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Abstract 

 
This paper discusses algorithmic and 

implementation aspects of a remote visualization 
system, which adaptively decomposes and maps the 
visualization pipeline onto a wide-area network. 
Visualization pipeline modules such as filtering, 
geometry extraction, rendering, and display are 
dynamically assigned to network nodes to achieve 
minimal total delay or maximal frame rate. 
Polynomial-time optimal algorithms using the dynamic 
programming method to compute the optimal 
decomposition and mapping are proposed. We 
implemented an OpenGL-based remote visualization 
system. We evaluated its performance using a 
deployment at three geographically distributed nodes. 
 
1. Introduction 
 

A remote visualization system potentially enables 
an end user equipped with a simple display device and 
network access to visualize large volumes of scientific 
data stored and/or rendered at remote sites. Such a 
system may consist of a remote data source acting as a 
server, a local display module acting as a client, zero or 
more intermediate nodes performing operations such as 
filtering, geometry generation and rendering, and a 
network connecting all of them together. The 
performance of such a system critically depends on 
how efficiently its visualization pipeline is mapped 
onto the network nodes. 

Many existing remote visualization systems employ 
a predetermined partition of the visualization pipeline 
and typically send fixed-type data streams such as raw 
data, geometric primitives, or framebuffer (FB) to 
remote clients. While such schemes are common, they 
are not always optimal for high performance 
visualizations that typically deal with large data sets. 
Over wide-area connections, this problem is further 

compounded by the limited bandwidths and time-
varying network dynamics. Bowman et al [3] proposed 
a mapping based on predicting the processing times of 
visualization modules and network bandwidth. Luke et 
al [4] proposed a visualization framework capable of 
multiple partition scenarios. In these works, the 
mapping is based on empirical testing and manual 
configuration. 

In this paper, we analytically formulate the problem 
of optimizing the total delay or frame rate of the 
visualization pipeline by considering the computation 
times of the modules and data transfer times between 
them. Our model highlights the inherent computational 
aspects of optimally mapping a visualization pipeline 
onto a network. We propose algorithms using dynamic 
programming to compute a mapping with minimum 
total delay or maximum frame rate. The time 
complexity of these algorithms is ( )O n E× , where 

E  is the number of edges in the computer network 
and 1n +  is the number of visualization modules. 

In Section 2, we describe a generic visualization 
framework. In Section 3, we present our optimal 
partition and mapping algorithms. Implementation 
details and test results are provided in Section 4. 
Conclusions are made in Section 5. 
 
2. Remote visualization system 
 
2.1. Visualization pipeline 

 
Visualization process involves several steps that 

form the so-called visualization pipeline [1]. Fig. 1 
shows a simple visualization pipeline along with the 
data flow between the pipeline modules. In scientific 
applications, the raw data is often multivariate and is 
organized in structures such as NetCDF, and HDF. The 
filtering module extracts the information of interest 
from the raw data and performs the necessary 



preprocessing. The transformation module typically 
uses a surface fitting technique to derive 3D 
geometries, or performs shading and classifications for 
volume rendering. The rendering module converts the 
transformed geometric or composite volumetric data in 
3D view coordinates to a pixel-based image in 2D 
screen coordinates. 
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Figure 1. A general visualization pipeline. 

2.2. Analytical model 
 

The visualization pipeline consists of n+1 sequential 
modules denoted by 

1 2 1 1 1 1, , , , , , , , , , , , ,u u v w x x nM M M M M M M M M− − − +… … …… … …
 as shown in Fig. 2. Module , 2, , 1jM j n= +…  
performs a computational task of complexity jc  on 
data of size 1jm −  from module 1jM −  and generates 
data of size jm , which is then sent over the network 
link to module 1jM + . An underlying network consists 
of k geographically distributed computing nodes 
denoted by 1 2 1, , , ,k kv v v v−… . Node , 1,2, ,iv i k= …  has 
a normalized computing power ip  and is connected to 
its neighbor node , 1,2, , ,jv j k j i= ≠…  via an edge or 

link ,i jL  of bandwidth ,i jb  and link delay ,i jd . The 
transport network is represented by a graph 

( , ), | |G V E V k= = , where V  and E are sets of nodes 
and edges, respectively. 
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Figure 2. Pipeline partitioning and mapping. 
 
We consider a path P of q nodes from a source node 

sv  to a destination node dv  in the transport network, 
where [2,min( , 1)]q k n∈ +  and path P consists of 
nodes [1] [2] [ 1] [ ], , , ,P s P P q P q dv v v v v v−= =… . The 
pipeline is decomposed into q visualization groups 
denoted by 1 2 1, , , ,q qG G G G−… , which are mapped one-

to-one to the nodes of P. The data flow between two 
adjacent groups originates at the last module in the 
preceding group such that we have 

1 1 2 1 1 1( ) , ( ) , , ( )u v q xm G m m G m m G m− − − −= = =… . The 
client at last node dv  sends control messages to one or 
more preceding visualization groups to support 
interactive operations. However, transport time for 
control message is assumed to be negligible due to its 
small size. We consider two optimization problems: 
(a) Minimal total delay: The goal is to minimize the 
total time incurred on the forward links from the source 
node to the destination node, given as follows: 
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(b) Maximal frame rate: Our goal is to maximize the 
frame rate by minimizing the time incurred on a 
bottleneck link/node (for applications with streaming 
data), which is given as follows: 
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In Eqs (1) and (2), we assume that the transport 
time between modules within a group assigned to a 
single node is negligible. When 2q = , this system 
reduces to the conventional client and server structure. 
A special case of this problem where the network 
nodes form a linear arrangement is considered in [6]. 
 
3. Mapping for remote visualization system 
 
3.1. Bandwidth measurement 
 

Three main types of delays contribute to the total 
message delay, namely, link propagation delay pd  
imposed at the physical layer level, equipment-related 
delay qd  mostly incurred by processing and buffering 
at the hosts and routers, and bandwidth-constrained 
delay BWd . We measure the end-to-end delay in 



transmitting a message of size r on a path P with l links 
as follows: 

, ,
1

( , ) ( , ) ( ( ) ( , )) (3)
l

BW p i q i
i

d P r d P r d P d P r
=

= + +∑  

For large data transfers only the first term of Eq (3) is 
significant which leads to the linear approximation: 

( , ) / ( )d P r r EPB P≈ . Here EPB denotes the Effective Path 
Bandwidth and is estimated via linear regression using the 
active measurement technique of [2]. 
 
3.2. Partition and mapping 
 

A general partition and mapping problem is similar 
to the classical graph clustering problem, which is NP-
complete [5]. By exploiting the linear arrangement of 
the visualization modules, we develop polynomial-time 
algorithms for the problems formulated in Section 2.2. 

 
3.2.1. Minimal total delay. We consider two versions 
of the total delay minimization problem. The first one 
considers a one-to-one mapping from visualization 
modules to network nodes, and the second one 
combines modules into groups. For the first case, let 

( )k
iT v  denote the minimal delay with k hops from sv  

to iv , which satisfies the following recursion: 

1
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This recursion follows from the observation that the 
minimal delay to iv  with k hops is the minimum of the 
delays to its neighbor with k-1 hops plus the cost 
incurred by that link. The base conditions are 
computed as: 
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complexity of this algorithm is ( )O n E× . 

For second case, let ( )m
iT v  denote the minimal 

total delay with the first m messages mapped onto the 
network from source node sv  to end node iv . Then, 

( )m
iT v  can be computed recursively as follows: 
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with the base conditions computed as: 
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In Eq (5), ( , )T i j  computes the minimal of the two 
following scenarios based on adding the module 1mM +  
to the partial pipeline. In scenario 1, we execute 1mM +  

at node iv  itself, and add its computing time to 
1( )m

iT v− , a sub-problem of iv  of size m-1. In scenario 
2, we map link of 1mM + to a network link from among 

all links incident to node iv  , and choose the minimum 
as in the second term of Eq (5). Thus in each iteration 

( )m
iT v  either inherits the mapping scheme from 

1( )m
iT v−  by simply adding module 1mM +  to the last 

group, or just starts a separate group with module 
1mM +  to the mapping scheme of 1 ( ), ( )m

iT u u adj v− ∈ . 
The complexity of this algorithm is ( )O n E× . 
 
3.2.2. Maximal frame rate. For animation and 
monitoring tasks, data is continuously generated, 
manipulated, and rendered. The maximal frame rate 
that a pipelining can achieve is decided by the slowest 
transport link or computing node. A modified dynamic 
programming method of previous section solves this 
problem. Let 1/ ( )m

iF v  denote the maximal frame rate 
with the first m messages mapped onto the network 
from source node sv  and the end node iv . Let 

( )m
iGS v  represent the sum of message sizes of 

modules on iv  with the first m messages mapped from 

sv  to iv . We have the following recursion: 
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with the base conditions computed as: 
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Here, the bottleneck for each possible scheme is 
computed, and the one with the minimal time is 
chosen, which will achieve maximal frame rate. 
 
4. Implementation and case study 
 

Our remote visualization system is deployed at 
three nodes located at North Carolina State University 
(NCSU), Oak Ridge National Laboratory (ORNL), and 
Louisiana State University (LSU). The parallel 
isosurface extraction computation is implemented on 
Orbitty cluster at NCSU which consists of 23 nodes 
(total of 92 CPUs each at 2.4GHz, and total flops of 
441.6G). Linux workstations with 3GHz CPU are used 
as hosts at ORNL and LSU. Our system provides 
functionalities of scalar glyphs, vector glyphs, 
isosurface, ray casting using Fastvox 1.0 and 
animation. Data transmission is carried out via TCP 
sockets. In this initial implementation, our system runs 
in a client/server mode without intermediate nodes. 
The decomposition is optimized (albeit among only 
two network nodes) since the data sizes exchanged 
between them varies depending on the grouping. The 
server estimates the delay time based on the entity 
being visualized and the available bandwidth, and 
designates proper visualization modules to the clients. 
Table 1 illustrates the estimated transport time between 
LSU and ORNL with different types of data 
transmitted. The message sizes for raw data, 3D 
geometry and FB are estimated at the server. The 
estimated transport delay is calculated as: 

( _ 8) /delayT d Msg size EPB= + × . 

Table 1. Horizontal split test. 
Dim   Est. BW   

(Mbps)   
Min delay   

(sec)   
Raw data  

size/delay   
Geometry  
size/delay   FB size/delay   

Case 1:   
10x6x8   0.284   0.032   8 K /  

0.257sec   
1K /  

0.032sec   1.8M/50.73sec   

Case 2:   
50x20x39   0.300   0.034   610K /  

16.3sec   
16K /  

0.46sec   1.8M/48.03 sec   

Case 3:   
150x210x139   0.277   0.033   71.6M /  

34.4min   
2.4M /  

69.34sec   1.8M/52.01sec   

Case 4:   
256x256x80   0.239   0.033   81.9M /  

45.69min   NA   1.8M/60.28sec   

   
Case 1: Cube 1 has a tiny size of geometry and raw 
data, and hence either can be sent in less than a second. 
Case 2: Cube 2 has a larger raw data size than cube 1. 
But due to its small geometry, the server chose to send 
the geometry data instead of raw data. 
Case 3: The raw data size in this case is further 
increased but with similar sizes in geometry and FB to 
Cases 1 and 2. Sending the geometry data is preferable 
for interactive visualization because the regeneration of 
FB introduces additional traffic when the client 
changes the view parameters. 
Case 4: A CT scanned hand data has a raw data size of 
81.9 Mbytes. Since volume rendering is employed, we 

only need to decide whether to send raw data or FB to 
the client in this case. 
 
5. Conclusion and Future plan  
 

We proposed a framework and an analytical model 
for mapping visualization pipelines onto computer 
networks. The dynamic programming method is 
employed for computing an optimal decomposition and 
mapping of the visualization pipeline. It would be of 
future interest to study various other formulations of 
this problem from the viewpoint of different 
computational criteria and practical implementation. In 
future, we plan to include intermediate hosts in our 
implementation using the dynamic programming 
algorithms, and also deploy our system over dedicated 
networks. We also plan to incorporate newer transport 
methods in our visualization system at a later stage. 
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