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ABSTRACT 

In a recent paper, we presented a simple analytical model to describe the statistics of 

the number of scattering collisions undergone by fast neutrons as they slow down until they 

are absorbed. In that study, we assumed that the moderator was infinite and homogeneous, 

and accounted for scattering and absorption by a single nuclear species. In the present 

paper, we extend that methodology to the more realistic case of neutron slowing down in a 

homogeneous mixture. The formulae are derived and evaluated numerically, and the results 

are found to be in very good agreement with corresponding Monte Carlo simulations. The 

average value of the number of collisions that a neutron undergoes before being captured is 

computed. The results for a capture-gated detector composed of hydrogen, carbon, and 

boron are discussed. 
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1. INTRODUCTION 

In a recent paper [1], we described the process of neutron slowing down via elastic 

collisions in an infinite, homogeneous sample containing a single scattering species that 

was doped with an absorbing medium. The simple model was used to obtain the complete 

statistics of the number of neutron collisions leading to capture. In the present work, we 

extend that analysis to include the more realistic case of an infinite homogeneous mixture. 

This model is directly applicable to the study of neutron detectors such as organic 

scintillators, which are typically made up of a carbon and hydrogen compound.  

Recent investigations [2-4] have addressed the use of detectors made of organic 

scintillators doped with an absorbing medium, such as boron or lithium. The neutron 

detection occurs in two steps: first the neutron generates a scintillation pulse by multiple 

scatterings in the scintillating material (hydrogen and carbon); then, the neutron is captured 

in the absorbing medium (typically lithium or boron). This capture occurs predominantly 

when the neutron has lost most of its energy in the previous scatterings.  

The energy deposited in each individual scattering that a neutron undergoes in the 

scintillator cannot typically be resolved by the detection system. However, the total light 

output produced in the scintillator is related to the energy of the incoming neutron by a 

non-linear relationship. It follows that the entire collision-number statistics is of interest for 

this application, whose final scope is often to unfold the detector light output into the 

incoming neutron energy spectrum.  

We begin our treatment by considering the “classical” case of neutron slowing down 

without absorption in an infinite homogeneous mixture, and will extend that treatment to 
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the case of an infinite homogeneous mixture that contains an absorbing medium. In both 

cases, the calculation of the number of collisions that a neutron undergoes during the 

slowing down process requires the knowledge of the neutron spectrum of the n-times 

collided neutrons. The analytical representation of the neutron spectrum is not in closed 

form, but is based on a recursive formulation in the form of a convolution.   

When considering neutron slowing down in a mixture of two (or more) nuclear 

species, it is natural to ask: how does the slowing down process in a mixture differ from the 

slowing down process in the individual constituents of the mixture? And furthermore, can 

the spectrum of the n-times collided neutrons be described as some kind of “sum” of the 

spectra of the n-times collided neutrons in pure media consisting of the individual 

constituents of the mixture? In other words, to what extent are the spectra obtained in the 

slowing down in the individual species discernible in the “compound spectrum” obtained 

during the slowing down in the mixture? We will answer these questions in the remainder 

of this paper. 

2. ANALYTICAL MODEL: SLOWING DOWN WITHOUT ABSORPTION 

 

In this Section we will describe the analytical models for neutron slowing down in a single 

nuclear species and in a mixture of two nuclear species. 

2.1 Neutron slowing down in a single nuclear species 

The calculation of the number of collisions required to slow down a neutron in 

hydrogen from energy E0 to energy E<E0 has been treated extensively [5-8].  The neutron 

energy distribution following the n-th collision is 
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For n = 0, i.e., for the spectrum of the uncollided neutrons, one can write 
 
 0 0( ) ( )f E E Eδ= − . (2) 
 

This derivation is of course not restricted to hydrogen, and can be extended to other 

moderating materials. For A > 1, no simple closed form for the spectra ( )nf E , such as (1), 

can be given. One way to determine ( )nf E  is to use a recursion formula of the type 
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where 2 2( 1) /( 1)A Aα = − + , with 0 ( )f E  given by (2). As is known, the distribution ( )nf E  

of Eq. (3) is non-vanishing only for 0 0
nE E Eα ≤ ≤ . 

 

In the numerical evaluation of the formulae, it is practical in general to turn to the lethargy 

variable, 

 0ln Eu
E

⎛ ⎞= ⎜ ⎟
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.    (4) 

The energy distributions for neutron scattering on hydrogen, as functions of lethargy per 

unit lethargy interval, can be obtained by a simple substitution of Eq. (4) into Eq. (1), and 

multiplying the resulting function by /dE du , such that ( )nf u  is a density per unit lethargy 

interval:  
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The above form is normalized both in u and n, so ( )nf u  is a probability density in u for 

a given n, and a discrete probability distribution in n for a given u. For the case A > 1 one 

has 
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where lnq α= − . A representation of Eq. (3) is given in Fig. 1 for hydrogen ( 0α = ) and 

carbon ( 0.716α = ) for n = 1 to 8 and E0 = 5 MeV. 
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Fig. 1. Neutron spectra ( ( )nf E ) after n scatterings on hydrogen (a) and carbon (b), (Eq. (3)

), for n=1 to 8 for E0=5 MeV. 

 

2.2 Neutron slowing down in a mixture 

 

In the case of a mixture of more than one nuclear species, the neutron energy spectra 

are calculated by taking into account the relevant macroscopic scattering cross sections of 

the constituents of the mixture. In the following, we will consider the two elements 

hydrogen and carbon, because these are the typical constituents of organic scintillators. 

However, the formulation can be easily extended to other elements, or to mixtures 

containing more than two components. To keep the analytical formulation as simple as 

possible, we only consider elastic scattering. In the case of scattering on carbon, this is an 
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approximation when the neutron energy is above the threshold for inelastic scattering, 

which is approximately 4.4 MeV. 

Denote the (constant) probabilities of elastic scattering on hydrogen and carbon as 

 ,s H
H

T

c
Σ

=
Σ

    and     ,s C
C

T

c
Σ

=
Σ

, 

with , ,T s H s CΣ = Σ +Σ . 
 
Then, by extending Eq. (6) for the case of two nuclear species, the energy spectrum of n-

times collided neutrons is given by 
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Naturally, for the first term on the r.h.s. of Eq. (7), we could have used the compact 

analytical form given in Eq. (5). However, for the case with absorption, which is treated in 

Section 3, no analytical solution similar to Eq. (5) can be given, whereas the form given in 

Eq. (7) can be easily modified to account for absorption. 

     The initialisation for Eq. (7)  is ( )0 ( )f u uδ= , and 
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where ( )H u  is the unit step function: the second part of (8) is different from zero only for 

u between 0 and q.  
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Fig. 2. Neutron spectra ( ( )nf E ) after n scatterings on a hydrogen and carbon mixture, (Eq. 

(7)), for n=1 to 8 for E0=5 MeV. 

 

Figure 2 shows that the individual constituent spectra can be discerned in the energy 

spectrum of the mixture only up to the third collision, approximately. For higher collision 

numbers, the spectra look qualitatively very similar to the spectra obtained by slowing 
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down in hydrogen alone. This effect can be explained by an increasing “mixing” of the 

alternative collisions on hydrogen and carbon. Specifically, the first collision is either on 

hydrogen or carbon, hence the spectrum is a pure weighted sum of the individual spectra, 

as described in Eq. (8). For the second generation, i.e. n = 2, if Hc  and Cc  are equal, then 

the fraction of neutrons that collided twice on either hydrogen or carbon is 25%, hence the 

spectrum of scattering on carbon alone is still discernible. However, the probability of 

scattering on just one species decreases rapidly with increasing n. Indeed, the neutrons that 

have collided at least once on hydrogen (their relative number increases with each 

scattering) cease to have a spectrum which extends only to a finite region, i.e. between 

0
nEα  and 0E . Even if a subsequent collision of such a neutron occurs on carbon, the 

spectrum will now extend down to 0E = , therefore resembling to the spectrum of 

scattering on hydrogen alone. This effect can also be described in the following way: any 

scattering on hydrogen will “smear out” the smaller energy decrease given by scatterings 

on carbon. Moreover, ( ) ( )H Cc E c E>  for all values of E of interest, and hence the 

“collision mixing” effect described above favours the elimination of sequences of 

scatterings on carbon only. With increasing collision numbers, this effect further enhances 

the process of the spectra being more and more resembling to the spectra of slowing down 

on hydrogen alone. 
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3. ANALYTICAL MODEL: SLOWING DOWN IN A MIXTURE WITH 

CAPTURE 

We now consider the case of neutron slowing down in a mixture of more than one 

nuclear species when an absorber is present. Consider the energy-dependent cross-sections 

, ( )s H EΣ   (hydrogen scattering cross section), , ( )s C EΣ  (carbon scattering cross section), 

and , ( )a B EΣ   (boron absorption cross-section). 

The total cross section is then 

 

( ) ( ) ( ) ( ), , ,T s H s C a BE E E EΣ = Σ + Σ +Σ .  (9) 

In Eq. (9), the assumption is that scattering occurs only in hydrogen and carbon, and 

absorption occurs only in the absorbing species, boron. As before, inelastic scattering is not 

taken into account. 

The probability that a neutron having energy E undergoes a scattering collision on 

hydrogen and carbon is equal to 

  ( ) ( )
( )

,s H
H

T

E
c E

E
Σ

=
Σ

    and     ( ) ( )
( )

,s C
C

T

E
c E

E
Σ

=
Σ

, 

respectively. It follows that ( ) ( ) 1H Cc E c E+ < , and the probability of capture in the 

absorbing species can be defined as 

( ) 1 { ( ) ( )}H CW E c E c E= − + . 

The neutron energy spectra of the n-times collided neutrons can then be expressed 

recursively as follows:  
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Eq. (10) can be readily evaluated numerically with the initialization  

( ) ( )1
( )( ) 0 0

1

u
u

H C
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−
− −

= +
−

. 

The representation of the neutron energy spectra (Eq. (10)) resulting from n neutron 

scatterings is shown in Fig. 3 for n up to 8. A comparison with Fig. 2 shows that when 

absorption is taken into account, the spectra have a shape similar to the absorption-free 

case, but their amplitude is smaller, especially in the low-energy tail. This is the effect of 

the depletion of the neutron population due to absorption. 

The effect of the absorption can be quantified by considering the integrals of the 

neutron spectra with respect to energy as a function of the number of scatterings, n. These 

integrals, ( )
0n nF f E dE
∞

= ∫ , are shown in Fig. 4. On average, after approximately 13 

scatterings only half of the neutrons survive in the detector.  
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Fig. 3. Neutron spectra ( ( )nf E ) after n scatterings in a carbon, hydrogen, and boron 

detector (Eq. (10)), for n=1 to 8 for E0=5 MeV. 
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The quantity of interest is the probability that a neutron be absorbed exactly at the n-th 

collision. This probability is given by   
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0
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The quantities nP  are normalized to one, i.e. 1n
n

P =∑ , because the medium is infinite and 

therefore the only possible fate for the neutrons is capture, after some number n of 

collisions. The nP ’s are shown in Fig. 5 for initial neutron energies from 1 to 10 MeV, in 1 

MeV increments. The nP ’s can be used to calculate the statistics of the number of collisions 

in a detector made up of a mixture of more than one scattering species and when an 

absorber is present, as will be shown in Section 4. 
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Fig. 5.  Probability of neutron capture following n collisions ( nP ’s) (Eq. (11)) for E0 = 1 to 

10 MeV. 
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4. COMPARISON WITH MONTE CARLO SIMULATIONS 

 

The Monte Carlo code MCNP-PoliMi was used to simulate a large number of neutron 

histories in the scattering and absorbing medium. Tallies were performed to compare the 

Monte Carlo results with the results from the analytical formulation presented in Sections 2 

and 3. The simulations were performed for a large spherical detector, having radius 250 

cm. The neutron source was placed at the center of the detector, emitting neutrons 

isotropically. The simulations were performed for monoenergetic neutrons, with initial 

energy E0 equal to 1 to 15 MeV, in 1 MeV increments, for 105 neutron histories. Each of 

these simulations took approximately 30 seconds to complete on a Pentium IV, 3.3 GHz 

machine. The composition of the detector is shown in Table 1.  

 

Table 1. Composition of the detector. 

 

 

 Leakage did not occur because all neutrons were eventually captured in the detector. Most 

of these captures occurred in the boron. The quantities nP  were determined by binning the 

neutron histories according to the number of scatterings that the neutron had undergone 

before being captured, and by dividing this quantity by the total number of histories. The 

information on the number of scatterings in a neutron history is one of the outputs given in 

the MCNP-PoliMi output file.  

No. of H atoms per cm3  4.98 × 1022  
No. of C atoms per cm3  2.86 × 1022  
No. of 10B atoms per cm3  0.243 × 1022 
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The probabilities nP ’s calculated by Monte Carlo are compared to the same quantities 

calculated with the analytical formula, Eq. (11). The result is shown in Fig. 6 for the case of 

E0 =1 MeV. As it can be seen, there is very good agreement between the Monte Carlo 

result and the evaluated analytical formula. 
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Fig. 6. Probability nP  of neutron capture after n scatterings in a carbon, hydrogen, and 

boron detector, Eq. (11), for E0 =1 MeV. 

 

The average number of collisions to capture, n , is calculated as  

 
1

n
n

n n P
∞

=

=∑ , (12) 

and all higher-order moments can be calculated in a similar way.  It should be noted here 

that n  is a tally of the number of neutron collisions that includes the capture event.  The 
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number of elastic scatterings prior to capture is therefore n -1. The average number of 

neutron collisions, n , is given in Table 2 for E0 =1 to 15 MeV. 

 

 

 

 

Table 2. Average number of collisions, n , to capture in an infinite detector 

Incident neutron 
energy E0 (MeV) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Average number 
of collisions, n , 
obtained with 
analytical model 

13.9 14.6 15.1 15.7 15.9 15.9 16.1 16.5 16.5 16.6 16.9 17.0 17.2 17.1 17.3

Average number 
of collisions, n , 
simulated with 
MCNP-PoliMi 
and, shown in 
parenthesis, nσ  

13.8  
(0.01) 

14.6 
(0.01) 

15.1 
(0.01) 

15.6 
(0.01) 

15.7 
(0.01) 

15.8 
(0.01) 

15.9
(0.01) 

16.2
(0.01) 

16.1
(0.01) 

16.2
(0.01) 

16.3 
(0.01) 

16.4 
(0.01) 

16.5
(0.01) 

16.5
(0.01) 

16.5
(0.01) 

 

Table 2 shows that there is a slight deviation of the analytical model from the Monte 

Carlo as the incident neutron energy increases. This deviation can be explained by the 

neglect of neutron inelastic scattering on carbon in the analytical model. The effect of 

inelastic collisions is a faster slowing down and hence a smaller number of collisions to 

capture. 

The results of Table 2 show that the average number of collisions to capture in case of 

slowing down in a mixture of hydrogen and carbon is greater than the average number of 

collisions to capture in a medium comprised of hydrogen alone. This latter case was treated 
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in Ref. [1]. The increase is less than one collision for low initial neutron energies, and more 

than one collision for high initial neutron energies. 

5. CONCLUSIONS 

The results presented in this paper yield the complete statistics of the number of collisions 

leading to capture in an infinite homogeneous mixture of two scattering species and of one 

absorbing species. This result can be easily generalized to the case of more scattering or 

absorbing species. We obtained very good agreement between the results from the 

analytical model and the corresponding Monte Carlo simulations. This derivation is useful 

for the basic understanding of the neutron slowing down process in a scintillation detector 

doped with an absorber.  
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