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A new multiscale approach to the quantitative interpretation of scanning probe microscopy data in
terms of the local electronic properties of 1D systems such as carbon nanotubes is presented. The
interactions between a probe and the system are treated using a combination of first-principles density
functional calculations and continuum electrostatics modeling. Realistic tip size effects are included
using an image charge model. It is shown that the local potential at a nanotube on a substrate due to a
probe can be calculated quantitatively, allowing experimental data to be analyzed in terms of the
electronic structure of defects.
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Local transport imaging techniques such as scanning
gate microscopy (SGM)[1] and scanning impedance mi-
croscopy (SIM)[2] provide great power for understanding
the transport properties of 1D systems such as carbon
nanotubes and semiconductor nanowires. SGM images
the change in the local resistance due to the presence of
a field generated by a probe (field-effect imaging) [3,4],
while SIM measures the local potential amplitude in an
operational nanocircuit [4]. Recently, a combination of
low temperature scanning probe microscopies (SPMs)
was used to study the defect mediated charge dynamics
in carbon nanotube circuits, providing real-space images
of quantum interference patterns in 1D structures [5,6].
Despite this outstanding progress, transport SPMs have
largely been qualitative techniques since the complexity
of the electrostatic probe-sample interactions and the
geometry of the system have precluded rigorous interpre-
tation of SPM data in terms of atomic-scale properties [7].

In this Letter, we present a systematic approach for a
quantitative analysis of the SPM measurements on carbon
nanotubes that can readily be extended to other 1D sys-
tems, such as semiconductor nanowires.While the screen-
ing of nanotubes in the presence of a uniform field was
addressed previously [8–10], here we combine different
levels of theory to analyze the screening in a nanotube in
the presence of a strongly nonuniform localized field
required to attain high spatial resolution in SPM. To
achieve this, large scale first-principles modeling of the
interactions between a point charge and a carbon nano-
tube is combined, for the first time, with continuum
theory (CT) to encompass effects ranging from atomic
to mesoscopic length scales. This multiscale modeling is
extended to a realistic tip geometry, ultimately yielding a
robust description of the tip-sample interactions at all
length scales (0.5–200 nm) used in modern SPM
measurements.

All-electron density functional theory (DFT) (local
density approximation) calculations of conducting single
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wall nanotubes (SWNTs) were performed using NWCHEM

[11] in the 6-31g� (Ref. [12]) atom-centered, contracted
Gaussian basis sets, using the DGAUSS A1 [13] set for
variational fitting [14] of the Coulomb potential during
calculation of the self-consistent solution. Once con-
verged, the total potential (electronic and nuclear) was
computed without charge fitting. The 6-31g� basis in-
cludes functions on each site for radial (s and p) and
angular polarization (p and d). Calculations of the polar-
izability of small molecules with free-space boundary
conditions often employ higher (f, etc.) polarization
functions and also additional diffuse functions. For large
systems, such as the ones studied here, it is not computa-
tionally feasible to include more functions, and diffuse
functions on each site would lead to catastrophic numeri-
cal linear dependence. However, in contrast to small
molecules, the response of the nanotube (which would
be a conductor if infinitely long) to the strong external
field is neither primarily on site nor due to the long tail of
the density, but arises from the redistribution of charge
between sites. Thus, the 6-31g� basis is expected to yield
an accurate electrostatic potential external to the molecu-
lar charge distribution [15].

The DFT calculations yield a spatially resolved elec-
trostatic potential distribution, Va, in the point charge-
nanotube system and include charge screening and elec-
tron redistribution effects (Fig. 1). As a ‘‘molecule-in-a-
box’’ calculation, the potential corresponds to a floating
neutral system that differs from a grounded one in that the
total charge on the nanotube remains constant. In actual
experiments the one-dimensional system is contacted to
the macroscopic world by electrodes and charge flows
from the external circuit to equalize the electrochemical
potential throughout the system. To address this differ-
ence in electrostatic boundary conditions, we have addi-
tionally calculated the potential distribution, Vb, in the
point charge-nanotube system with additional charge
(typically one electron) placed on the nanotube. The
-1  2004 The American Physical Society



FIG. 1 (color online). Electrostatic potential distribution in-
duced by a point charge located 7 Å from a �9; 0� capped carbon
nanotube. (a) Potential on a plane perpendicular to the tube.
(b) Potential around the effective tube circumference, 0.7 Å
outside of the tube sidewall. (c) Potential along the tube, 2 Å
from the sidewall.

PRL 93, 246801 (2004) P H Y S I C A L R E V I E W L E T T E R S week ending
10 DECEMBER 2004
difference in potentials, Vd � Vb � Va, describes the be-
havior of a free charge on the finite SWNTs in the
presence of external charge. It is illustrated in Fig. 2(a)
for various tube lengths.

The external charge induces a polarization on the
nanotube which decays slowly along the tube, in agree-
ment with electrostatics of one-dimensional systems [16].
The uniformity of the potential inside the nanotube
and the symmetry, with respect to the tube axis, suggest
that the charge dynamics of the point charge deposited
on the nanotube can be well described by a continuum
model for a hollow charged cylinder. For an infinite
charged cylinder, the potential distribution is given by
Vc0�r� � �=2
�0ln�a2=a1� inside and Vc�r� � �=2
�0 �
ln�a2=r� outside the cylinder, where a1 is the effective
electrostatic radius of the nanotube, � is the charge den-
10 15 20 25 30 35 40
Tube length (Å)

10

15

20

25

E
le

ct
ric

 fi
el

d 
(m

V
/Å

)

10 20 30 40
Tube length (Å)

0

1

2

3

4

5

E
ffe

ct
iv

e 
ra

di
us

 (
Å

)

10 20 30 40
Tube length (Å)

2

2.5

3

E
le

ct
ro

st
at

ic
 p

ot
en

tia
l (

V
)

DFT result
CT result

(b)

(c)

(a)

(d)

-20 -10 0 10 20
x coordinate (Å)

geometric radius

0

1

2

3

4

E
le

ct
ro

st
at

ic
 p

ot
en

tia
l (

V
)

L=10.54Å
L=14.31Å
L=23.12Å
L=31.30Å
L=39.60Å

q
Er

FIG. 2. (a) Effective potential, Vd, of a �9; 0� charged nano-
tube along the perpendicular direction for different nanotube
lengths. (b) Effective electrostatic radius, which converges
quickly to a constant value, for tube lengths larger than about
3 to 4 times the radius. (c) Potential at the center of the
nanotube from the DFT calculations and the electrostatic
approximation as a function of nanotube length and
(d) corresponding DFT electric field.
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sity, and a2 is the external cutoff radius related to the
nanotube length.

For all nanotubes longer than 11 Å [Fig. 2(b)], the
effective electrostatic radius matching the DFT calcula-
tions is 4.1 Å, as compared to the geometrical radius of
3.4 Å, a signature of the fact that the excess charge resides
on the outward lobes of the 
� orbitals, which on average
extend 0.7 Å outside the atomic centers [8]. The external
cutoff radius scales linearly with the number of atoms
(not shown), as expected for a finite cylinder. Shown in
Fig. 2(c) is the potential at the center of the nanotube
compared with the approximate expression for the finite
conductive cylinder of length L with charge q, V0�L� �
�=2
�0ln�L=a1� � q=�2
�0L�ln�L=a1�. The excellent
agreement between continuum electrostatics and DFT,
despite the lack of free parameters, shows that the free
charge dynamics on a finite metallic carbon nanotube is
well described using a conductive cylinder model, Vd �
Vc, independent of external charge conditions. Thus, the
potential distribution in the floating and grounded sys-
tems can be related as Va � Vg � �Vc, where � is a
coefficient that accounts for the magnitude of the induced
charge on the nanotube. The correspondence between
DFT and CT descriptions can be established by imposing
that the DFT and CT results coincide at the nanotube
boundary. The electric field, E � dV=dxjx�0, at the center
of the nanotube, provides the measure of deviation from
an ideal conductive cylinder behavior due to the finite
density of states on the nanotube. This behavior does not
depend on the nanotube length, as illustrated in Fig. 2(d).
Note that while the potential on the nanotube decreases as
a function of its length, the electrostatic field at the center
remains constant.

Since our DFT calculations are practically limited to
finite tube lengths and small tube-charge distances, it is
imperative to construct a continuum electrostatic model
to extend the ab initio theory [17]. Any description of the
interaction between a point charge and a one-dimensional
system must account for the finite density of states of the
latter [9,18]. In our extension to continuum electrostatics,
the quantum contribution to the electrostatic properties is
described using the inverse screening length, ks, which
relates the surface charge density and the surface poten-
tial as �s � ks�0Vs. In cylindrical coordinates where the
z axis coincides with the tube axis, the point charge is
located at distance � in the ’ � 0 direction at z � 0. The
potential distributions inside the nanotube, Vn�r; �; ’; z�,
and in vacuum, Vv�r; �; ’; z�, for r < � are then given by

Vn �
X1

m��1

Z 1

0
dkcos�kz�eim’AmkIm�kr�;

Vv �
X1

m��1

Z 1

0
dkcos�kz�eim’�BmkIm�kr� � CmkKm�kr��;

(1)

where Im and Km are Bessel functions of the second kind,
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Amk and Cmk are coefficients determined by boundary
conditions [19], and Bmk comes from the bare potential
of the charge. The boundary conditions, at r � R, for a
dielectric cylinder (of radius R) with finite surface den-
sity of states reflect the continuity of the potential and the
linear screening approximation, respectively:

Vn � Vv; and �
dVn
dr

�
dVv
dr

� �ksVs; (2)

where � is the bulk dielectric constant. The potentials in
vacuum and inside the nanotube are obtained from
Eqs. (1) and (2):

Bmk �
q

2
2�0
Km�k��;

Amk � Bmk
I0m�kR�Km�kR� � Im�kR�K

0
m�kR�

Dmk
;

Cmk � �BmkIm�kR�
ksIm�kR�=k� ��� 1�I0m�kR�

Dmk
;

(3)

where Dmk � �I0m�kR�Km�kR� � Im�kR��ksKm�kR�=k�
K0
m�kR�� [20]. The above approximation is a priori, ap-

plicable only to infinite 2D systems. This is not exactly
the case for a SWNT where the energy is quantized
around its circumference. A more rigorous solution would
include distinct longitudinal and circumferential screen-
ing lengths. We address this issue by considering ks as an
effective parameter that depends on the charge-tube sepa-
ration [Fig. 3(a)]. Practically, the effective ks value for
different charge-tube separations is determined so that
the electric field at the center of the tube matches that of
the DFT calculation. We find that the distance dependence
can be approximated by ks�x� � ksi � b=x, where ksi �
5:0� 0:1 
A�1 and b � 12:4� 0:3. The distance depen-
dence originates from the fact that the electrostatic
screening becomes less effective when the charge is
moved away from the tube, since for a small charge-
tube distance there is a large tangential component of
the field which induces longitudinal polarization in the
sp2 bonded electron system of the nanotube. For large
charge-tube separations, the field is essentially normal to
the surface, and the screening is dominated by the pz
orbitals.
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FIG. 3. (a) Effective screening length for a �9; 0� nanotube as
a function of the charge-tube separation. (b) Electric field at the
center of the �5; 5� and �9; 0� nanotubes as a function of charge-
tube separation, as computed by DFT.
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To demonstrate the universality of the model, we have
computed the charge-tube separation dependence of the
electrostatic field at the center of �5; 5� and �9; 0� nano-
tubes [Fig. 3(b)]. There is a significant difference in the
electrostatic behavior of the nanotubes for small charge
surface separations, which is the expression of the differ-
ent atomic structures and, in turn, of the atomic mecha-
nism of screening. At large charge-tube separations, the
screening behaviors become virtually identical. To ac-
count for the difference in biasing conditions, the poten-
tial of the nanotube in CT is corrected as Veff �
Vg � �Vc, with � � 0:56 being the induced charge on
the nanotube per electron present on the tip. With this
correction, the potential distributions in the DFT and CT
models are very similar, the main difference remaining at
the locations of the atoms due to the atomic polarizabil-
ities [Fig. 4(a)].

We now use the DFT-based continuum electrostatic
model to describe the electrostatic interactions between
a spherical SPM tip and a nanotube on a flat substrate.
Under typical SGM experimental conditions, the tip ra-
dius of curvature and the tip-substrate separation (ranging
from 10 to 100 nm and 3 to 500 nm, respectively) are
significantly larger than the typical 0.5–3 nm radius of a
nanotube. This implies that the nanotube-tip capacitance
is negligible compared to the tip-substrate capacitance
and the charge states of the tip are only weakly affected
by the nanotube. Thus, the point charge interaction can be
extended to the spherical tip model as follows: In the
sphere-plane approximation, the image charge distribu-
tion in the tip can be represented by a set of charges Qi
located at distances ri from the center of the sphere such
that

Qi�1 �
)� 1

)� 1

ri�1

Rtip
Qi; ri�1 �

R2
tip

2�Rtip � d� � ri
; (4)

where Rtip is the tip radius, ) is the dielectric constant of
the substrate, d is the tip-surface separation,Q0�4
�0�
RtipV, r0 � 0, and V is the tip bias. Hence, the tip induced
potential on the nanotube is, with �i0 � Rtip � d� ri,

Vt �
X1
i�0

�
Qivs��i0 � 2R� �

)� 1

)� 1
Qivs��i0 � 2R�

�
; (5)
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where the first term is due to the image charges in the tip
and the second term comes from the image charges in the
substrate. The potential induced by one electron, vs���, is
a rapidly decaying function of tip-surface separation
(faster than 1=�), and, for large tip-tube separations, d�

Rtip, Eq. (5) is simplified to Vt � 2vs�Rtip � d�CV=�)�

1�, where C is the tip-surface capacitance that depends
only on geometry, for a dielectric substrate. Note that for
a metallic substrate the potential is approximately given
by Vt � 4RCV@vs�Rtip � d�=@z. Given that different
limiting behaviors are expected for large separations
and large dielectric constants, the use of Eqs. (4) and
(5) is required for quantitative evaluations.

We can now analyze the distance dependence of the
Fermi energy shift in the nanotube corresponding to a
given bias applied to the tip [Fig. 4(b)]. The potential on
the nanotube is only a fraction (10�3 to 10�2) of the
applied tip bias. Thus, the application of �10 V to the
SPM tip shifts the Fermi level on the nanotube by tens of
meV, comparable with the estimated energy levels of
defects. It has long been realized that the shift of the
Fermi level of the nanotube is significantly smaller than
the tip bias. Notably, Woodside [5] has used a simple
electrostatic model to describe the decay of electrostatic
potential at large separation from the tip. A similar
approach taking into account quantum capacitance of
the nanotube was employed by Freitag et al. [7] to de-
scribe experimental SGM data on semiconductive nano-
tubes. However, both these approaches are phenomeno-
logical and do not explicitly address the electrostatics of
tip, tube, and substrate interactions as developed here.
Furthermore, comparison between the present rigorous
theory and the approximate result indicates that the dif-
ference in the Fermi level shift does not exceed a factor of
�5, significantly less than the 2–3 order of magnitude
difference between tip bias and Fermi level shift.

In summary, we have shown that the combination of
first-principles and continuum theory applied to the
analysis of the interaction between a probe and a one-
dimensional system on a substrate leads to a straightfor-
ward numerical interpretation of the SPM data in terms
of relevant electronic properties of the system which
ultimately lead to a full description of defects. Only
such a rigorous analysis of tip-surface interactions taking
into account quantum capacitance of the system and
localized properties of the tip allows one to quantitatively
relate tip bias and Fermi level on reduce-dimensionality
systems unambiguously. The only unknown parameter is
the tip radius of curvature, which can be determined from
the SIM measurements as reported elsewhere [21].
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