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ABSTRACT 
 
The multiplicities, or factorial moments, of the distribution of the number of neutrons emerging 
from a fissile sample can be used to identify and quantify fissile isotopes, in particular even-N 
isotopes of transuranic elements. In fact, the spontaneously emitted source neutrons can induce 
further fissions in the sample, thereby changing the number distributions of the neutrons leaving the 
sample, and therefore their multiplicities. The multiplicities increase monotonically with sample 
mass, hence the measurement of the multiplicities can be used to quantify the sample mass. 
 
Analytical expressions for multiplicities that include induced fission effects have been derived for 
neutrons in the past.  These expressions are given as functions of the probability of induced fission 
per neutron, and have been investigated both by Monte-Carlo methods and in experiments using 
thermal neutron detectors. The object of this paper is to derive analytical formulae for the 
multiplicities of the gamma photons emitted by both spontaneous and induced fissions, and to 
perform a quantitative analysis. In addition, neutron and gamma multiplicities are calculated by 
Monte-Carlo simulation using a modified version of the MCNP-PoliMi code. Good agreement is 
found between the analytical formulae and the Monte-Carlo results. The results show the potential 
advantage of using gamma multiplicities when compared to neutron multiplicities: their higher 
quantitative values may, in principle, have the effect of leading to a larger sensitivity on the sample 
mass when compared to the analysis based on neutrons alone.  
 
PACS: 89.20.-a; 28.20.-v; 02.50.-r; 05.10.Ln 
 
Keywords: nuclear safeguards, material accounting, multiplicities, gamma counting, probability 
generating functions, Monte-Carlo  
 
Corresponding author: 
Imre Pázsit  
Department of Nuclear Engineering,  
Chalmers University of Technology 
Fysikgränd 3 
SE - 412 96 Göteborg, Sweden 
Tel. +46-31-772 3081 
e-mail: imre@nephy.chalmers.se 
Fax: +46-31-772 3079 



 - 2 - 

 
1. INTRODUCTION 
 
Traditional nuclear safeguards measurements make use of helium-3 counters to detect neutrons 
emitted by fissile materials and to measure their multiplicities.  The technique is based on the fact 
that fission emits multiple neutrons essentially at the same time.  The characteristics of the sample, 
for example the sample’s mass, can then be inferred by measuring the neutron multiplicity within a 
specified time window. 
 
In a fissile sample, neutrons from the spontaneous fission and/or from (α ,n) reactions, induce 
fissions and generate, in most cases, some very short-lived chains. Due to the small size of the 
sample, the time of neutron generation in these short chains can be taken as close to simultaneous 
with the time of the original source emission. It follows that the induced fissions can be interpreted 
as a correction to the original multiplicity distribution of the source. The extent of the correction 
depends on the probability of induced fission by one source neutron, and hence on the mass of the 
sample. This physical property leads to the possibility of estimating the sample mass from 
multiplicity measurements. In the past, the dependence of the multiplicities of neutrons emitted 
from a sample on the sample mass, and on the related probability of induced fission, was 
analytically derived [1-4]. This analysis shows analogies to the fast fission factor of the classical 
four-factor formula, which describes the increase of the mean number of primary fast neutrons from 
thermal fission due to neutrons emitted by fast fissions induced by the primary neutrons. The fast 
fission factor is thus a clear analogue of the singlets, i.e. the first factorial moment of the number of 
neutrons emitted from a multiplying sample per source neutron emission event. 
 
More recently, investigations have been aimed at the use of organic scintillating detectors in a wide 
range of applications in nuclear nonproliferation, international safeguards, nuclear material control 
and accountability, and national security. One of the advantages of the use of this type of detector is 
that they are sensitive to fast neutrons, so there is no need to thermalize the neutrons from the 
spontaneous and induced fissions in the samples.  Moreover, these detectors are sensitive to gamma 
rays, which are emitted by the fission process with a larger multiplicity than neutrons.  Use of this 
type of detector makes possible the measurement of both neutron and gamma ray multiplicities 
from a fissile sample. The analysis of such measurements provides the motivation for the present 
work.   
 
The present paper is aimed at the development of an analytical model for the description of the 
distribution of the number of neutrons and photons in a multiplying medium.  In the analysis, we 
only consider the theoretical multiplicities due to one source neutron emission event. Hence we 
disregard the fact that the intensity of the source in a sample with spontaneously fissioning isotopes 
depends linearly on the sample mass, leading thus to a quadratic or higher dependence of the 
multiplicities on the sample mass. In this respect, the treatment is similar to the derivations given by 
Böhnel [4] and Lu and Teichmann [5-6], but is extended to include the description of the photon 
statistics. The formalism is fully capable to treat joint neutron-photon coincidences or multiplicities. 
These, however, will be treated in a later communication, together with other generalizations and 
extensions. It can be mentioned that the formalism, without quantitative analysis, has been used by 
Oberer to treat both neutron, gamma, and neutron-gamma joint distributions [7]. For the sake of 



 - 3 - 

comparison with photon multiplicities, the results from Ref. [4] will be quoted without derivation in 
this work. 
  
2. DERIVATION OF THE MOMENTS OF THE GAMMA DISTRIBUTION 
 
We will derive an expression for the distribution of the number of gamma rays generated in a 
multiplying fissile sample per initial source neutron event. Because no internal absorption of the 
gamma photons in the sample is assumed, this distribution is equivalent to the distribution of the 
gamma photons escaping from the sample. Internal absorption, of course, would change the 
statistics in the opposite direction than internal fission. This effect will be investigated in subsequent 
work. Also, due to the strong energy dependence of the gamma capture cross sections, the present 
treatment needs to be extended to allow for the energy dependence of capture, similarly to the 
treatment used in [4] for the spectral effects of neutron reactions.  
 
What regards escape from the sample, the situation is different for the neutrons, because neutrons 
causing an internal fission are lost for emission from the sample. Hence it is worth to note that the 
distribution and the multiplicities of neutrons that will be cited in this work refer to neutrons 
generated in all the fissions, minus the neutrons causing the fissions. This tally is clearly not equal 
to the number of neutrons that escape from the sample, because some of the neutrons are captured 
in the sample. This effect will be treated in a consecutive communication. Here it suffices 
to say that the model and the MC calculations are compatible, and both are unaffected by the 
presence of absorption in the sample. In the derivations, we will use the method of probability 
generating functions (PGFs), which were first used by Böhnel [4] to calculate neutron multiplicities. 
In this treatment, the initial source neutron event can be a spontaneous fission or an ( , )nα  reaction, 
or a combination of the two [4].  
 
From the analytical model for the gammas, we shall derive the first three factorial moments, and 
compare them to the known results for the neutrons. There are several different notations in use for 
the factorial moments, such as singlets or reals (S), doublets (D) and triplets (T), to denote the first, 
second, and third factorial moment, respectively. Here, however, we shall use the traditional 
notations of the expectations with brackets, as used in references [4] – [6]. 
 
The formalism is based on the use of the generating functions of the probability distributions 
concerned, and a few simple rules giving the generating functions of composite processes in terms 
of the generating functions of the elementary process. We need some definitions for these 
distributions and their generating functions, and these are listed in following sub-sections. In 
Section 2.1 we list some nuclear parameters of the distribution of neutrons that are independent of 
the sample size and geometry. In Section 2.2 we give the corresponding distributions for the gamma 
rays and describe how the gamma ray distributions depend on the neutron distributions in a 
multiplying sample. Finally, in Section 2.3 we give the first three moments of the neutron and 
gamma ray distributions.   
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2.1 Neutron Distributions 
 
In the present model, all gamma photons in the sample are assumed to be generated by neutron 
induced fissions, so we give here the neutron parameters and distributions that were used in 
previous works [4] for the determination of neutron multiplicities. It is also implicit in the model 
that gamma photons are only generated in the fissile material of interest, and not in the matrix of 
compounds or in possible impurities. These restrictions can be readily relaxed, and this will be 
made in subsequent work. In the following list of definitions, we shall try to use notations for 
neutrons as compatible as possible with previous publications, and will introduce a full set of 
notations for the gamma distributions.  
 
Initial source event 

( )sp n  is the probability of emitting n neutrons per source event, and 

0
( ) ( ) n

s s
n

q z p n z
∞

=

=∑     is the PGF of ( )sp n . The factorial moments of ( )sp n  are denoted as 

, ( 1)s s sν ν ν − , and so on. 
 
Induced fission 

( )p n  is the probability of generating n neutrons per induced fission event, and  

0

( ) ( ) n

n

q z p n z
∞

=

=∑     is the PGF of ( )p n . The factorial moments of this function are denoted as 

, ( 1)ν ν ν − , and so on. 
 
 
2.2 Gamma Distributions 
 
a) Nuclear properties at individual reactions (nuclear parameters, independent of the sample size 
and geometry) 
Initial source event 

( )sf n is the probability of emitting n gammas per source event, and 

0
( ) ( ) n

s s
n

r z f n z
∞

=

=∑   is the PGF of ( )sf n . The factorial moments of ( )sf n  are denoted as 

, ( 1)s s sµ µ µ −  , and so on. 
 
Gammas from induced fission 

( )f n  is the probability of emitting n gammas per induced fission event, and 

0
( ) ( ) n

n

r z f n z
∞

=

= ∑  is the probability generating function (PGF) of ( )f n . 

The factorial moments of ( )f n  are denoted as , ( 1)µ µ µ − , and so on. 
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All the factorial moments mentioned above can be obtained by deriving the generating functions 
and evaluating them for 1z = . 
 
b) Properties that depend on the multiplication of neutrons in the sample 
p is the probability that a neutron born in the sample (either as a source neutron or as a neutron in 
the chain) will induce a fission before it leaves the sample. We will refer to this quantity as the 
fission probability. 
 

1( )f n  is the probability of generating a total of n gammas in all the fissions in the sample initiated 
by a single neutron, irrespective of whether it is a source neutron or a neutron in the chain. As 
mentioned before, this the same as the distribution of gammas leaving the sample, because internal 
absorption of the gammas is neglected.  
 
The process is Markovian: a neutron’s past cannot influence how many more gammas the neutron 
will generate in the future. This probability is therefore the same for all fission neutrons, 
irrespective of which generation they belong to in a chain. 

1
0

( ) ( ) n

n

g z f n z
∞

=

=∑   is the PGF of  1( )f n . 

( )F n  is the probability distribution of the total number of gammas generated by (and hence also 
emitted from the sample) one source event. This is the main quantity of interest. 

0

( ) ( ) n

n

G z F n z
∞

=

=∑  is the PGF of ( )F n . 

The moments of F, which can be obtained from the derivatives of G, are the other quantities of 
interest: , ( 1)µ µ µ −% % % , and so on. These will be investigated quantitatively as functions of the 
fission probability p. 
 
The derivation of the equations for the probability distributions and their generating functions then 
goes like this. For the number distribution of gammas generated by one neutron already existing in 
the system, one has the master equation 
 

 

0 1 2

1 ,0 0 1
1 1

....

( ) (1 ) ( ) ( ) ( )

k

k

n i
k i

n n n n n

f n p p f n p k f nδ
∞

= =
+ + + + =

= − ⋅ + ∑ ∏ . (1) 

In a similar way, the distribution of gammas leaving the sample due to one source event 
(spontaneous fission) can be written as  
 

 

0 1 2

0 1
1 1

....

( ) ( ) ( ) ( )

k

k

s s i
k i

n n n n n

F n f n p k f n
∞

= =
+ + + + =

= ∑ ∏ . (2) 

 
The derivation of the above formulae follows the standard procedure of deriving first collision type 
master equations. Hence the probability 1( )f n in (1) is constructed as the sum of the probabilities of 
the two mutually exclusive events: the neutron either leaves the sample without any collisions 
(fissions) and hence generates no gammas (first term on the r.h.s. of Eq. (1)), or it will have a first 
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fission that will possibly lead to a chain (second term on the r.h.s of Eq. (1)). In this latter case, 
0n gammas are produced with probability 0( )f n  by the first fission, and a number of new neutrons 

are generated that can in turn contribute to the gamma generation process through later fissions, 
with the same distribution 1( )f n . Here again we have to sum up for the mutually exclusive events 
that the fission will lead to 1, 2, etc. new neutrons, with probability ( )p k , and we have to take into 
account that the fate (fissions with gamma generation) of each of these k new neutrons is 
independent of the fate of the others, hence the k-fold product of the 1( )f n -s. We also have to 
ensure that the sum of all later gammas in the chain, plus the gammas generated in the initiating 
fission, will equal n gammas, hence the constraint ....0 1 2n n n n nk+ + + + = . 

 
This constraint is of the type of a convolution, and hence turning to the generating functions 
according to the definitions in subsections 2.1 and 2.2 (i.e. by multiplying both sides of the 
equations with nz  and summing up), will lead to a simplified form of the equations for the 
generating functions g and G as follows: 
 

 
0

( ) (1 ) ( ) ( ) ( ) (1 ) ( ) [ ( )]k

k

g z p pr z p k g z p p r z q g z
∞

=

= − + = − +∑ , (3) 

and 
 ( ) ( ) [ ( )]s sG z r z q g z= . (4) 
 
Here, the g(z) in the square brackets is an argument of the generating functions q  and sq , hence 
both expressions are implicit functions of z. Thus, for example  
 
 

1 1
[ ( )] ( 1)

z z
q g z q g z gν

= =
′ ′ ′ ′= = = , (5) 

and so on. 
 
It should be noted here that the generation of gamma rays from interactions other than fission is not 
included in this formulation. Gamma rays from interactions such as inelastic scattering and 
absorption will be included in a further communication. The formulae for the generating functions 
could also be directly derived by following some simple rules for the generating functions of the 
distributions of the sums and products of random variables, such as those listed in Ref. [4].  
 
Although the variable time does not appear explicitly in the above equations, it is clear that they are 
master equations for the probability generating functions of the backward type (first collision type). 
This is a consequence of the causality sequence taken into account in the derivation, which starts 
with considering one neutron and derives equations for the distributions of its progeny. The forward 
approach would be equivalent to considering one final neutron, and trying to derive the probability 
of generating such a neutron from the history of its ancestors. Such an approach is not feasible for 
the multiplicity problem. It can be worth mentioning that there are several other problems in which 
only the backward equation can be used, such as the theory of the development of random trees [8]. 
 
Eqs. (3) and  (4)  are implicit equations in g and G, and they cannot be solved explicitly. However, 
this is not necessary either, because the factorial moments can be obtained by derivation and by 
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solving the algebraic equations that arise. The highest order derivative can always be expressed 
explicitly in terms of the (already known) lower order derivatives, starting with the first order ones 
(the singlets).  
 
2.3 Moments of the Neutron and Gamma Ray Distributions 
 
We have calculated the few lowest order moments, out of which the first three (singlets, doublets 
and triplets) will be given and analyzed here, and compared with their neutron multiplicity 
counterparts. As mentioned earlier, the multiplicities below refer to the neutrons and gammas 
leaving the sample, just as in [4] for the neutrons. 
 
First moments (singlets) 
 
Neutrons (Ref. [4])   
 

1
1s

p
p

ν ν
ν

−
=

−
%       (6) 

 
 
Gammas: Derivation of (3) and  (4) yields 

1
s

s
p
p

ν µµ µ
ν

⋅ ⋅
= +

−
%      (7) 

 
Second moments (doublets) 
 
Neutrons (Ref. [4]) 

( ) ( ) ( )
2

11 1 1
1 1s s s

p p
p p

ν ν ν ν ν ν ν
ν ν

⎛ ⎞ ⎧ ⎫−
− = − + −⎨ ⎬⎜ ⎟− −⎝ ⎠ ⎩ ⎭

% %     (8) 

 
 
Photons 

( ) ( ) ( )

( ) ( )

2

2

21 1 1
1 1

1 2 1
1 1 1

s s
s s s s

s

p p
p p

p p p
p p p

µ ν µ µµ µ µ µ ν ν
ν ν

ν µ µµ µ µν ν ν
ν ν ν

⎛ ⎞
− = − + + − ⎜ ⎟− −⎝ ⎠
⎧ ⎫⎛ ⎞⎪ ⎪+ − + + −⎨ ⎬⎜ ⎟− − −⎝ ⎠⎪ ⎪⎩ ⎭

% %

   (9) 

 
Third moments (triplets) 
 
Neutrons (Ref. [4]) 
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( )( ) ( )( ) ( )

( )( ) ( )
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1 1
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s s

p p
p p

p
p
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ν ν

ν ν ν ν ν ν ν
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 (10) 

 
Photons 
 
Here we need a nested formulation. Define 
 

 
2

( 1) 2 ( 1)
1 1 1

p p pg
p p p

µ µµ µ µν ν ν
ν ν ν

⎡ ⎤⎛ ⎞ ⎛ ⎞′′ = − + + −⎢ ⎥⎜ ⎟ ⎜ ⎟− − −⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 (11) 

2

3

( 1)( 2) 3 ( 1) 3 ( 1)
1 1

1
( 1)( 2) 3 ( 1)

1 1

p p g
p ppg

p p p g
p p

µ µµ µ µ µ µ ν µ ν ν ν
ν ν

ν µ µν ν ν ν ν
ν ν

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞ ′′⎪ ⎪− − + − + − + +⎢ ⎥⎜ ⎟ ⎜ ⎟− −⎪ ⎪⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦′′′ = ⎨ ⎬− ⎪ ⎪⎛ ⎞ ⎛ ⎞ ′′+ − − + −⎪ ⎪⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎩ ⎭

    (12) 

 
With these, one has 

 

( )( ) ( ) ( ) ( )

( ) ( ) ( )

( )

2 3

1 2 1 2 3 1
1

3 1 1 2
1 1

3 1

s s s s s s

s s s s s s s

s s s

p
p

p pg
p p

g g

µµ µ µ µ µ µ µ µ ν
ν

µ µµ ν ν ν ν ν ν
ν ν

ν ν ν

⎛ ⎞
− − = − − + − +⎜ ⎟−⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞′′+ − + + − − +⎢ ⎥⎜ ⎟ ⎜ ⎟− −⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
′′ ′′′+ − +

% % %

 (13) 

 
 
Higher order moments can be derived in a completely analogous manner. Their length and 
complication, however, grows very quickly with the moment order. They will therefore not be given 
here, nor will they be investigated quantitatively.  
 
3. NUMERICAL WORK AND COMPARISON WITH MONTE CARLO 
 
A small modification to the MCNP-PoliMi code [9] was performed to tally the number of 
spontaneous and induced fission neutrons and photons in a given Monte Carlo history. Each history 
was initiated by a Pu-240 spontaneous fission event. The tally consisted in summing the neutrons 
born in the spontaneous fission, and in all subsequent induced fissions in a given history. An 
analogous procedure was applied to the photons. Because the tally was performed at the time of 
fission, the subsequent fate of the neutrons or photons did not affect the value of the tally.  
 
The simulations were performed for three plutonium metal spheres, with composition 20wt%  
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Pu-240 and 80wt% Pu-239 and mass equal to 0.33, 2.7, and 9 kg. The cases are denoted as 1, 2 and 
3, respectively. The calculated distributions of total, source, and induced neutrons and photons per 
history are shown in Figs. 1.a and 1.b, respectively, for the 9 kg plutonium sample. 
 
The first three factorial moments of the distributions of the number of neutrons and photons 
generated in the fissile samples were calculated from the tallies, and were compared to the moments 
obtained from the analytical model of Eqs. (6) through (13). In the case of the distribution of the 
number of neutrons, the number of induced fissions in each history was subtracted from the total 
number of neutrons born in the sample. This procedure is necessary to account for the loss of one 
neutron at each induced fission. The fission probability used in the analytical formulae,  p, was 
estimated in the Monte Carlo calculations by taking the ratio of the total number of induced fissions 
in the sample to the total number of neutrons in the sample. The resulting predictions are given in 
Tables I - III. 
 
In the evaluation of the analytical formulae, the moments of the number of neutrons and gamma 
rays, which are physical constants, were obtained from the Monte Carlo [9]. The numerical values 
are shown in Table IV for the first three moments of the distributions of the number of neutron and 
gamma rays from spontaneous and induced fission. In the 9 kg plutonium sample, 85% of the 
induced fissions occurred in the Pu-239, and the remaining 15% in the Pu-240, approximately. 
  
There is reasonably good quantitative agreement between the predictions of the analytical model 
and the Monte Carlo calculations for the first two factorial moments in all three samples. For the 
third moments, the deviations between the model and the Monte Carlo values are large for the third 
sample, but are reasonably good for the smaller samples. The difference between the model and the 
Monte Carlo in the largest sample may be attributed to the simplifications of the analytical model. 
These simplifications lead to a greater discrepancy as the moment’s order increases. The results also 
show that the values of all factorial moments are much greater for the gammas than for the 
neutrons. This is a result of the higher multiplicity of the gammas for both the source emissions and 
the induced fission reactions. 
 
From the analytical formulae, the dependence of the factorial moments on the fission probability p 
can be easily calculated. The results are shown in Figs. 2 through 4. For sake of comparison, the 
values for neutrons are also shown. The figures show that the values of the first three moments of 
the distributions, i.e. singlet, doublet and triplet rates, increase faster with increasing p for the 
gamma multiplicities than for the neutron multiplicities. This means that in principle, measuring the 
gamma photon multiplicities is a more sensitive method for estimating the sample mass and 
multiplication than measuring the neutron multiplicities. It has to be mentioned here that the 
detection efficiency of the gammas and neutrons was not accounted for in the present study. 
However, in the energy range of interest, the detection efficiency of gammas is comparable to that 
of neutrons in the organic scintillators that will be used to perform the multiplicity measurements 
[10]. The effect of detection efficiency on the multiplicity will be investigated in a future 
communication. 
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CONCLUSIONS 
 
An analytical model for the calculation of gamma multiplicities in a fissile sample was developed 
by using the method of probability generating functions.  The proposed approach is similar to 
earlier works regarding neutron multiplicities. Equations were derived for the generating functions 
of the gamma distributions from a single neutron in the sample and from the intrinsic source, and 
analytical expressions were given explicitly for the first three moments of the distribution of the 
number of gamma rays. Understandably, these formulae are more complicated for the gamma 
multiplicities than for the neutron multiplicities, especially for the higher moments. The equations 
relate the values of the moments to a number of nuclear parameters (such as the moments of the 
distributions of neutrons and photons born by induced fission), and to the fission probability p, 
which depends on the multiplication properties of the sample. This latter quantity is in turn related 
to the multiplication factor (k-eff) of the sample, which is one of the primary quantities of interest in 
these measurements.   
 
The results show good quantitative agreement between the analytical formulation and the Monte 
Carlo simulations of three plutonium metal samples of realistic size. The quantitative results show 
that the values of all three moments are much greater for gamma rays than for neutrons, and that 
they are more sensitive functions of the fission probability p, and hence of the sample 
characteristics, for gamma rays than for neutrons. This means a potentially higher efficiency in 
discovering, identifying, and quantifying unknown samples of fissile material by measuring gamma 
multiplicities than by measuring neutron multiplicities. To explore this potential for practical 
applications, the model has to be extended to include all neutron and gamma reactions including 
capture, the detection process, and the dependence of the source intensity on the sample mass. 
These extensions are underway, and will be reported on in later communications. 
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Figure 2 
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Figure 3 
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Figure 4 
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FIGURE CAPTIONS 
 
Figure 1. Monte Carlo simulation of the distribution of neutrons (a) and gammas (b) in a plutonium 
sample (9 kg). 
 
Figure 2. Dependence of the first moment of the neutron and the photon distribution on the fission 
probability p. 
 
Figure 3. Dependence of the second moment of the neutron and photon distributions on the fission 
probability p. 
 
Figure 4. Dependence of the third moment of the neutron and photon distributions on the fission 
probability p. 
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TABLES 
 
 
Table I 
 
 

 
 
 
 
 
 

 
 
Table II 
 
 

 
 
 
 
 
 
 
 

 
Table III 
 

Case p ν%  according 
to Eq. (6) 

ν% according to 
Monte Carlo 

µ%  according 
to Eq. (7) 

µ% according to 
Monte Carlo

1 0.06388 2.52 2.52 7.83 7.81
2 0.12464 3.09 3.09 10.00 9.93
3 0.18383 4.13 4.06 13.96 13.06

Case p ( )1ν ν −% %  
according to 

Eq. (8) 

( )1ν ν −% % according 
to Monte Carlo

( )1µ µ −% %  
according 
to Eq. (9)

( )1µ µ −% % according 
to Monte Carlo

1 0.06388 7.14 7.11 80.6  80.14 
2 0.12464 15.21 15.27 176.13  167.66
3 0.18383 41.39  37.18 503.94 342.45

Case p ( )( )1 2ν ν ν− −% % %  
Eq.(11) 

( )( )1 2ν ν ν− −% % %

Monte Carlo
( )( )1 2µ µ µ− −% % %  

Eq.(14)
( )( )1 2µ µ µ− −% % %

 Monte Carlo 
1 0.06388 29.64 29.37 1.28e+003  1.22e+003 
2 0.12464 146.50  146.91 5.70e+003 4.87e+003 
3 0.18383 973.40 658.14 3.78e+004 1.43e+004 

Formatted: English (U.S.)

Deleted: (8)
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Table IV.  
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Spontaneous fission   Induced fission  
sν  2.15 ν  3.15 

sµ  6.44 µ  8.09 

( )1s sν ν −   3.78 ( )1ν ν −   8.20 

( )1s sµ µ −  43.01 ( )1µ µ −  68.02 

( )( )1 2s s sν ν ν− −  5.20 ( )( )1 2ν ν ν− −  17.28 

( )( )1 2s s sµ µ µ− −  299.78 ( )( )1 2µ µ µ− −  593.00 
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TABLE CAPTIONS 
 
Table I. Comparison of analytical and Monte Carlo first moments of neutron and photon 
distributions for three Pu metal samples. 
 
Table II. Comparison of analytical and Monte Carlo second moments of neutron and photon 
distributions for three Pu metal samples. 
 
Table III. Comparison of analytical and Monte Carlo third moments of neutron and photon 
distributions for three Pu metal samples. 
 
Table IV. First three moments of neutron and gamma ray spontaneous and induced fission 
distributions. 
 


