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ABSTRACT

The rapid growth and increasing sophistication of airborne surveillance technology have spurred intense
research efforts in the development and implementation of tracking algorithms capable of processing a large
number of targets using multi-sensor data. In this paper, a novel tracking algorithm, the NOGA tracker,
is presented and compared with the more conventional Time-Weighted Backvalues Least Squares (TWBLS)
estimator for accuracy (numerical and phenomenological), ease of implementation, and time performance.
The NOGA tracker combines model predictions and sensor measurements to produce best estimates for
quantities of interest. The state estimator model used for NOGA is a simple second order auto-regression
which is combined with an uncertainty reduction scheme involving nonlinear Lagrange optimization process
in which the inverse of a global covariance matrix is used as the natural metric for the Bayesian inference that
underlies the combining process. The NOGA tracker explicitly incorporates sensor and model uncertainties
in the estimation process, and uses model sensitivities to propagate the associated covariance matrices
accurately and in a systematic way.
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1. INTRODUCTION

Missile defense test and evaluation platforms present very demanding technical requirements for precise
visible and infrared signature data collection along with associated tracking in a densely cluttered multi-
sensor multi-target environment. The Kalman filter/extended Kalman filter trackers, though optimal in
the linear minimum mean square error (LMMSE) sense,1 may not perform well for missile tracking appli-
cations since the targets are usually maneuvering. It also may not be possible to formulate the state and
measurement vector equations in the form for Kalman filter implementation if the approximate forms of the
target trajectories are not known. These facts motivated the authors of this paper to explore a multi-sensor
multi-target algorithm based on time-weighted least squares back projection. Linear least squares algorithms
have been applied successfully to problems in defense and missile flight analysis where rapid track hand over
to the interceptor is mandatory.2 Although based on previously published works, the Time-Weighted Back-
values Least Squares (TWBLS) algorithm developed and discussed in this paper is original in its treatment
of uncertainty calculation, incorporation of sensor data fusion, and track fusion schemes. A novel tracking
algorithm, the NOGA tracker, is presented in parallel to the TWBLS algorithm. The state estimator model
used for NOGA is a simple second order auto-regression which is combined with an uncertainty reduction
scheme involving a fast, nonlinear Lagrange optimization process in which the inverse of a global covariance
matrix is used as the natural metric for the Bayesian inference that underlies the combining process.3 The
NOGA tracker explicitly incorporates sensor and model uncertainties in the estimation process and uses
model sensitivities to propagate the associated covariance matrices accurately and in a systematic way. The
next section outlines the system architecture assumed in this paper, along with sensor models. Section 3
presents the TWBLS algorithm including mathematical formulation, underlying mathematical assumptions,
sensor data fusion, and track fusion implementation. Section 4 presents the NOGA tracker followed by
description of ORNL developed uncertainty reduction method. The accuracy and time performance of the
two algorithms are compared with the aid of numerical results. The paper concludes by outlining directions
for future work with respect to improved algorithm accuracy and time performance. The issues of multi-
target multi-sensor tracking in a cluttered environment and object-to-track association optimization are also
addressed.

2. SYSTEM ARCHITECTURE

Modern missile defense sensors and interceptors employ the latest staring focal plane technology. For
these highly demanding applications, it is customary to utilize multi-sensor platforms. Airborne surveillance
platforms may employ dissimilar sensor groups for diverse sensor tasking. The system architecture considered
in this paper mimics such a prototype airborne platform consisting of six staring sensors that are further
differentiated into two separate groups. The three acquisition category sensors are less precise with larger
integrated fields of view (IFOV ) to provide broad area coverage of the surveillance region. The three
tracking sensors have smaller IFOV and are suitable for more accurate target tracking. Three different
sensor architectures are considered in this paper. First, a baseline single-target-single-sensor benchmark
architecture is examined, where random observations derived from an analytical model are reported with an
expectation rate of 33 Hz. Target azimuth and elevation estimates as functions of time are computed for both
TWBLS and NOGA. The second architecture is a common multi-sensor architecture implemented in many
airborne surveillance systems. The sensors are asynchronous and provide data to the estimators in a random
order as show in Fig. 1A. Sensor data fusion is performed by a weighting factor (either linear or exponential)
that grants more weight to most recent data and data from the more accurate tracking sensors with smaller
IFOV . This preferential treatment of data facilitates estimation accuracy even though measurement data
are accepted indiscriminately from sensors reporting in random order with varying degrees of measurement
accuracy. The third architecture is more advanced and incorporates a track fusion node where the trackfiles
received from synchronous acquisition and tracking sub-groups are fused in one global trackfile as shown
in Fig. 1B. The track fusion technique is based on the weighted covariance fusion model.4, 5 The estimation
uncertainties associated with the individual trackfiles may be further reduced after fusion hence providing



Figure 1: Multi-sensor fusion and track fusion architectures consisting of six asynchronous sensors (A) and six

synchronous sensors and a fusion node implementing state vector fusion (B).

improved tracking accuracy. The use of multiple sensors for target tracking can potentially provide better
performance than a single sensor due to better visibility and complementary information. Theoretically the
best tracking performance is achieved by fusing the measurements from the sensors directly.6 However, due
to communication or organizational constraints, many real-world systems have a hierarchical structure where
the fusion system has no direct access to the sensor data. The sensor data are processed only locally to form
sensor tracks. Track fusion is then needed to associate the sensor tracks and generate an improved target
state estimate. As shown in Fig. 1B, single sensor track processors estimate single sensor tracks based on the
TWBLS algorithm. Tracks from different sensors are periodically (on demand) sent to a central site to be
fused. Track fusion involves two steps: association and target state estimation fusion. During association,
tracks from different sensors are correlated to test for the hypothesis that the tracks all correspond to a
single target. Given a correct association, the state estimates of the global track are obtained by fusing the
state estimates of associated sensor tracks. For simplicity, it is assumed that the six local nodes generate
tracks that relate to the same target and are derived in the same coordinate system. It is further assumed
that the system is observable. The problem of time alignment and track association are not considered in
the present work.

Sensor model and pseudo-random time sequence generation: For benchmark simulation purposes



a bounded random sighting sequence is generated with t0 = 0, tN = tN−1 + δtN , where δtN = δmin +[
ρδmax/δmin

]
δmin. Here ρ is a uniform number in

[
0, 1

]
, and δmax represents the maximum delay of a new

sighting beyond the minimum time increment δmin. In many surveillance platforms the nominal sighting
frequency is 30 Hz. This frequency can readily be achieved by proper selection of δmin and δmax.

For each sighting at tN , the sensor provides the following quantities: rn (target position such as azimuth
and elevation) and ∆rN which is the standard deviation for sensor measurement. For the benchmark NOGA
simulation, initial sensor uncertainties are constructed assuming constant relative error ∆rN = ηrn, where
η = 0.04. For the TWBLS simulations, the sensor noise is assumed to be zero mean white Gaussian with
standard deviation of 8% − 15%.

3. TIME-WEIGHTED BACKVALUES LEAST SQUARES ESTIMATOR (TWBLS)

The TWBLS algorithm can be extended to a multi-target multi-sensor framework although only a single
target architecture is presented in this paper. The algorithm performs frame-to-frame target correlation
using data from all six sensors to compile track histories with each track representing unique target. The
least squares kernel accepts a list of sequential sensor measurements and generates tracks containing position
and velocity as functions of time. The choice of coordinate frame is not relevant to the focus of this paper. It
is assumed that the tracker estimates position as azimuth and elevation. However, the discussion presented
in this paper can be readily extended to any reference frame of choice. The tracks store the temporal history
of targets. It is assumed that all the local nodes generate tracks that relate to the same target and are
derived in the same coordinate system. Issues such as track-to-track correlation, track initiation, and track
maintenance are not discussed in this work but will be reported in a future paper.

3.1. Theoretical formulation

Least-squares back projection: The goal of the weighted least squares projection algorithm is to estimate
the appropriate mathematical model to describe the functional relationship between variables x and y. Given
a set of independent variables, x1, x2, . . . xN , and a set of dependent variables y1, y2, . . . yN , the coefficients
a1, a2, . . . aM have to be determined such that

yi = a1f1(xi) + a2f2(xi) + . . . aMfM (xi). (1)

In order to employ matrix representation, vectors Y and C are defined as Y =
[
y1, y2, . . . yN

]T

and C =
[
C1, C2, . . . CM

]T

, where Y is the N dimensional vector of dependent variables and C is the M dimensional
vector of fitting coefficients. The functional matrix F has dimensions NXM and is represented as

F =




f1(x1) . . . fM (x1)
. . . . . . . . .

f1(xN ) ... fM (xN )




NXM

.

(2)

Equation 1 can be written as YN = FNMCM or F T
MNYN = F T

MNFNMCM . A weight matrix can be included
for preferential treatment of data to yield F T

MNWNNYN = F T
MNWNNFNMCM . If W is positive definite and

N ≥ M then F T WF can be inverted to produce the well known “pseudo-inverse” solution for the vector of
fitting coefficients

CM =
(
F T

MNWNNFNM

)−1

F T
MNWNNYN . (3)

Time and sensor data weighted least-squares back projection: The gate size or association region of
the state estimator is the area within which the next target position is expected to fall. The gate size of the
predicted target position at time tN is precalculated at time tN−1 in order to associate the incoming detection



Figure 2: Straight line fit to the sensor position measurements to obtain velocity and ∆V .

(at time tN ) with any particular track. The gate size is calculated by using rates of change of azimuth and
elevation (velocity V az, el) and the uncertainties in the estimates of ∆V az, el. The velocities and associated
uncertainties are calculated using a least squares projection based on N backvalues of sensor measurements.
An object-to-track association process follows this step. To obtain velocity V az, el and ∆V az, el, azimuth
and elevation values are fitted as linear functions of time. A straight line is fitted at each sensor measurement
point. The slope of the straight line is the rate of change of azimuth/elevation and the error associated with
the straight line fit is ∆V az, el, as shown in Fig. 2. The track velocity estimates are updated using a weighted
linear least squares fit. Observations recorded during the last 600 msec (N = 20) are used. The weighting
can be linear or exponential, with current observations and observations from the tracking sensors receiving
maximum weight. The least squares fit produces estimates of the target velocity components as

azN = C1︸︷︷︸
V az

∆tN + C2, (4)

where ∆tN = tN − tN−1. Position uncertainties ∆azN are computed using the velocity uncertainty times
the propagation time from the last target observation to the current time. Tracks are propagated from their
last observed position, using their last estimated velocity, to their predicted position at time tN as

azN = azN−1 + ∆t × V az
N−1, elN = elN−1 + ∆t × V el

N−1, ∆azN = ∆azN−1 + ∆t × ∆V az
N−1 (5)



Figure 3: The state prediction of the TWBLS tracker.

The center of the track gate is (azN , elN ) and the gate extends according to 3σ where σ = ∆azN . Figure
3 shows the TWBLS state prediction along with the true target azimuth (for simplicity the target azimuth
is modeled as sin(t)) for a sensor noise standard deviation of 8%.

Sensor fusion: A nonlinear weight function W = exp−∆t/(IFOV )2 is used to grant preferential treat-
ment to data. The time matrix of backvalues is formulated as

F =




∆tN
exp−∆tN

(IFOV )2
exp−∆tN

(IFOV )2

. . . . . .
∆t1

exp−∆t1

(IFOV )2
exp−∆t1

(IFOV )2




NX2
(6)

The coefficient vector contains azimuth and elevation rates of change of informations as C =
[
C1 C2

]T
.

Least squares “pseudo-inverse” solution is used to solve for V and ∆V as Caz =
(
F T F

)−1
F T Yaz. Since ∆t

increases backwards we identify V = −C1. Several constraints may be applied to the size of the track gate.
A minimum/maximum size for the gate can be set using the expected size of the object. Without realistic
gate size constraints, the incoming detections may not fall within the association region. Figure 4 shows
the sensor fusion results of the TWBLS. The individual sensor measurements for sensor 2 is also presented



for comparison with the fused estimates. Sensor 1 has a measurement error standard deviation of 8% and
sensor 2 has a measurement error standard deviation of 15%. The advantage of sensor fusion is obvious from
Fig. 4.

Figure 4: Sensor data fusion for the TWBLS trackerError analysis and gating: One of the published treatments of least squares projection algorithm
postulated that the observed target location is the absolute target position at that time without any error.2

According to this approach, the linear projection model is in error, not the observations. In this paper,
both the linear projection model and the observations are assumed to be inexact since the targets may be
maneuvering. The RMS error quantifying the difference between the observed response rob and the computed
response rc for N sample values is given by

RMS =

√√√√ 1
N

N∑

i=1

(
rob − rc

)2

(7)



The overall error of linear fit for the least squares projection is

EFIT =

√√√√ 1
Nsample − Npar

N∑

i=1

(
rob − rc

)2

, (8)

where Npar = 2 is the number of fitting coefficients. Covariance matrix P =
(
F T F

)−1 is readily available
from the least squares solution.

(
E1

E2

)
= EFIT ×

(√
P11√
P22

)
, (9)

here we identify ∆V az,el = E1

Track-to-track correlation and fusion: The track fusion scheme for the TWBLS algorithm yielded
sub-optimal results as shown in Figure 5. If fused appropriately, the fused state should be more accurate
than the individual tracks that are combined for fusion. The track fusion scheme fuses two tracks with the
more accurate sensor track shown for comparison with the fused track. The fused track performs better than
the sensor track around 65% of the time. This is often the case with simplified track fusion techniques that
do not take into account the dependence of the individual sensor tracks.7, 8, 9 Due to the same process noise,
the two track estimation errors cannot be taken as independent. Therefore the information from the latest
track estimate is not sufficient for optimal track fusion. Track fusion can often yield sub-optimal result even
at the cost of vast computational load.

4. THE NOGA TRACKER

As presented in the case of the TWBLS algorithm, the track fusion node fails to obtain the “best” global
state estimate given system constraints such as accuracy, computation load and bandwidth capacity. A
demand for high accuracy in the global estimate leads to large computational load while simplified fusion
methods yield poor track quality. In order to accommodate the possibly varying accuracy requirement and
resource availability, an adaptive approach to track fusion is desirable. The NOGA tracker is presented in
this section as an alternate approach to track fusion.

4.1. Auto-regressive model

The NOGA tracker employs a second-order auto-regressive model as the basic state estimator in conjuction
with a novel uncertainty reduction approach. The NOGA tracking algorithm may be modified to incorporate
other track estimator models.

yµ(k) = aµ
1yµ(k − 1) + aµ

2yµ(k − 2) + . . . + aµ
Myµ(k − M) (10)

where µ denotes observation parameter such as µ = 1 = azimuth and µ = 2 = elevation. For a second order
Auto-Regressive (AR) model,

yµ(k − 2) = aµ
1yµ(k − 3) + aµ

2yµ(k − 4) (11)
yµ(k − 1) = aµ

1yµ(k − 2) + aµ
2yµ(k − 3) (12)

yµ(k) = aµ
1yµ(k − 1) + aµ

2yµ(k − 2). (13)

The above formulations can be cast in matrix form to yield Yµ = F µaµ where aµ =
[
aµ
1 aµ

2

]T and

F µ =




yµ(k − 3) yµ(k − 4)
yµ(k − 2) yµ(k − 3)
yµ(k − 1) yµ(k − 2)


 .



Figure 5: The NOGA tracker.

(14)

The idea is to give more weight to more recent data. Hence to second order

yµ(k) = aµ
1∆t1

exp−∆t1

IFOV 2
µ

yµ(k − 1) + aµ
2∆t2

exp−∆t2

IFOV 2
µ

yµ(k − 2). (15)

As above, we can write this in matrix form as Yµ =
[
yµ(k − 2) yµ(k − 1) yµ(k)

]T and

Fw(k) =




∆t3
exp−∆t3

IFOV 2
µ

yµ(k − 3) ∆t4
exp−∆t4

IFOV 2
µ

yµ(k − 4)

∆t2
exp−∆t2

IFOV 2
µ

yµ(k − 2) ∆t3
exp−∆t3

IFOV 2
µ

yµ(k − 3)

∆t1
exp−∆t1

IFOV 2
µ

yµ(k − 1) ∆t2
exp−∆t2

IFOV 2
µ

yµ(k − 2)


 .

(16)

To solve for the fitting parameters, the pseudo-inverse technique is used as aµ =
(
F T

w Fw

)−1
FwYµ. The track

estimation errors are computed according to the formulation presented in the next subsection.



4.2. Uncertainty reduction

Accuracy, robustness, and timely prediction are the key merits in track estimation. Predictability is chal-
lenged by inherent uncertainties at the theoretical and experimental levels. Theoretical uncertainties arise
from unavoidable simplifications carried out in the modeling process and experimental uncertainties occur
due to noise, imperfect conditions and human errors. A general uncertainty analysis (UA) framework that
allows for the consistent determination and sharpening of confidence limits for the outputs of a mathematical
model of a physical system, by combining the model predictions with experimental evidence is presented
here.3, 10, 11 This is a time-independent model. Bold lowercase letters denote vectors and bold uppercase
letters denote matrices, and ∼ denotes transpose. The model parameters and inputs are contained in vector
a, the calculated responses are collected in vector q, and the measured or experimental response is r. The
nominal uncertainties in the parameters are given by the covariance matrix Ca = 〈∆a∆ã〉. Here ∆a denotes
the vector of standard deviations and the brackets denote expectation (integration over a joint probability
density function). In this approach, no specific forms of the PDF is required. The first two moments, the
mean value and the covariance can be calculated directly from empirical observation without using any spe-
cific PDF. The sensitivity of the calculated response (qn) to parameter (ai) are computed at the nominal
parameter values as

Sni =
∂qn

∂ai
|a. (17)

Sensitivities can be calculated using adjoint operator formulation or automated differentiation techniques. If
higher order sensitivities are needed, they can be calculated from first order matrices. The sensitivity matrix S
allows one to calculate the nominal covariance matrix of the calculated responses as Cq = 〈∆q∆q̃〉 = SCaS̃.
Even if the nominal covariance matrix of the system parameters is diagonal, the covariance matrix of the
computed model responses is a full. Next the best estimates for the parameters (â) and the responses (r̂)
are calculated. To first order:

r̂ − r = q− r + S(â − a). (18)

New variables are defined: x = â − a, y = r̂ − r, and the discrepancy between calculated and measured re-
sponses e = q− r. Using the new variables, the local functional relationship between the system parameters
and responses becomes y = Sx + e. To obtain the best estimate, the computational and the experimental
results must be consistently combined. This is achieved by optimizing a Bayesian loss function that simulta-
neously minimizes the difference between the best estimate responses and the measured responses, and the
best estimate and the calculated parameters as

Q =
(
ỹ|x̃|.....

)



Cr CP ...
C̃P Ca ...
... ... ...




−1 


y
x
. . .


 .

(19)

Cr represents the covariance matrix of the measured responses, Cp represents the covariance matrix due
to the response-parameters correlations and the three dot patterns denote additional covariance and cross-
covariance that may be included. The loss function must be constrained in terms of the functional relationship
between the parameters and the responses. This relationship was locally approximated to first order only. If
the responses are strongly nonlinear, an iterative procedure must be implemented. An augmented Lagrangian
is defined as L = Q+λT

[
Sx− y−+e

]
. The necessary conditions for a locally optimal solution are obtained

by requiring that the partial derivatives of the augmented Lagrangian with respect to x and y be zero.
These equations are solved in conjunction with the constraints satisfaction to obtain the optimal values of
x and y, which yield the best estimates for both the parameters and the responses. The best estimates of
the covariance matrices have reduced uncertainties. After lengthy algebra,

â = a +
(
C̃p −CaS̃

)
λ, λ =

(
Cr − SC̃p −CpS̃ + SCaS̃

)−1

e, r̂ = r +
(
C̃r −CpS̃

)
λ. (20)



Note that the above best estimate r̂ differs from the model-predicted response that would be computed using
the best estimate values for the system parameters as q̂ = q(â). The covariance matrix corresponding to
the best estimates of the system parameters is given by

Câ = Ca −
(
C̃p −CaS̃

)(
Cr − SC̃p −CpS̃ + SCaS̃

)−1(
Cp − SCa

)
. (21)

The covariance matrix corresponding to the best estimates of the responses is

Cr̂ = Cr −
(
Cr −CpS̃

)(
Cr − SC̃p −CpS̃ + SCaS̃

)−1(
Cr − SC̃p

)
. (22)

The covariance matrix associated with the model responses recalculated using the best estimates of the
system parameters is, to first order, simply Cq̂ = SâCâS̃â, where the sensitivities must be recalculated at
the new parameter values â. Finally it is noted that the best estimate for the covariance matrix associated
with the response-parameter correlations is given by

Cp̂ = Cp −
(
Cr −CpS̃

)(
Cr − SC̃p −CpS̃ + SCaS̃

)−1(
Cp − SCa

)
. (23)

A reduction in the uncertainties of the system parameters means that in general each diagonal term of Câ

is less than or equal to the corresponding diagonal term of Ca.3 The tracking performance of the NOGA
tracker is compared with that of the TWBLS in Fig. 6. As can be seen the NOGA tracker shows superior
performance compared to TWBLS.

5. SUMMARY

Two algorithms are presented in this paper for small target detection applications as alternatives to the
standard Kalman/extended Kalman filter techniques. The TWBLS tracker can perform well in an asyn-
chronous multi-sensor environment. The main advantage of the NOGA tracker is the ability to react to the
changes in the sensor environment to avoid useless or even penalizing fusion. Further research is ongoing for
application of the NOGA tracker in a multi-sensor multi-target environment.
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