matrix in aform smilar tothat
in the case of the generd R-matrix theory. In the general R-matrix, the dements are

Rc e ??c ?’?c) (79)
“ B EgE "’
whereasin the RM agpproximation they are
ye Gy
&C)'  —_—
* E,&E &lZG?? (79)

Equation (xx-79) is frequently referred to as the reduced R-matrix theory.

We now proceed to obtain aform for the cross section in the RM gpproximation, by writing EQ.
(xx-77) as

o &i(f %f )
UCC) e 2 OCC) ) (80)
where
. i 1/2
Occ) dcc)%2I Pe )j)_ Rcc)) (dc))c)&LOC)) Rc))c))&l PC) : (81)
c)6?
It isuseful to write the reduced R-matrix as
« 1 _&i1r &1/2
R T Pe Ko Py s (82

17



inwhich the dements of K are given by

w: pl/2 1/2
ch) I P Rcc) PC) : (83)

The explicit form of Ko is

2 A2
e
cc 5 . : (84)
2 eEslc,
. > 7
Therefore O.) becomes
O *d wopl? = lpse, paef o 1oer, e &1P1/2
) G2l P, _# —Fe o) o) & Lge Tro e o o - (85
c’6?
Recdling that Loc ™ (S:&Bo)%iP . and making B ™ S, the expression for Oce) becomes
. _ &1/ 12 8121 1/2
O deo2 § KeorPo) (dc))c)&PC)) KonoPo) | Po™ - (86)
c’6?
The matrix form of Eq. (xx-86) is
O-|%2KP&1/2(|&Pl/ZKP&UZ)&lPl/Z . (87)
Equation (xx-87) can be further reduced by using the identity (B % C)& ™ v(wBv% wCv)&! w.
Letting B™1, C*&PY2K P&Y2 w* P&Y2 gnd v* P12 we have
O™ 1%2K(1&K)! . (89)
If we then add and subtract 2(1 & K)&* the expression becomes,
0" 2(18K)E &1 , (89)

for which the dements are, explicitly,

18



- &1
O, "2(1&K)&d,) . (90)

The collison matrix of Eq. (xx-80) then takes the form

UCC)_e&i (fc%fc))[z(l&K)i‘cl)&dcc)] , (91)
wherethe dementsof (1&K).) aregiven as
2 L2
by el GG
(1&K)o dcc>&§ j — 92)
° E,&E&=G,,
. 5 7
The RM cross sections are written in terms of the transmisson probability, defined as
- &1
?.0 dCC)&(I&K)cc), (93)
for which the collison matrix can be written as
o & (f %f )
U e ° “ldn&272,] (94)
The cross sections can then be obtained by using Egs. (xx-14), (xx-15), and (xx-16) as,
&2if
s,” Zp&zj (2I%1)’(1&0052f D 2Re(? e ')] : (95)
Sas” 0% 3 @% [Re(?,)&12,P)] . (%)
45 %D s 2 P,
S, " 4ps _! (2% )_(%f|nc| (97)
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So " Saps&Ss - (98)

5. Conversion of RM parametersinto AA parameters

A procedure to convert RM parametersinto an equivaent set of AA parameters was devel oped
by DeSaussureand Perez. Their approach consisted of writing theRM transmission probabilities 7, and 7.

astheratio of polynomiasin energy; these polynomias can then be expressed in terms of partid fraction
expansions by matching the AA cross sections as:

N&1
1,) .Pn (E).T Fon

—_ — (99)
JE ™ PNE M dgE
and
PMIEY N | r )
i'-’ncz'—lcN()zl "J lgaetc| o (100)
VE PiEF P |d&E g(eE
where
PNTQ? (101)
?&m
Pyt Q—2 (102)
JE
L Qm. |
PP ===, (103)
JE
and
Q" k (E& E&izG_») , (104)
?
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and ? " |1 &K].

Equations (xx-99) and (xx-100) have poles d, ™ l,& 2, which are roots of the equation
PNE)"Q?" 0, (105)

and are identifible as the parameters of the Adler-Adler formdism. In deriving this methodology
DeSaussure and Perez neglected the energy dependence of the neutron widths, i.e, G, % /E . This
assumption limits the application of this methods to swave cross section. Hwang has extended the
gpplication of the DeSaussure and Perez gpproach to the calculation of cross sections for any angular
momentum. |n hisapproach, instead of using energy space, Hwang noted that the dependenceof G, on JE

suggests that an expangon in terms of ‘/E would lead to a rigorous representation of the cross section.

Since momentum is proportiona to ‘/E Hwang cals hismethodol ogy arigorous polerepresentationinthe

momentum space or, for short, a multipole representation of the cross sections (MP). The transformation
of the RM parametersinto the MP parametersis obtained as
PMYE) My

?n

20— , 106
nn PZM(E) _{;1 d?&‘/E (106)
and
PR M| rg ..
?ncz. CZM > 'J * o= cOn, (107)
PMEF 71 |d,&/E dl&yE
where
M*® (%1)N , (108)

and N isthe number of resonance parameters in the RM representation. The factor Q of Eq. (xx-104)
becomes

N .
Q" K (E& E&lzep) qE) . (109)
?"1

where
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GWE) " 1, (110)

and
%, (VE) " 9%3(ka)*% (ka)* . (111)
0 () " 1%(ka)* , (112)

Doppler Broadening and Effective Cross Sections

The Doppler broadening of cross sections is a well-known effect which is caused by the motion of the
atoms of the target nuclei. Since the target nuclel are not a rest in the laboratory system, the neutron-
nucleus cross section will depend on the relative speed of the neutron and the nucleus. The effective cross
sectionfor mono-energetic neutrons of massm and energy E (laboratory velocity v) isgiven by the number
of neutrons per unit volume, multiplied by the number of target nucle per unit volume, timesthe probability
that a reaction will occur per unit time a an energy equivaent to the relative velocity | vI W|, integrated
over dl vdues of W, the velocity of the nucleus. The relation between the cross section measured in the
laboratory and the effective cross section is

v§(mv2/2)'md3w p(W) |[P&W/| s (m|P&W [/2) , (113)

where s (mv 2/2) isthe effective or Doppler-broadened cross section for incident particles with speed
v [laboratory energy mv#/2]. The distribution of velodities of the target nudle is described by p(W). A

magjor issue is the choice of the gppropriate velocity didtribution function of the target nucla. Let us now
assume that the target nuclei have the same velocity distribution as the atoms of an ided gas; i.e. the
Maxwel-Boltzmann digribution,

p(W)d3w = L exp(&
p3/2

where M isthenuclear massandk T the gastemperaturein energy units. Combining Egs. (xx-113) and (xx-
114) gives

w2\ d3w M 5.
—2) o ?U kT, (114)

u u
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1 : W2 >
—— m_d W ap(&—z) P& W s (m|P&W}/2) . (115)

P aw u

vs(mv?/2) -

Note that, from the above definitions, a 1/v cross section remains unchanged.

Changing the integration variable from W to W * ¥ & W and choosing spherical coordinates
amplifiesthe integrd to the following:

v§( mVZ] . 1 d3w exp(& (v2&2vwcos 2% w?) ) WS( mWZJ
2 p¥2us M U2 2
e L "4t “wedw d (cos(?) exp(&(VZ&ZVWCOS?%Wz)) ws(ﬂz)
p¥2y3 rg ry ry u? 2
2p 4 2 2 2 %1
g df mdww3s[m_"")exp[&("L°;"’)J du exp(&z"w“] (116)
p3¥2u 2 u m u?
0 0 &1
4 2 2052 2
.« 2p dww3s( mw )exp(& (V<%w*=) )( &u )[exp(&sz)&exp(%sz)l
p¥2y3 m 2 u? AR u? u?

g ol o) )|

This equation, known as the Solbrig's kerndl, may be more familiar when written as the sum of two
integras,

2 4 2 2
§(E' mv ) - 1 dwwzs[%] exp(&—(V&\;V) )

2 vZ/pu T u
(117)
4 2 2
& 1 dWWZS[M] exp(&w)
ViU T 2 u

At sufficiently high energies, the contribution from the second integra may be omitted sncethe vaue of the
exponentid is vanishingly small.

To amplify Eq. (xx-117) further, we make the following definition:
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s(w) = s(m(w)?/2) for w>0

) (118)
" & (m(@&w)/2) for w<O.
Equation (xx-117) then becomes
—{ mv? 1 ‘ (v&w)?
S ) - dww s(w)ap(&—} (119)
V2 m
PU g4

For programming convenience, we make a change of variable from velocity to square root of
energy. Thusingead of v we use

v yE"vym2 ; (120)
we redefine W to be
W wym2 (121)
and defineU as
U= Jym2u * JymkT/M . (122)

In addition, S(W) is set equd to S(w), or

S(W) " s((W)?) for W>0

" &s((&W)?) for W<O . (123)

These changes give the formulation which is used in SAMMY for the exact monatomic free gas
modd (FGM):

4
s(V?) - % dw W2 S(W)exp(& (V&V\/)Z) (124)
PU &

These equations hold for 1/v cross sections, for constant cross sections, and for cross sections with
resonance structure.

To transform to the high-energy Gauss an gpproximation (heregfter referred to assHEGA) from the
FGM, define E asV 2 and EN as W 2. Then Eq. (xx-124) takes the form
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S(E) fi R ENS(EN)exp(&iMK},

1
125
EYRU M, 2/ E (1)

in which the lower limit has been changed from -4 to E,;,,, @ number above zero, since the next step
involves gpproximations which are vdid only for EN >> 0. If we expand the integrand of EqQ. (xx-125) in
powers of (E-E’) for valuesof E'/E closeto 1 and set d " E) & E, then

E [1&( 1%%%)] . (126)

1E&E)

2 yE

-&

Defining 22 (Doppler width) as

22" 4EU?

, 127
. |4KTE (127)
M/m

(Note that this quantity is energy-dependent) then the HEGA becomes

4 2
L dEN s(EN)ap(&ﬂ) , (128)
p? &nlf ?°

§HEGA ( E) A
where the lower limit was extended to negative infinity sncethat portion of theintegrand isessentidly zero.
Thisisthe usud Gaussan formulation of the free gas model.

Other Energy-Dependent Cross Sections

No discussion of Doppler broadening would be complete without an analysis of the effects of
Doppler broadening on particul ar typesof crosssections. Herewe examine someimportant typesof energy
dependencies.
Doppler Broadening of 1/v Cross Sections
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Doppler broadening is expected to preserve (i.e., leave unchanged) a 1/v-cross section. To test
whether thisisthe case with FGM and/or HEGA broadening, we note that a 1/v-cross section may be
expressed as

s(wW?) - % , (129)

where the subscript “0” denotes congtants. To evauate the FGM with thistype of cross section, note that
our function Sof Eq. (xx-123), combined with Eq. (xx-129), gives

s,V
S(W) - 2/v0 for W$ 0

(130)
S,V S,V
" 0 9 = 29 for W<O
&W wW
From Eq. (xx-11) the FGM-broadened form of the 1/v cross section is therefore
%4
S(V2) So Vo fW dW e &(VEW?/u? . So Vo | (131)
2
\4 JBU &4 v

i.e., intheexact same mathematica form astheorigind of Eq. (xx-129). In other words, al/v cross section
is conserved under Doppler broadening with the free gas model.

That is not the case for HEGA broadening. With the HEGA from Eq. (xx-128), the Doppler-
broadened 1/v cross section takes the form

%4 %4
_ SV, Sy V,
Seoa(E) * —— f dEN 220 g&(E&ENY/?* « 20 0 f B etEaEm?t (1)
p? &4 EN ﬁ? &4Jﬁ

which is not reedily integrable anayticaly. Whet is clear isthat the result isnot 1/v.
Doppler Broadening of a Constant Cross Section

In contrast to the /v cross section, a constant cross section is not conserved under Doppler
broadening. That itistrue experimentally can be seen by examining very low energy capture cross sections,
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for which the unbroadened cross section is constant (which can be shown by taking the low-energy limit
of the Reich-Moore equations, for example) but the experimental cross section rises with decreasing
energy. See, for example, the S dastic cross section from 0.01 to 1.0 €V or the Cu éastic cross section
below 2.0 eV (on pages 100 and 234, respectively, of [VM88]), which clearly risewith decreasing energy.

To caculate anayticdly what effect FGM and HEGA broadening have upon a constant cross
section, we first note that a constant cross section can be expressed as

s(E) " sy - (133)

Thefunction S needed for our formulation of FGM broadening (see Eq. (xx-123)) isfound to be

S(W) * s, for W$0
" &s, for W<O , (134)

so that EqQ. (xx-124) gives, for the FGM-broadened constant cross section,

4 0
S(V2) - So [Idw W2 e&(V&W?2/U2 o g W2 e&(VaWiu? | (135)
ViU L% o

Replacing (W-V) / U by x gives
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S U3 4 5 &v )
s(V?) - 20 0 (x2%2xv%v?) e® & X (x2%2xVv%v?2) e®* ]
vipu L g &4
s [ 4 0 0 0 ,
- 20 % & % dx (x2%2xv%v?2) e~
VARV I S VR U R
So ¢ &x? ° 2 2y o &x?
- - 2 mdx (2xv) e**" % 2 rndx (X“%2xv%v<) e**
vip | ¥ &v
s, 4v * 2s, ©
- Z X dx e®" o - 0 mxzdx e®’
viyp § viyp & (136)
4vs, © 2s,v2 ©
% 0 o xdx ed o 0 L dx edx
V2 p &v V2 p &v
S, 4 2s
- 2071y - 2 (&le&"z% J@[efc(o)&efc(v)])
W2 VAl 2 4
480

% (&%[1&&‘“2]) % %[en‘c(O)&en‘c(v)]

vyp
S
- 0 e&V2 % SO(

vyp

in which we have replaced V/U by v.

% 1) ( 1& erfc(v))

2v?

Inthelimit of smal v, the quantity in Eq. (xx-6) becomes

S
L %Li(v%v?’)] 6 —> (137)

Jov  2vZp Ypv

s(V?) 6 so[

so that the leading term is 1/v; thisis somewhat counterintuitive but is nevertheless observed in measured
low-energy cross sections. For large vaues of v, the limiting caseis

§(V2)6so[0%1><1] 6s, ; (138)
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i.e., the broadened cross section is a constant, as expected.

In contrast, HEGA broadening preserves a constant cross section everywhere:

4
So dEN e& (E&EN2?2

m
P?eq

Sheca(E) © So (139)

that is, the Gaussan kernd is normalized to unity, as expected. Thisresult, which may intuitively appear to
be correct, is nevertheless unphysical. As discussed above, It iswell known that measured (and therefore
Doppler-broadened) cross sections exhibit 1/v behavior at very low energies.

Doppler Broadening of the Line Shapes ? and ?

Equations (xx-57) and (xx-58) can be written as

?2(x) " 1%1X2 : (140)
and
?° 1%12 : (141)
where x * -ﬁ .

The HEGA of these functions are obtained by replacings (E) in Eq. (xx-128) by ? and ?, which
gives

" exp[&%f’?z (X&Y)]

2(%,?) " —— dy , (142)
2/pd 1%y >
and
 wa exp[&%?2 (X&)
Ax,?) " —— dy 2y , (143)
2/pM 1%y ?
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where 7?7 —.
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