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ABSTRACT 
 

The detection of neutron sources in commerce is similar to gamma detection in many ways. 
Geometry issues regarding detector spacing and source speed are identical. The neutron signal from a 
vehicle must be compared to background to determine if a source is present. The background must be 
updated periodically to account for changes in the environment. 

But there are also some very important differences. There are no natural neutron sources 
transported in commercial traffic. This means that there are no NORM (Naturally Occurring 
Radioactive Material) alarms associated with neutrons. All neutron sources found in a vehicle should 
be labeled and licensed, or they are contraband. Such events are very rare. Neutron nuisance alarms 
are therefore false alarms, not innocent alarms. False alarms are caused by statistical fluctuations of 
the background that coincide with the passage of vehicles.* For most of the neutron alarms generated 
by a RPM (Radiation Portal Monitor), there is no neutron source present.  

Because there are no NORM neutron sources and the threat represented by a real neutron source 
can be severe, the response to each neutron alarm can be intense. Combine this with the fact that most 
neutron alarms are false (i.e., no source is present), and it can create a situation that is very frustrating 
for the response personnel. Controlling this false alarm rate is a critical issue.  

The scope of this project is limited to development of the alarm decision process. The goal is to 
develop an algorithm with the best neutron sensitivity possible while maintaining a controlled false 
alarm rate. 
 
 

1.  GROSS COUNTING WITH A POISSON DISTRIBUTION 
 
1.1 OVERVIEW OF THE PROBLEM 
 

Gross counting has long been used as a method of gamma detection where the goal is optimize 
sensitivity vs false alarm rate. The problem with directly applying gamma algorithms to neutron 
detection is that most gamma algorithms assume that the background fluctuations are Gaussian in 
nature. In general, Poisson distributions apply to all radiation sources, gamma or neutron. At high 
count rates, a Poisson distribution can be very accurately described by a Gaussian distribution. For 
large-area gamma detectors used in radiation portal monitors (RPMs), the background count rates are 
generally very large, generally hundreds or thousands of counts per second. For large-area neutron 
detectors used in RPMs, the background count rates can still be quite small, often less than a count 
per second. 

In this section, we will rework the gross counting algorithm without the standard assumption of a 
Gaussian distribution. Instead we will carry the Poisson distribution all the way through. 
 
1.2 NATURE OF THE NEUTRON BACKGROUND 
 

The number of neutrons counted during a specified unit of time is the count rate. The count rate 
can be a fractional quantity if the measurement time and the unit of time that it is expressed are not 
the same. If this count rate is generated by the background radiation, it is called the background count 
rate. The neutron background count rate is due to electronic noise or cosmic ray interactions.  

As shown in Figs. 1 and 2 the background count rate varies with time. There are two causes of 
this phenomenon. The first reason is the statistical fluctuation of the count rate.  

As mentioned above, each count is due to a singular event, a neutron striking the detector and 
being detected. The exact direction and exact time that a neutron source emits a neutron is essentially 

                                                      
*Neutron nuisance alarms are also caused by detector malfunctions or poor choice of operating parameters. But this 

report is assuming everything is working as intended.  
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random. The counts produced by any neutron source (background or not) in a detector can be 
described as a Poisson distribution whose mean is a dependent on the activity of the source. The mean 
count rate is μ. The count rate of a specific sample is x. 
 

 ( , )
!

x

P x e
x

μμμ −=  (1) 

 
The standard deviation of the Poisson distribution is equal to the square root of the background. 

 
 σ μ=  (2) 
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Fig. 1.  A neutron background measured over 100 one second intervals.   
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Fig. 2.  A histogram (shown on linear and log scales) of the neutron 

background for the same detector measured over 2.5 * 104 seconds (about 3 days). 
The blue line is a fit of the Poisson distribution made by measuring only the mean of 
the count rate.  
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As the background is measured for longer and longer times, the statistical fluctuations cancel out, 
and the mean value of the count rate is known more exactly. The uncertainty of the background count 
rate is the reduced standard deviation (or the standard deviation of the mean). The number of 
samples is n. 
 

 
n nμ
μ σσ = =    (3) 

 
The standard deviation of the mean goes to zero as the number of samples goes to infinity. We 

would like to count for as long as possible to accurately characterize the background, which brings us 
to the second reason that background changes with time. That is, the background changes with time 
because the environment changes with time. The neutron background is part of the weather that 
people not using radiation detectors do not see. Changes in air pressure change the amount of 
shielding that the atmosphere provides and therefore change the rate of cosmic ray interactions in the 
detector. In short, the mean of the underlying Poisson distribution changes on a time scale equivalent 
to that of the weather. This means in turn, that in order to have an accurate value for mean 
background, the background measurement must be updated at a faster rate. This results in a 
compromise between statistical accuracy and systematic accuracy. Most RPMs update the 
background at a rate between once per 30 seconds and once per 15 minutes. 

When a previous background measurement is used to predict the background fluctuations in a 
new measurement, the uncertainty of the mean contributes to the total uncertainty. But in practice, the 
uncertainty of the mean of the background measurement is small compared to the standard deviation 
and is generally dropped. 
 

 2
total μ

2σ σ σ= +  (4) 

 

 ( )
2

2

total n
μσ μ

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
 (5) 

 

 
2

2
total n

σσ σ⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 (6) 

 

 
1 1     when    1total n
n

σ σ σ= + ≈ >>  (7) 

 
As mentioned above, the background measurement is typically between 30 and 900 seconds, 

which results in the uncertainty of the mean contributing between 1.7% and 0.056% to the uncertainty 
of a one second sample measurement. Throughout the rest of this document we will assume that the 
uncertainty of the background measurement is negligible compared to that of a particular sample.  In 
other words, the background count time is long compared to the drive through time. 

 
1.3 EXPLANATION OF THE FALSE ALARM RATE 
 

A false alarm is an alarm that is caused by a statistical fluctuation in the normal background. This 
is distinct from an innocent alarm, which is caused by the passage of a legal source. 
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Figure 3 shows the probability distribution of the background count rate with an arbitrary 
threshold set above the mean. From the form of the Poisson distribution, one can see that there is a 
finite probability of the background producing any count rate. Higher count rates are exponentially 
less likely to occur. The probability that background alone produces a count rate that is larger than the 
threshold is the false alarm probability (FAP). The FAP is shown in Fig. 3 as the area under the 
probability distribution that is above the threshold. 
 

 
Fig. 3.  A sample neutron background histogram with an arbitrary threshold.  For any given 

background there is a finite probability that a specific number of counts will be measured in a given 
interval. The area under the curve and above the threshold is the false alarm rate.   

 
We can therefore predict the false alarm rate of a given threshold setting from the mean of the 

background measurement. 
The false alarm probability, which is the probability that the background count rate will exceed 

the threshold K, is given by Eq. (8): 
 

 ( , )
!

x

K
FAP K e x

x
μμμ −

∞
= ∂∫  (8) 

 
This is actually an infinite sum due to the discrete nature of the distribution: 
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Calculation of the false alarm probability is difficult due to the infinite sum. It can be simplified 
by calculating the true negative probability and subtracting from one. Equation (10) shows the sum of 
Poisson distribution calculated for all values of k for zero to infinity. The first term is the true 
negative probability; the second term is the FAP. Equation (12) then gives the FAP in terms that do 
not include an infinite sum.  
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Note that the false alarm rate cannot be determined solely by the number of standard deviations 
from the background as it can be when using Gaussian statistics.* When the false alarm rate is 
estimated in the field, it is important to remember that the FAP calculated here is per RPM decision 
not per vehicle.  
 
1.4 DETECTION OF A NEUTRON SOURCE 
 

Radioactive sources generate neutrons that can interact with the detector as well. This is also a 
statistical process. For any given source, there will be a probability distribution which describes the 
number of counts we expect to see. Equations (13) and (14) describe the situation, where μB is the 
mean number of counts due to the background and μ

B

A is the mean number of counts in the detector 
when the source is present (due to the background and source). Figure 4 graphically shows the 
relationship of the background count rate and count rate due to a source whose probability of 
detection is 50%. 
 

 ( , )
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B

x
B

BP x e
x

μμμ −=  (13) 
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AP x e
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*Gaussian statistics are commonly applied to gamma detectors. 
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Fig. 4.  The background histogram and a source with 50% detection probability. The area of the red 

plot to the right of the black line represents a 50% detection probability, and the orange shaded area represents 
the false area rate associated with this detection probability. 
 
1.5 HOW TO CALCULATE THE THRESHOLD 
 

Because the Poisson distribution is discrete, it is not possible to choose the FAP exactly. It is 
possible to set an upper bound on the FAP and then find the minimum count rate, K, that yields a 
FAP that is less than the bound. The method is illustrated in the flowchart in Fig. 5. Figure 6 shows 
the variation of FAP as a function of threshold for different background values. 

 
1.6 ROUND-OFF ERROR 
 
When counting neutrons, only integer values have meaning. A detector never counts half of a 
neutron. This creates a temptation to use integer arithmetic in all of the calculations. The problem is 
in the assumption that the error in the neutron background count rate is negligible. The background 
count rate is an integer number of counts divided by a finite time interval; that is, fractions are 
important. If the count rate is high (e.g., 400 cps), the error introduced by rounding off to the nearest 
count per second is small compared to the statistical error of the measurement. Alternatively, if the 
count rate is low (e.g., 1 or 2 cps), a plus or minus half count per second shift in the background 
measurement changes the Poisson distribution significantly. Therefore, the round-off error needs to 
be controlled to limit its effect. Using normal floating point arithmetic reduces round-off error to well 
below counting statistical error. Figure 7 demonstrates the problem of round-off error. In this case, a 
half of a count per second round-off changes the false alarm rate by an order of magnitude. 
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Fig. 5.  Flowchart for calculating the alarm threshold. 
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Fig. 6.  A plot of the FAP vs threshold for five backgrounds.  
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Fig. 7.  Three background histograms (on two scales) with means of 1, 1.5, 

and 2. These plots show the importance of not rounding the background off to the 
nearest integer when the count rates are low. 
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2.  MAXIMIZING THE FIGURE OF MERIT AS A FUNCTION OF DECISION TIME 
 

Gross counting is an excellent method to measure the smallest possible change in a quantity with 
a controlled false alarm rate. But it is important to measure the change in the quantity of greatest 
concern. The detector’s solid angle with respect to the source changes with time as the vehicle moves 
past the detector. To minimize the statistical error, one should count for as long as possible. But 
counting when the source is not present averages the source strength with the background. This 
section shows how to maximize the signal strength against the standard deviation of the background. 
The figure-of-merit (sometimes called the signal-to-noise ratio) is shown in Eq. (15).  
 

 
NF
B

=  (15) 

 
F is the figure-of merit. N is the total net counts generated in the detector by the source during the 

decision time. B is the total count rate generated by the background during the decision time.  
In Fig. 8 the left plot shows a schematic of a vehicle passing through an RPM, and the right plot 

shows the expected signal and the background count rate as a function of time. To calculate the figure 
of merit as a function of the decision time, we need to integrate the expected net counts and the 
expected background as a function of the decision time. We will begin with the net counts, N, from a 
point source as a function of position. R is the distance of closest approach; x is the source position on 
the centerline of the portal. Velocity of the source isυ , and the time is t. The quantity, (N0/R2), is the 
count rate generated by a stationary source at the center of the RPM. N0 is a function of source 
activity, source spectrum, detector area, and detector efficiency, etc. If measured for a particular 
source and RPM, N0, will be a constant. For a particular RPM spacing, N0/R2 will also be constant. 

 

 
Fig. 8.  Left, the motion of a point source; right, the expected count rate. 
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The net counts, N, as a function of position, x, is expressed in Eq. (16).*
 

 0
2( ) NN x 2R x

=
+

 (16) 

 
The net counts as a function of time are given by Eq. (17). 
 

 0
2( )

( )
NN t 2R tυ

=
+ ⋅

 (17) 

 
The net counts as a function of decision time,Τ , centered on the expected peak count rate, can be 

determined from the following integral. In the next section, we will discuss how to center the decision 
time on the peak. But for now we will concentrate on how long the decision time should be. 
 

 0
2 2

2

2

( )
( )

NN
R tυ

t

Τ

Τ−

Τ =
+ ⋅∫ ∂  (18) 

 
which reduces to 

 0
22

2

2

0

2 1( ) NN
Rt

υ
υ

t

Τ

Τ =
⎛ ⎞+ ⎜ ⎟
⎝ ⎠

∫ ∂  (19) 

 
In general, it is true that 
 

 2 2

1 arctanx x
x a a a
∂

=
+∫  (20) 

 
Substituting Eq. (20) into Eq. (19) results in 
 

 [ ]0
2
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2
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υ υ

υ
⎡ ⎤⎛ ⎞Τ⎛ ⎞ ⎡ ⎤Τ = ⋅ −⎢⎜ ⎟⎜ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎝ ⎠⎣ ⎦

⎥⎟  (21) 

 

 02( ) arctan
2
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R R

υ
υ

⋅Τ⎡ ⎤Τ = ⎢ ⎥⎣ ⎦
 (22) 

 
If Bμ is the background count rate (taken before the arrival of the vehicle), the total background 

counts as a function of decision time can be approximated as: 
 

                                                      
*We recognize that this is a simplification of the problem; in reality, this is a three-dimensional problem. The value of 

R is function of the position within the detector. The change in R is not necessarily trivial in large detectors. But the 
efficiency of the detector is also a function of the position, and it is not generally known well. If we do not make this 
approximation, the complexity of the calculation escalates with diminishing returns.  
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Combining the equations for the net counts and the background counts into the figure of merit 
yields: 
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For example, Fig. 9 is a plot of the figure of merit as a function of Τ  given, R = 2 m and υ = 

2 m/s. 
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Fig. 9.  Figure of merit of an arbitrary point source traveling as a function of count 

time R = 2 m; υ = 2 m/s. 
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To find the decision time that optimizes the figure of merit, we can find the root of the derivative of 
figure of merit equation. 
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Solved numerically yields one solution: 
 
 1.392X =  (35) 
 

 2.784
R

υ ⋅Τ
=  (36) 

 
The important feature to note is that the decision time that maximizes the figure of merit depends 

on the distance of closest approach and vehicle speed, but not on source strength, detector efficiency, 
or the background count rate. It is also important to note that this calculation assumes a clear field of 
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view from the detector to the source. These assumptions are generally good for neutron sources, but 
do not necessarily apply to gamma sources.*  

This relationship between detector and distance may also apply for detectors besides RPMs.†

 
2.1 SAMPLING TIME AND THE RUNNING AVERAGE 
 

The calculation of the figure-of-merit as a function of the decision time assumed that the decision 
time was exactly centered on the peak of the expected net counts. To ensure that this happens, the 
count rate is sampled at a much faster rate and than the decision time used for the alarm decision and 
is then assembled by a running sum. The formula for computing the sum is shown in Eq. (37), 
where is the decision time, t is the time of a single sample, and sΤ i is the number of counts in a single 
sample. Figure 10 shows graphically what is happening. 
 

 
1

0

t

i i
k

S s
Τ −

k+
=

= ∑   . (37) 

 
 

 
Fig. 10.  Five point running sum. 

 
 

On average, the counting window will be misaligned against the peak by half of an individual 
sample time. Therefore, it is important that the sampling intervals be small compared to the decision 
time.  

                                                      
*In particular, sensitivity to gamma sources is limited by the presence of NORM and not the sensitivity of the detector. 

Secondly, it is much more likely that a gamma source will be shielded for part of its approach. 
†For example, the same geometry would apply if a hand-held search instrument was moved past a source at a constant 

speed and distance of closest approach.  
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Use of the running sum is a form of digital filtering. The optimization of the figure-of-merit as a 
function of decision time is analogous to setting the bandwidth of the digital filter.*  Figure 11 shows 
the effect of using the running sum on a set of sample data. 

 

 
Fig. 11.  A simulated Poisson background (blue) and a moving source (red, 5 m/s with a pillar spacing 

of 2.3 m). The plot on the left is 100-ms data before filtering. The plot on the right is the identical data set with 
an optimized block filter.  
 
 

                                                      
*Electrical engineers familiar with digital signal processing (DSP) will be used to a very different method for 

determining the length of the running sum. Because this is not a repeating waveform, the Fourier analysis is more complex 
than the integral over time and yields essentially the same result. The derivation will therefore be left for of those who are so 
inclined.  

As a word of caution we would mention that most DSP techniques assume that the only significant uncertainty is the 
quantization error of the sampling time. RPM data will have significant uncertainty due to counting statistics as well. And 
the uncertainty due to counting statistics will increase as the sample time is reduced. This is why sampling frequencies over 
10 Hz are seldom employed in RPMs.  
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3.  DETERMINATION OF THE MINIMUM DETECTABLE LIMIT (MDL) AS A 
FUNCTION OF RPM PARAMETERS 

 
Operating an RPM at a constant false alarm means the sensitivity of the RPM is a function of 

background. Here we present a calculation for the MDL. 
If the source plus background exceeds the threshold, then an alarm is sounded.  

 
 BN Kμ+ >  (38) 
 
N is the expected net counts, calculated from Eq. (22) [reprinted here as Eq. (39)]. 
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K is the threshold calculated by the flowchart in Fig. 5 and Eq. (12) [reprinted here as Eq. (40)]. 
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Combining Eq. (38) and Eq. (39) yields: 
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(N0/R2) is the count rate due to the presence of the source placed at its center of the RPM. N0 is a 
function of the source activity (A) in neutrons per second (not decays per second), detector area (D), 
and the detector’s intrinsic efficiency for that source (ηs). The source activity is surface activity; that 
is, source activity does not include either shielding or multiplications effects. Equation (42) describes 
N0 using a far field approximation. This may not be entirely accurate depending on the RPM 
dimensions, but N0 will always be proportional to the source activity. We call the proportionality 
constant, Hs, the detector efficiency. Because it is difficult to calculate, we prefer to measure it. Hs is a 
constant given a specific combination of detector and isotope.  For example, HCf and HAmBe will not be 
equal.  This is because the neutron energy distributions of the sources are different and ηs will be a 
function of energy.  As a generally rule, it is a good approximation to use HCf for any fission source.    
Note that Hs is in units of m–2. 
 

 0 4
s

s

D AN A η
π
⋅⎛ ⎞= ⋅ ≡⎜ ⎟ Η⎝ ⎠

  (42) 

 

 
2 arctan

2 B
s

A K
R R

υ μ
υ

⋅Τ⎡ ⎤ + >⎢ ⎥⋅ ⋅Η ⎣ ⎦
 (43) 

 
Solving Eq. (43) for the source activity yields an expression for the minimum activity required to 

generate an alarm, which is the MDL, denoted just as M in Eq. (45). It is important to remember that 
the MDL is defined as the source that has a 50% probability of alarming in a drive through. 
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The final value for the MDL is not in an elegant form. This is primarily because the value of K 

must be calculated via a numeric integral with each background and FAP (but this is done anyway as 
part of the alarm algorithm). Although this is not simple, most algorithms in use do not present a 
method for calculating the MDL at all.  

The sample set of performance curves are shown in Fig. 12. 
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Fig. 12.  The MDL of a sample detector as a function of false alarm probability and 

background. 
 

A second feature of Eq. (45) is that it can be used to estimate the surface activity of a given 
source seen by the portal. This can be done in the time in which it takes to generate the alarm. In 
order to do this, all we need to do is substitute the measured count rate, Z, for the threshold, K.  
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This estimate of the source activity assumes that the source passes through the middle of the 
portal and that there are no shielding or moderator effects and therefore is not necessarily accurate. 
But the source activity estimate will give the inspector a strong indicator as to whether or not the 
alarm is noise-induced and whether or not a health hazard exists. 

As an alternative, one could calculate the FAP associated with respect to a specific event. By 
substituting Z for K in Eq. (12) we get Eq. (47). 
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When the FAP associated with a particular event is very small compared to the FAP associated with 
the alarm threshold, it is a strong indicator that the source is real.  
 
 

19 



 
 
 

 



4.  CONCLUSIONS 
 

Use of this algorithm will result in an optimized sensitivity while maintaining a controlled false 
alarm rate. Neither the gross counting algorithm nor the digital filtering method is a groundbreaking 
technique. But neither is employed consistently by commercial RPM vendors.  

The new features of this algorithm are the ability to calculate the MDL of the monitor given its 
parameter settings and the ability to estimate the size of the passing source. We feel that these 
features are very important because they help inspection personnel evaluate the size of sources that 
they encounter.  
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5.  FUTURE WORK 
 

One possible method of improving this technique is to use a shaped filter instead of a box filter. 
The filter could be shaped to match the shape of the moving point source. This would require very 
good speed control/measurement but could result in a superior signal-to-noise ratio. We did not 
explore this technique because the filtered background would become non-Poisson, which would 
make the effect on the false alarm rate extremely difficult to calculate. 

A second path could be to optimize the filter to maximize the signal-to-K [Eq. (12)] instead of 
against the signal to standard deviation of the background. This is in fact, a more proper filter, but 
once again, the mathematics [differentiating to find the maxima of the numerical integral of Eq. (12)] 
gets out of control very quickly.  

A third possibility would be to replace the two-dimensional figure of merit optimization with a 
more detailed calculation.  

Given more time, any of these options could have been explored. 
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Appendix A.  CONTRASTED WITH SPRT 
 

A common counterargument to this GCPS (Gross Counting with Poisson Statistics) will be the 
suggestion to use the SPRT (Sequential Probability Ratio Test). The principle weight behind this 
comes from the fact that, historically, most applications of SPRT have handled Poisson statistics 
correctly, whereas many applications of gross counting have not. SPRT has many disadvantages, not 
the least of which is the fact that it is conceptually more complex, which leads it to be misunderstood 
and misapplied. This appendix is included to help the reader understand the differences between the 
algorithms.  
 
A.1 WHAT IS SPRT? 
 

SPRT is a generic algorithm designed to determine the most likely distribution from which a 
sample was taken, given two possible alternatives in the least number of trials. It is often used in 
applications that have nothing to do with radiation monitoring, such as quality control in industry. 

Given two known distributions, PA and PB, one can perform a SPRT on a single sample, s. This in 
fact is just the PRT (Probability Ratio Test). The decision tree looks like this. 
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The thresholds are defined as α and β. When it is 10α times more likely that the sample came from 
distribution A, we accept A as the correct distribution. When it is 10β times more likely that the 
sample came from distribution B, we accept B as the correct distribution. Otherwise, we make no 
decision.  

SPRT is PRT performed on successive samples until a decision is made. The probability ratio is 
calculated for each sample as it is taken and then multiplied by the product of all previous probability 
ratios. Then, the inequality is tested. If a decision between PA and PB is made, stop. Otherwise, take 
another sample. With n as the individual sample number and N as the total number of samples in the 
decision, the decision tree looks like this. 
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These inequalities are often expressed in terms of logarithms. 
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Although not obvious from Eq. (A.3), this step will often simplify the necessary calculation; as it will 
in our example of neutron detection. 
 
A.2 SPRT APPLIED TO RADIATION MONITORING 
 

The first step in applying SPRT to radiation monitoring is to select the two alternative 
distributions from which we would like it to make the selection, a background distribution and an 
alarm distribution. Selection of the background distribution is straightforward. First the mean 
background, μB, is measured over a time period which is long compared to the sample measurement 
time. This ensures that the uncertainty of the mean is a negligible concern. The background 
distribution is then described by the Poisson distribution.  
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The selection of the alarm distribution is not necessarily clear. It should also be a Poisson 

distribution, and it should have a larger mean. But how large of a source should be required in order 
to alarm? How much overlap should there be between the background and alarm distributions? The 
selection of the alarm distribution is the first point in SPRT that is generally glossed over and is not 
clearly defined. This decision in the end is largely arbitrary. In that tradition we will define the alarm 
distribution as: 
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Figure A.1 shows an example of a background and alarm distribution. 
Calculating the probability ratio for the neutron counting statistics yields:  
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Fig. A.1.  Sample Poisson distributions. In this example, the mean 

background is 1 count/second. The mean of the alarm distribution is 8 counts 
per second. 

 
 
This greatly simplifies to 
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Expanding this to sequential decisions yields: 
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Taking the log* of both sides: 
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*Many actual applications of SPRT will use the natural log here. A natural log makes the calculation of DN easier, but 
the calculation of α and β in the test condition will then be more difficult [see Eq. (A.3)]. Either method will result in a 
simplified calculation to perform during the sample measurement.  
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Everything that can be calculated before the arrival of the subject of the screening can be reduced 

to two constants. 
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Placing this ratio into the logarithmic decision tree, Eq. (A.3), yields: 
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It is useful to divide both sides by C1. This is because the factors, 2
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constants that can be calculated once the background is measured.  kn and n are the only terms that are 
measured during the passage of a vehicle. 
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A.3 ADVANTAGES OF SPRT 
 

SPRT has two major advantages over gross counting. The variable count time means that the 
decision to alarm on a large source is made in very little time, possibly one or two samples. At the 
same time, the SPRT maintains a high sensitivity to small sources by taking many samples in order to 
reach a decision. This is ideal for an application like a wait-in contamination monitor. In a wait-in 
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contamination monitor, the subject of measurement can be held as long as necessary. This is not true 
in portal monitoring. The subject of RPM comes and goes at its own speed. Because the position of 
the source is a function of time, the efficiency of the RPM is a function of time as well; SPRT 
algorithm chooses a count time assuming that the efficiency of the detector is constant. Therefore, the 
variable count time is not an advantage in the RPM application.  

Secondly, the alarm condition requires few computer operations to calculate. Because so many 
terms in Eq. (A.14) are constants, there is very little calculation during the actual measurement. If the 
ratio term, DN, is accumulated as a sum, one must perform an addition, a subtraction and then the 
comparison during each measurement interval. This is shown in Eqs. (A.15) to (A.18).  
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The calculation has been extremely simplified. The time-consuming factorial and numerical 

integral of the gross counting method have been eliminated and replaced with three to five operations 
per sample. This is the point of using the logarithms and ratios that was alluded to in the beginning. In 
the 1970s, this was a fiendishly clever means of saving processing power. In a world where GHz 
CPUs are cheap, this advantage is archaic. 
 
A.4 DISADVANTAGES OF SPRT 
 

There are five principle problems with the use of SPRT, some of which have been mentioned 
above but are summarized again here. 

First of all, the count time does not optimize the signal-to-noise ratio. The count time is a function 
of the random fluctuations of the measurement and not based on the motion of the source. Secondly, 
the count time is not necessarily centered on the peak of the source. The combination of these two 
factors means that the signal-to-noise ratio is seldom ideal. Another way to describe this is to say that 
the signal from the source is averaged with a variable quantity of the background. 

Thirdly, the exact sensitivity is extremely difficult to calculate. Any algorithm which is designed 
to generate a constant false alarm rate will have a sensitivity that varies with time because the 
background varies as a function of time. But in the case of SPRT the entire history of the data used in 
the algorithm is necessary to calculate the sensitivity at any point in time. The starting point of any 
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one decision time is dependent on the number of intervals that all of the previous decisions took to 
reach conclusions.*

The fourth point is that SPRT is an algorithm that determines which distribution a given sample 
originated. The choice of the background distribution is straightforward, but the choice of the alarm 
distribution is largely arbitrary. The FAP given by SPRT is the probability that the background 
fluctuates in such a way as to mimic a specific arbitrary source. This is subtly different than the 
definition of FAP that is generally accepted.  

The final point is SPRT is not well understood, even by people who are experts in the field of 
radiation monitoring. This often causes SPRT to be misapplied. Even when correctly applied, most 
operators do not have an understanding of how a change in the parameters will affect the performance 
of the RPM. 

 
 
 

                                                      
*In comparison, the gross counting algorithm proposed in the main body of this paper only requires knowledge of the 

previous background and the FAP in order to determine the sensitivity. 
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Appendix B.  GAMMA DETECTION 
 
B.1 USING POISSON STATISTICS IN GAMMA DETECTION 

 
It is quite possible to use this Poisson gross counting algorithm with a gamma detector.  Most 

RPMs use a Gaussian gross counting algorithm with their gamma detectors.  As mentioned in the 
main body of the report, the Gaussian distribution is a very good approximation to the Poisson 
distribution is situations in which the count rate is large, which is true in most all RPM gamma 
detectors.  But in other applications in which the expected count rate is very low, using the Poisson 
gross counting algorithm may be more appropriate.  For example, a one cubic centimeter CZT 
detector in a handheld search instrument.  When applying the Poisson gross counting algorithm to 
gamma detectors there are a couple of points to keep in mind. 

Gamma-rays are much more susceptible to opportunistic shielding.  Neutron sources can be 
shielded intentionally with special materials (e.g. borated polyethylene), but are generally not 
shielded by the presence of the vehicle conveying it.  If someone makes an effort to shield neutron 
sources, it is reasonable to assume that it will be shielded from all directions.  But gamma-rays are 
shielded by any dense material.  A gamma source placed behind the engine block of a truck will be 
strongly shielded during the vehicles approach to the portal, but weakly shielded after the truck passes 
through.  The practical effect of this phenomenon is that the profile will be narrower than depicted in 
Fig. 8, which in turn will make the ideal decision time shorter.  One can construct any number of 
scenarios which possible.  But without knowing the frequency of occurrence of these scenarios, it is 
difficult to set the count time exactly.  In the field, ideal decision times tend to be less than or equal to 
those predicted in the laboratory.  In the end, it is a judgment call on the part of those who are 
installing the RPM.  

Using Eq. (46) to predict the size of a gamma source will be less accurate in general for several 
reasons.  First of all, the opportunistic shielding mentioned above will attenuate the peak.  Secondly, 
the intrinsic efficiency, η, of the detector will vary far more between gamma sources than it will 
between neutron sources.  And finally, the gamma channel of the RPM is significantly affected by 
baseline suppression caused by the vehicle shielding the detector from the background.    

 
B.2 CALCULATING THE MDL USING GAUSSIAN GROSS COUNTING ALGORITHM 
 

It is also possible to use the same method to calculate the MDL of a RPM which uses the 
Gaussian gross counting algorithm.  The alarm threshold of the Gaussian gross counting algorithm 
looks like this. 

 
 N k B>   . (B.1) 

 
N is the net counts during the decision time.  B is the background rate for the decision time.  The 

threshold setting, k, is the number of standard deviations above background necessary to alarm.  If B0 
is the background count rate in counts per second and T is the decision time, then B is simply 

 
 0B B≡ ⋅Τ   . (B.2) 

 
The derivation of the Gaussian MDL follows the Poisson MDL exactly with the single exception of 
the substitution of alarm conditions.  The end result is shown in Eq. (B.3).   
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It is important to remember that this value for the MDL does not include any corrections for 
background suppression or opportunistic shielding.  
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