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Abstract. The preeminent importance of nano-scale 
materials science is driving the growing interest in 
discovering the conformation of atomic clusters with 
lowest energies. Despite its simple formulation, this 
modeling and simulation problem is extremely hard 
to solve. The TRUST algorithm, one of the most 
powerful global optimization (GO) approaches 
available to date, is applied here for the first time to 
determining the conformation of Lennard-Jones 
clusters. TRUST identifies lower minima than 
reported with previous methods and reaches them at 
considerably lower computational cost. 
 

1. Introduction 
In recent years, there has been a growing interest 
in modeling and simulation of clusters, i.e., of 
aggregates of atoms or molecules [1-5]. This 
interest is driven by the realization that the 
material properties of clusters may be very 
different from those of discrete molecules or 
bulk matter. The primary objective of cluster 
simulations is to determine the atomic (or 
molecular, or ionic) spatial conformation of 
lowest potential energy. Bonding models used to 
describe the interaction between the particles in 
the cluster may range from simple phenomeno-
logical potentials to those derived from ab initio 
molecular orbital calculations or density func-
tional theory.  
In this study, we focus on atomic clusters where 
the interaction is described by the Lennard-Jones 
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(LJ) potential.  More precisely, the function to 
be minimized is the total potential energy of an 
N atom cluster, given by: 
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where i jr  is the distance between atoms i and j 
in the cluster. Several deterministic and 
stochastic methods applied to optimizing the LJ 
clusters have been reported in Refs. [2, 3, 5-14].  
These methods have been assessed by various 
measures of performance such as: (i) the number 
of function iterations needed to attain the 
(putative) global minimum; (ii) the value of the 
attained minimum: (iii) the robustness of the 
method w.r.t. the initial configuration and seed; 
(iv) dealing with challenging situations (e.g., for 
N = 75, 98, 102); (v) percentage of successful 
cases; etc. It is interesting to note that, over the 
years, even minute (less than fractions of a 
percent) improvements in the value of the global 
minimum have been considered sufficiently 
relevant to be reported. [6, 9, 12] 
This should indeed be the case, since the GO 
problem for the LJ clusters is extremely hard.  
The number of local minima grows at least like 

( )NO e , which makes the energy surface a very 
difficult landscape to explore and sort out.   
The remainder of this paper is organized as 
follows. The TRUST method is briefly reviewed 
in Section 2. In Section 3, we describe the new 
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algorithmic and code developments and in 
Section 4 we present and discuss our results. 

 
2. The TRUST Method 

TRUST is a method for solving continuous GO 
problems [15] that has not only achieved leading 
edge performance on the standard SIAM 
benchmarks, but has also shown promising 
capability for large-scale exploratory seismology 
problems [16]. It builds on two innovative 
concepts, namely subenergy tunneling and non-
Lipschitzian terminal repellers, to ensure escape 
from local minima in a fast and computationally 
efficient manner. 
The generic GO problem solved by TRUST can 
be stated as follows. Determine 
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For the considered application, the objective 
function f  is the conformational (potential) 
model energy, and D  is the domain of the 
model parameters x , a 3N-dimensional vector 
representing the spatial coordinates of the N 
particles in the cluster. The result of the 
optimization process produces the optimal 
(minimum energy) configuration, gx , and the 
corresponding global minimum value of the 
objective function, ( )g gf f= x .  
TRUST solves Eq (2) using an indirect approach. 
More precisely, rather than minimizing directly 

( )f x , TRUST defines a new (virtual) objective 
function ( , )E x x . Let * ,ˆ ( ) ( ) ( )f f f= −x x x  
and H denote the Heaviside function. Then, 
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The subenergy tunneling transformation subE  is 
a nonlinear monotonic transformation that has 
several useful properties. It has a filter effect: 
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subE  also has the same critical points as ( )f x  
and the same relative ordering of local minima. 
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This is illustrated in Fig 1, below for the sample 
function 2( ) (sin[2 ] 1)  .f x x x= − −  
 
 
 
 
 

 
 
 
 
 
 

The virtual objective function (3) is a super-
position of two contributing terms. Its effect is to 
transform the current local minimum of  

( )f x into a global maximum, while preserving 
any lower lying local minima. This is illustrated 
in Fig.2.  

 
 
 
 
 
 
 
 
 

The actual search for gx is carried out in terms 
of the flow of a system of coupled nonlinear 
ODEs constructed from the virtual objective 
function. Specifically,  
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Illustration of TRUST Paradigm
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Each equilibrium state of this equation will be a 
local minimizer of E , hence a local or global 
minimizer of f . In Eq (10), the adaptive shift 
parameter a is recalculated whenever the tunne-
ling solution emerges into a new (lower) basin 
of attraction. It enables the smooth transition 
between tunneling and descent to a lower local 
minimum. The quantity z appearing in the 
exponent is a positive odd integer called the Zak 
parameter [17]. As illustrated in Fig 2, gradient 
descent applied to ( )f x  and initialized at x*+ε 
can not escape from the basin of attraction of x*. 
However, whenever gradient descent is applied 
to ( , )E x x and initialized at x*+ε, it always 
escapes the basin. In that sense, TRUST has a 
global descent property. 
 

3. The TRUST Simulation Code 
The modeling and simulations reported herein 
were carried out using the TRUST code, which 
is written in Visual FORTRAN 95. The TRUST 
visualization routines create detailed graphics 
displays that allow, in real time, to follow the 
evolution of a simulation. 
Figure 3, below, corresponds to a direct screen 
dump at the conclusion of a simulation. It 
comprises three regions.  
 
 
 
 
 
 
 
 
 
 
 
The upper region displays the successively 
generated values of the function to be minimized 
along with the current lowest local minimum. 

The color-coded magnitudes are plotted versus 
the number of function evaluations.  
The lower left region displays the magnitude of 
the corresponding largest gradient components. 
As the simulation progresses, one is able to 
monitor the convergence status.  The lower right 
region shows the projection on a plane of the 
solution path in phase space. 
The computational kernel at the heart of a 
TRUST simulation has the following structure. 
Following appropriate initialization procedures, 
an iterative search is performed based upon the 
solution of Eq (10). At each iteration, TRUST 
first evaluates ( )f x  and its gradient. The 
gradient is computed synergistically with ( )f x . 
This can be done analytically (in this study), or 
using an automated differentiation procedure 
[18]. No finite differences are used. Hence, it 
entails only a small overhead cost. For each 
successive point on the energy landscape 
hypersurface, TRUST then selects the search 
mode from five currently available options. 
These include the detection of convergence to a 
local minimum, the detection of a plateau of 

( )f x , the detection of a well profile, descent 
into a new basin of attraction, or sub-energy- 
surface tunneling.  When a plateau is detected, a 
bounded discrete ray tracing algorithm is 
executed. When a well profile is detected, 
descent is performed by a new, fast fractional 
power adaptive switching gradient descent 
algorithm. Specifically, one uses 
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The function ( , )g n µ is incremented whenever a 
gradient component changes sign. The updated 
information is interfaced to the graphics routines 
for real-time display. Then, the need for 
reflections from the domain boundaries is 
examined, and stopping tests are performed. 
Finally, key quantities of interest are updated 
and, if appropriate the next iteration is initiated.   

 
4. Results 

Selected results of our simulations are shown in 
Tables 1 and 2, and in Figure 4. In Table 1, N 

Figure 3.



denotes the number of atoms in the cluster and 
NFGM is number of function evaluations 
TRUST needs to reach the global minimum.  For 
the reported results, we used the initial positions 
given by the Cambridge Table [19]. 
 
N 
 

Cambridge 
Table 

TRUST Difference NFGM 

8 -19.821489 -19.821651 0.000162 32 
32 -139.635524 -139.63998 0.004456 123 
38 -173.928427 -173.93428 0.005853 152 
46 -220.680330 -220.68845 0.00812 68010 
60 -305.875476 -305.88788 0.012404 176 
75 -397.492331 -397.50919 0.016859 855 
86 -465.384493 -465.40527 0.020777 62397 
98 -543.665361 -543.69189 0.026529 115044 
99 -550.666526 -550.69238 0.025854 394 

 
Table 1. Comparison of minimal energies of various 
clusters as reported in the Cambridge table and obtained by 
TRUST.   
 
 

Coordinates from Cambridge 
table (N=8) 

(x, y, z) 

 
Coordinates found with TRUST 

(N=8) 
(x, y, z) 

0.243304 1.021828 -0.29574 0 .24203 1.02189 -0.29396 

- 0 . 4 2 1 2 9 -0.55447 0.682804 -0.42184 -0.55224 0 . 6 8 8 3 5 

- 0 . 8 6 1 1 9 -0.2132 -0.15128 -0.86197 -0.21272 -0.14630 

0 .553196 -0.32323 0.632042 0 .55262 -0.32123 0 . 6 3 6 7 2 

0 .715876 0.146823 -0.23513 0 .71485 0.14725 -0.23126 

- 0 . 1 5 8 9 7 0.214897 -0.71963 -0.15998 0.21393 -0.71584 

0 .056999 -0.59222 -0.18612 0 .05617 -0.59192 -0.18064 

- 0 . 1 2 7 9 2 0.299569 0.273058 -0.12860 0.30084 0 . 2 7 6 7 0 

 
Table 2.  Coordinates of the atoms at the global minimum 
in a cluster with N = 8 atoms. 
 
The results obtained to date show that TRUST 
discovered global minima that are consistently 
lower than those determined by previously 
reported methods.  The advances are rather 
small percentage-wise – which, judging by the 
existing literature, is quite the norm for this 
problem – but they are significant, since they 
identify TRUST as one of the leading engines 
for discovering conformational structures in 
computational chemistry and materials science.   

 
 

 
 
 
 
 
 
 

 
Figure 4.  Improvement (percentage-wise) of results 
obtained with TRUST as a function of N.  The arrows 

indicate the clusters reported in Table 1. 

This significance is enhanced by the fact that the 
number of function evaluations required to 
obtain these minima is, in general, much lower 
than in other approaches.  The improvement 
curve shown in Fig. 4 indicates clearly two 
different regimes, corresponding to small and 
intermediate clusters, respectively.  While this 
feature is not surprising, we intend to investigate 
it more thoroughly and determine its potential 
relevance for the GO problem.  Substantial 
effort will also be focused on assessing the 
robustness of TRUST’s performance w.r.t. 
initial conditions. 
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