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Motivation
Weapons of Mass Destruction are the Greatest Terrorism Threat to the World
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Motivation
A Multifaceted Solution is Required

• Intelligence Gathering

• International Cooperation

• Law Enforcement (local, state, federal)

• New and Advanced Detection Technologies
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Motivation
Screening for HEU at Potential Points of Entry
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Background
Research & Development Needs are Mission Driven

PortablePortable

FixedFixed
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Monte Carlo Modeling

• Simulate the neutron and photon flux in nuclear 
and nonnuclear materials

• Simulate detector response

• Analyze data from existing measurement 
systems

• Plan novel measurement systems
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Vertical Movement

Angular Movement

Source

Detectors

Application of Monte Carlo Modeling
Imaging for Secondary Inspection: Tomography
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Application of Monte Carlo Modeling 
3-D Images Built from Many Horizontal Slices: Cf-252 
Gamma and Neutron Measurements

Gamma Image Neutron Image
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Depleted uranium casting and water 
bottle in AT400 container, measured 
with 14-MeV neutrons

Filtered back-projection of 
12 projections (normalized to empty 
AT400 container)

Streaking occurs due to limited 
number of projections and 
detectors

Thick container wall is a 
neutron shield

Application of Monte Carlo Modeling 
Imaging for Secondary Inspection: Low-Resolution 
Tomographic Images
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Active Interrogation
• The most difficult problem is the detection of 

concealed uranium
− The low spontaneous fission rate of uranium makes 

passive interrogation very difficult

• Objectives:
− Develop a system based on active interrogation with 

coincidence detection to aid in the identification and 
attribution of diverted fissile nuclear material

− Model and analyze the conceptual system with new 
Monte Carlo codes to determine feasibility and 
limitations
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Active Interrogation Schematic 
Diagram

External source
(neutron or gamma)

Container or package

Detectors
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Active Interrogation Sources 

• Active interrogation sources are typically 
high-energy neutrons or photons

• There are trade-offs between these two particle 
types
− Neutrons have higher penetrability in high-Z materials
− Photons have higher penetrability in low-Z materials

• Low-Z materials are commonly used in industrial 
packaging: photons were selected for this 
application
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Background
Correlation Measurements

• Particles are detected within a time-delay 
window between two detectors

• Correlated particles provide a reliable indication 
of fission occurrence 

• Particles from other reactions arrive randomly 
and are largely uncorrelated
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Background
Monte Carlo Simulations

• Used to evaluate new measurement techniques: 
provide useful insights on what works in different 
scenarios

• Need codes that reliably simulate the physics of 
photonuclear interactions on an event-by-event 
basis

• Data libraries of large codes such as MCNP lack 
basic data 
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Main Features of Modified MCNP-X 
and MCNP-PoliMi codes

Modifications can be grouped into two subsets:

• Physics of particle transport

• Physics of detection
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Physics of Particle Transport
Overview
1. Neutron interaction and secondary neutron and 

gamma production are correctly linked

2. Photon interaction and secondary neutron and 
gamma production are correctly linked

3. Neutron and gamma fission multiplicity distributions 
have been implemented

Correct simulation of the neutron and photon field in a 
multiplying (or nonmultiplying) medium on an 
event-by-event basis: this is a unique capability of 
our code system
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Physics of Particle Transport
Multiplicity of Neutrons and Gamma Rays from Fission
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Physics of Detection
MCNP-PoliMi Collision Output File

Plutonium Sample

Detectors
n20n8

γ43

1 2



21

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Post-Processing Code for 
MCNP-PoliMi Collision Output File
Scintillation Detectors
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Neutron Pulse Height Analysis

BC-501A

Am-Be

Neutron sources:
Cf-252 (~60e3 n/s)
Am-Be (~10e5 n/s)
Am-Li

Shielding:
1-inch Pb block
1-inch PE block

Source Distance:
50 cm

Data structure:
200 ns/pulse
~4500 pulses/
acquisition
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Simulating Neutron Pulse Height 
Distributions
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• Isotropic sources placed 50 cm from BC-501A
• Attenuation in the detector
• Neutron pulse height distributions calculated 
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Pulse-Height Distributions–Cf-252

No shield Pb shield

• Very good agreement between the measurement and PoliMi
• Pb shielding results in more neutron pulses per acquisition, which

improves statistics of neutron data
• Detection threshold of 0.094 MeVee
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Pulse-Height Distributions–Am-Be

• Combination of PE and Pb gives more low-energy counts

PE+Pb shieldPE shield
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Source Identification by Analysis of 
Neutron Pulse-Height Distributions
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Comparison of Measurement and 
MCNP-PoliMi Simulation: Time-of-Flight in Air
Plastic scintillator 10.1 × 10.1 × 10.1 cm
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Comparison of Measurement and 
MCNP-PoliMi Simulation: Time-of-Flight in Air
Plastic scintillator 2.54 × 2.54 × 15.0 cm

measurement
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Objectives of Monte Carlo Studies

• Understand the basic physics interactions 
occurring in the target and the detectors

• Plan experiments to be performed with a variety 
of detectors in a variety of scenarios
1. Gamma-ray measurements using gamma detectors
2. Neutron and gamma-ray correlation and multiplicity 

measurements using liquid and plastic scintillators

• Analyze the effect of accidental coincidences in 
correlation measurements
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MCNP-X/MCNP-PoliMi Code 
System
• Simulate photonuclear events and their progeny 

in fissile assembly and cargo material: 
− (γ, fission), (γ, n), and (γ, 2n)

• Simulate the flux of neutrons and photons 
generated in the target and in the surroundings 

• Simulate detector response to fast neutrons and 
photons

• Compute correlation and multiplicity 
measurements among detectors
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Idaho Accelerator Center
Experimental Setup
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MCNP-PoliMi Model: Target Close-Up
Lead, depleted uranium (DU), and highly enriched 
uranium (HEU) targets modeled with realistic densities 
and fixed geometry

z

100 cm

45 deg

2.0 cm

12.7 cm

Bremsstrahlung 
Source, 15 MeV
1.9 cm radius

Target

Vacuum

Concrete Wall
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MCNP-PoliMi 3-D Distribution of 
Photonuclear Events in the Lead Target
15 MeV endpoint energy Bremsstrahlung spectrum

• Shows positions of the 
photonuclear interactions 
within the lead target

• All photonuclear events 
are confined to the region 
directly hit by the beam: 
gamma Compton 
scatterings do not play a 
role

Lead target (gamma, n)

Bremsstrahlung 
gammas

Note: Not to scale; the target disk is actually larger

Lead target
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MCNP-PoliMi 3-D Distribution of 
Photonuclear Events in the DU Target 
15 MeV endpoint energy Bremsstrahlung spectrum

• Shows positions of the 
photonuclear interactions 
within the DU target

• Almost all photonuclear 
events are confined to the 
region directly hit by the 
beam: gamma Compton 
scatterings do not play a 
large role

DU target

Bremsstrahlung 
gammas

(gamma, fission)
(gamma, n)

(gamma, 2n)

Note: Not to scale; the target disk is actually larger
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MCNP-PoliMi 3-D Distribution of 
Photonuclear Events in the DU Target: 
Close-Up on Region Hit by the Beam
15 MeV endpoint energy Bremsstrahlung spectrum

• Shows positions of the 
three primary 
photonuclear interactions 
within the target

• Top portion of the target 
shows higher density of 
photonuclear events

Bremsstrahlung 
gammas

(gamma, fission)
(gamma, n)
(gamma, 2n)
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MCNP-PoliMi 3-D Distribution of 
Interactions in DU Target: Secondary, 
Neutron-Induced Fissions
15 MeV endpoint energy Bremsstrahlung spectrum

• Shows positions of the 
three primary 
photonuclear interactions 
within the target

• Shows positions of the 
secondary, 
neutron-induced fissions 
in the DU (not many)

• DU composition: 
99.8 wt% U-238 
0.2 wt% U-235

(gamma, fission)
(gamma, n)
(gamma, 2n)
(n, fission)

Bremsstrahlung 
gammas
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MCNP-PoliMi 3-D Distribution of Interactions in 
HEU Target: Secondary, Neutron-Induced Fissions
15 MeV endpoint energy Bremsstrahlung spectrum

• Shows positions of the 
three primary 
photonuclear interactions 
within the target

• Shows positions of the 
secondary, 
neutron-induced fissions 
in the HEU (many more 
than the DU) 

• HEU composition: 
92 wt% U-235 
8 wt% U-238

(gamma, fission)
(gamma, n)
(gamma, 2n)
(n, fission)

Bremsstrahlung 
gammas
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MCNP-X/MCNP-PoliMi Geometry 

105.92 cm

100 cm
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Input Photon Spectrum
MCNP-X Model Results from IAC

• Energy distribution of 
Bremsstrahlung source 
was obtained by IAC 
via an MCNP-X model

• These results were 
used as the input for 
our simulations 
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Depleted uranium target Lead target

• Shows photon flux beam attenuation from target (more for depleted uranium 
than lead)

• Does not include secondary photons from photonuclear events
• Shadow behind the detector (note: it begins at the lead shield) 
• Self-attenuation along the target axis

MCNP-X Photon Flux in Target and Room
15 MeV endpoint energy Bremsstrahlung spectrum
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• Shows photoneutron production in the target (red)
• Neutron flux in the room (more neutrons from the depleted uranium target 

than the lead target)
• Self-attenuation along the target axis

Depleted Uranium target Lead target

MCNP-X Neutron Flux in Target and Room
15 MeV endpoint energy Bremsstrahlung spectrum
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• Neutron flux from photonuclear 
events generated in the DU 
sample

• Total flux and separate 
contributions are shown

• Shows that (g, fission) neutron 
spectrum is richer in high-energy 
neutrons, but the shape of the 
spectrum is very similar to (g, n) 
and (g, 2n) neutrons

MCNP-PoliMi Neutron Flux Across the DU 
Sample’s Top Surface
15 MeV endpoint energy Bremsstrahlung spectrum
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Measurement Data from IAC
15-MeV Bremsstrahlung Input Spectrum
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Data Post-Processing
Necessary Assumptions

• Detection threshold is a characteristic of the 
particular system and is determined through 
measurement
−We were not provided this information, so a value of 

0.006 MeVee was assumed

• MCNP-PoliMi results and the experimental data 
were normalized for direct comparison
− Each set of data was normalized to the integral of the 

neutron region
− The photon peak should be neglected in the absence 

of a “start” detector for this setup  
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MCNP-PoliMi Results
Comparison to IAC Data for 1.11-m Case
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MCNP-PoliMi Results
Comparison to IAC Data for 2.01-m Case
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MCNP-PoliMi Results
Separate Reaction Contributions
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Analysis of Simulation Results
• There is a small (~10 ns) time delay in the leading 

edge of the correlation function
− There could still be some disagreement in exact system 

geometry

• Further discrepancy at later times can be attributed 
to scattering sources not represented by our model 
such as the table and floor
− Detection at later times is limited by the detector 

threshold, which also required some assumptions here 

• Additional information needed
− Accelerator pulse time width (not modeled in the 

simulations)
− Threshold of the detectors
− Timing of detector photomultiplier tubes
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New Experimental Setup
Collimator Model
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Depleted Uranium Sample
Correlated Counts per nC
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Lead Sample
Correlated Counts per nC
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Detector-Detector Time Correlation 
Distribution of Particles
Real Coincidences: HEU, DU, and Pb

• Shows the distribution of real 
coincidences in the two 
detectors for targets composed 
of HEU, DU, and Pb

• Note, the real coincidences in 
the HEU are approximately a 
factor of 10 greater than in the 
DU

• Accidental coincidences are 
calculated separately
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Distribution of Accidental 
Coincidences: HEU Target  

• Real coincidences are more 
than the HEU, but accidental 
coincidences go up, too

• Only the case with 
N=5e8 pulses each of 
M=200 photons shows a 
distribution of accidentals that 
is less than the real 
coincidences

• At a rep rate of 120 Hz, the 
measurement would last 
48 days

• At a rep rate of 100 kHz, the 
measurement would last 
~80 mins
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Lead (g, n) Reaction Cross-Sections
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Advantages of a Monoenergetic Source
HEU Target
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Conclusions
• Modified MCNP-X/MCNP-PoliMi codes are 

unique tools that are instrumental in the 
simulation of scenarios that are of interest to 
homeland security and nuclear nonproliferation
− Can correctly simulate the neutron and photon field 

generated in active interrogation using neutrons 
and photons 

− Not only average quantities, such as fluxes, but 
also higher order statistics: correlations, 
multiplicities, etc.

• A specialized post-processing code is used to 
accurately model detector response 

• Comparisons of experimental data and code 
results show good agreement
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Future Work

• Evaluate and implement data for delayed 
secondary gamma rays from photofission events 
to use with MCNP-X/MCNP-PoliMi

• Evaluate the feasibility of neutron and 
gamma-ray multiplicity measurements with 
multiple detectors (up to 8)  
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Future Work (cont.) 

• Combine the modified MCNP-X and 
MCNP-PoliMi codes and modify the new 
MCNP-X version
− Parallel version of modified MCNP-X 

• Extend and validate the post-processing code for  
more detector types: germanium, capture-gated 
organic scintillators, helium-3, etc.
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