
_

Emergence of Computational Chaos
in Asynchronous Neurocomputing

Sarit Barhen Vladimir Protopopescu Jack Wells Neena Imam Jacob Barhen
 Center for Engineering Science Advanced Research

Oak Ridge National Laboratory
Oak Ridge, TN 37831-6016, USA

 Emory University
Atlanta, GA 30322, USA

barhenj@ornl.gov

ABSTRACT
One of the most important features of artificial neural
networks in emerging, brain-inspired, nanoarchitectural design
is their inherent ability to perform massively parallel, nonlinear
signal processing. When operating in a system-wide asynchro-
nous regime, such networks may exhibit a phenomenon
referred to as “computational chaos”, which impedes the
efficient retrieval of information usually stored in the system’s
attractors. In this paper, we illustrate the emergence of
computational chaos from fixed point and limit cycle attractors
for node communication delays in a widely used neural
network model. In particular, the complete Lyapunov spectrum
associated with the network dynamics is computed, and
conditions that prevent the emergence of chaos are derived.

Keywords: asynchronous computing, computational chaos,
neural networks, Lyapunov spectrum.

1. INTRODUCTION

Artificial neural networks are massively parallel, adaptive
dynamical systems [1]. Their models are inspired by the
general features of biological networks, where asynchronous
behavior is prevalent. Biological asynchronicity arises from
delays in nerve signal propagation, refractory periods, and
adaptive thresholding [2], and has long been recognized as
one of the most robust mechanisms through which natural
systems cope with change, learn, and eventually adapt.
Recently, there has been considerable interest in better
understanding and exploiting the computational properties of
asynchronous neurocomputing models (see [3-6] and
references therein) to achieve similar robustness, adap-
tability and performance in artificial systems, with growing
emphasis on emerging nanoscale architectures.

From a computational perspective, two algorithmic schemes
have traditionally been considered for updating the state of a
network [7-9]. In the synchronous regime, all nodes simul-

taneously update their state variables. This implies that each
node must receive, within the interval ∆ characterizing the
resolution of the discrete-event network dynamics, all the
necessary information it needs for its computation from all
the nodes to which it is connected. In what is traditionally
referred to as the asynchronous regime, only one node
(usually determined randomly) is allowed to update its state
on the basis of its inputs, and only after state information has
been received from all required nodes. Clearly, this
conventional type of asynchronicity limits the ability of a
network to perform massively parallel, distributed
information processing. Hereafter, we will refer to this
regime as sequentially asynchronous. These two paradigms
have provided, to date, the algorithmic foundation of most
computational models reported in the open literature [e.g., 3,
5, 6].

However, true computational asynchronicity implies an
uncoordinated, system−wide activity. We shall refer to it as
concurrent asynchronicity. There is a strong motivation to
develop algorithms that can fully exploit such a behavior.
One of the main reasons progress in this direction has been
slow is that concurrent asynchronous relaxation algorithms
usually give rise to an aperiodic oscillatory behavior. This
long known phenomenon was originally referred to as
chaotic relaxation [10] or computational chaos.

In the sequel, we first discuss the limitations of previous
approaches and some implications and promises of
concurrently asynchronous neurocomputing. Then we
characterize the chaotic behavior of our concurrently
asynchronous model by estimating the complete Lyapunov
spectrum associated with its dynamics. Finally, in order to
ensure stable, accurate computations, and thereby enable
efficient retrieval of information stored in attractors of the
network, we derive conditions that prevent the emergence of
computational chaos. We illustrate our results in terms of the
well established model attributed to Grossberg and Hopfield
[8].

Preprint IEEE / INNS
International Joint Conference on Neural Network

Budapest, July 25 – 29, 2004

2. LIMITATIONS OF PREVIOUS APPROACHES

The lack of capabilities for concurrently asynchronous
computing in present models of artificial neural nets has
several important limitations. These include, e.g., problems
encountered in: (1) VLSI, optical, or opto-electronic compu-
tations; (2) discrete time simulations on large-scale, high
performance computers; and (3) emulation of biological
systems. For instance, complex global synchronization
circuitry is typically needed in VLSI circuits and
optoelectronic devices to neutralize the clock skew effects
arising from variation in the physical [11] and/or optical [12]
path lengths of the actual synaptic interconnections. Not
only does this circuitry lack biological basis, but it also
limits the overall network performance to operate at the rate
of the slowest neuron, and enforces rigid firing sequences
that would be difficult to sustain due to signal leakages and
component instability. It is well known [13] that in large-
scale networks such self-induced pathological activation
may destabilize the entire neuromorphic system.

From a purely algorithmic perspective, let us consider a
synchronous algorithm implemented on an MIMD parallel
computer. The processors associated to sets of neurons must
communicate their partial results to each other, at every
instance of time specified by the precedence−constrained
task graph [14] obtained from the problem decomposition.
Such almost sequential algorithms produce overheads in the
form of load imbalance due to processor inactivity. The
potentially lower processor utilization then enhances
resource contention due to communication and coordination
requirements, and may lead to severe performance
degradation in a real-time network environment.

Finally, from a biological emulation perspective, the current
synchronous paradigm implies that neurons are not allowed
to evaluate a firing threshold without having to wait to
receive excitatory or inhibitory input signals from all other
neurons to which they are connected. Thus, failure to receive
input from some inoperating node in the sequentially
asynchronous case could lead to blocking of the entire
network.

These limitations make it imperative to develop a fully
operational, stable, system-wide asynchronous computation
paradigm.

3. BASIC CONCEPTS

To this end, we begin by defining more precisely what we
mean by concurrent asynchronous computation. Let N
denote the total number of nodes (neurons) in the network. A
quantity of interest, xn(t), is being estimated at each node n,
where t indexes a discrete temporal sequence. Let ϕ be a
nonlinear operator from RN to RN, whose network
components are expressed as ϕn(x1, x2, … xN). Also, let tn(t)
index the availability of the most recently updated state of
node n. The successive temporal configurations of the
network are ψ = {t1(t), …, tN(t) | t = 1, …}.

Definition. A concurrently asynchronous system iteration,
denoted by the tuple {ϕ, x(0), ξ, ψ}, is a sequence of state

iterates x(t) of vectors in RN, obtained by the following
recursion starting from a given vector of initial node states
x(0):

1 1

(1)
(1) if

()
(((),..., (())) if .

n t
n

n tN N

x t n S
x t

x t x t n Sτ τ




− ∉
=

∈ϕ

Here St denotes the set of nodes that carry out an update at
the t-th time grid point. The set ξ = { St | t = 1, 2, …} is the
sequence of nonempty subsets of nodes that performed an
update at each t.

Assumptions. Three operational assumptions are made. Two
refer to the set ψ, and one constrains the set ξ. Specifically,
we require that:

► Each consecutive update uses only state information
previously available at the node under consideration,
i.e., tn(t) ≤ t – 1.

► Conservation of temporal logic: evermore recent state
information must be used in evolving each node.

► Node n is not starved in ξ, i.e., there exists a finite
natural number s ∈N, such that each node updates its
estimate at least once in every s successive time
intervals.

The above definition provides a formal framework for
algorithms that implement concurrent, asynchronous
network dynamics. Such a dynamics is capable of updating
the nodes in an uncoordinated manner, where the neurons
are seen as a collection of functionally cooperating
processes, with no explicit dependencies to enforce waiting
at synchronization points for the purpose of swapping
partially computed results. Such a framework encompasses
both the concept of random node delays introduced by
Baudet [15], and a newly developed alternative paradigm
[16], which explicitly models random delays in the
interconnection (communication) network.

4. LYAPUNOV SPECTRUM

We will illustrate our discussion in terms of the temporal
evolution of a fully connected Grossberg − Hopfield (GH)
network [8]. Such a system is modeled by the following
system of coupled, nonlinear differential equations:

 . (2)()n
n n nnl l l l

l

d x
dt

a x T g x I+ = +∑ γ

Here xn represents the internal state of the nth neuron. The
strength of the synaptic coupling from neuron l to neuron n
is denoted by Tnl, and the external bias is denoted by In. The
sigmoidal function gn modulates the neural response, γn
denotes the gain of the transfer function of the nth neuron,
and an represents the inverse of a characteristic time constant
or a decay scaling term.

In order to quantitatively characterize the behavior of the
network dynamics, consider a point xe on the trajectory of

the autonomous system described by the vector field f
corresponding to the RHS of Eq (2). The local behavior of
the flow near xe is determined by linearizing the vector field
at xe, i.e.,

 0 (3)) (0)eδ δ δ δ= (=x f x x x xD

The linear vector field governs the time evolution of a
perturbation δx0 in the neighborhood of xe. Let the
eigenvalues and eigenvectors of fD at xe be li∈ , and xi

N∈ , for i = 1,2, … N. We know from linear systems
theory that (assuming that the eigenvalues are distinct) the
trajectory with initial conditions xe + δx0 evolves as

1

)
0 0

1

(4)(,)

...

e

N

t
e e

tt
e N N

t e

c e c eλλ

δ δ+ = +

= + + +

f xx x x x x

x

D (

1ξ ξ

where ic ∈ are constants determined from the initial
conditions. If λi is real, then ξi and ci are also real. It is clear
that λi corresponds to the rate of contraction (λi < 0) or
expansion (λi > 0) near xe in the direction ξi. Since the
matrix fD is real, if the eigenvalues λi are complex, they
occur in complex conjugate pairs, and the real part of λi
gives the rate of expansion or contraction.

Thus, Lyapunov exponents characterize the behavior of a
dynamical system which may include equilibrium points,
periodic solutions, as well as quasi-periodic and chaotic
regimes. To find all N Lyapunov exponents, a set of N
linearly independent perturbation vectors δx(k) is repeatedly
integrated and orthonormalized [17]. Here, a modified
Gram-Schmidt (GS) procedure [18] is used for improved
numerical stability. After each integration stage l of
duration T, the GS generates two sets of vectors, v(k)(l) and
r(k)(l), such that v(1)(l) = δx(1) and

1() () () () ()

1

() () () (5)

() , () ()

() () / () , 2,... .

i kk k k i i

i

k k k

l l l

l l l k N

δ δ
= −

=
= < >

= =

−∑r x x v v

v r r

Note that the set of vectors {v(k)} spans the same subspace as
{δx(k)} for k = 1… N. Then, at the L-th stage (for L
sufficiently large), the k-th Lyapunov exponent is computed
as

 ()
1

(6)(()) / .l L k
k el

Log l LTλ =

=
≈∑ r

We now consider asynchronous interconnections, i.e.,
networks with random delays. The variational equation
corresponding to Eq (2) takes the form [16]:

2

2 (, , ,) (, , ,)

(7)(1 ())

(1 ())

nm n nm nn n n n nm

l N
n m n m

nl l l l l m
l n

d U a U T g x U
dt

T g x Uη ν θ η ν θ
=

≠

= − + −

+ −∑

γ γ

γ γ

where
 (8)() () / (0) , (0) .nm n mU t x t xδ δ= =U I
Note that the vector δx(k) in (5) refers to the k-th column of
U. In deriving Eq (7), a distribution of one neuron per
processor was assumed. Here θ denotes a random delay

experienced by the data packet mxη sent at time η on a path
from m to n and used by n at ν . We now apply these
concepts to highlight the emergence of computational chaos.

5. EMERGENCE OF COMPUTATIONAL CHAOS

In this study, we have considered a low-dimensional model
made up of 4 fully interconnected neurons. We show that,
even in such a small network, asynchronous distributed
computing gives rise to a variety of complex behaviors.

In a previous study, we examined emergent behaviors under
random node delays [19]. Here, the focus is on random
network delays. All simulations were performed with the
recently developed A NET code [16]. This code is entirely
written in Intel Visual FORTRAN 95. The figures corres-
pond to a direct screen dump of a simulation. The A NET
visualization software creates, in real time, these graphics
displays.

Each figure comprises three regions. The upper region
displays the evolution of the complete Lyapunov Spectrum.
The color-coded magnitude of each exponent is plotted
versus consecutive time intervals.

The lower left region displays the signal output of each
neuron versus integration time. This time-series plot is a
basic observational tool for dynamical systems. As
integration time progresses, one is able to monitor the output
of each neuron, to ascertain whether it converges to a single
(fixed) point, follows a cyclic path, or wanders chaotically.

The lower right region displays a Poincaré plot. This is a
phase-space diagram where the signal output of one neuron
is plotted versus the signal output of another neuron over
time. From a dynamical system perspective, the Poincaré
plot depicts the trajectories (orbits) of two particular
components (neurons) of the network. Trajectories that enter
the domain of a point attractor will approach and remain at
that point. Then a stable equilibrium solution or fixed point
has been reached. Trajectories that enter the domain of a
limit cycle attractor will approach and generate a periodic
solution. Finally, trajectories that enter the domain of a
strange attractor, will exhibit divergence from one another,
and are usually in a state of chaos.

Our first case addresses a situation, whereby in the
synchronous regime the dynamics converges to a fixed point
attractor. In the asynchronous regime, as delays are
introduced, we observe first a transition to a quasi limit
cycle. Then, as delays become larger, a chaotic regime
emerges. The following parameters are used:

, 1, 0.n n nn a I∀ = = =γ The elements of the synaptic
matrix Tnl are shown below:

Table 1. Base model data for synaptic interconnection matrix

0.850D+00 -2.000D+00 1.100D -00 0.500D+00
1.800D+00 1.150D+00 0.600D+00 0.300D+00
1.100D+00 2.500D+00 2.500D+00 0.500D -01
0.100D+00 -0.400D+00 -1.441D -00 1.450D+00

Synchronous dynamics is an idealized situation in which no
network delays are assumed to occur in information
propagation between neurons. This is a convenient
simulation assumption, which is essentially equivalent to the
requirement of synchronization blocking (and possible
processor idling) in an actual distributed system. Of course,
in a real-life system, synchronization requirements reduce
the overall efficiency of the information processing
throughput.

As can be observed in Fig. 1, the network dynamics
converges to a fixed point attractor. All Lyapunov exponents
are accordingly negative. The actual spectrum calculated by
the A NET code is:
 (0.047, 0.059, 0.948, 0.9751 2 3 4λ = − λ = − λ = − λ = −).

For random communication delays of up to 5∆, the Poincare
plot in Fig. 2 appears to indicate a quasi limit cycle. This is
supported by the output signal from each neuron, which
exhibits almost periodic motion.

As the bound on random communication delays increases,
aperiodic oscillations arise. For a maximum allowable
communication delay of 200∆ (where ∆ is the integration
step size), the emergence of computational chaos (Fig. 3) is
confirmed by the existence of positive components in the
Lyapunov spectrum. The exponents calculated by the
A NET code are:
 (0.162, 0.026, 0.303, 0.6081 2 3 4λ = + λ = + λ = − λ = −).

Our second case addresses a situation whereby in the
synchronous regime the dynamics converges to a limit cycle
(see Fig. 4). In the asynchronous regime, as delays are
introduced, we observe (Fig. 5) transition to chaos. The limit
cycle was obtained by changing three synaptic parameters in
Table 1:

1,2 1,3 1,46.00; 0.55; 2.08T T T= − = − = + .

Figure 1. Synchronous dynamics for fixed point attractor

Figure 2. Asynchronous dynamics: small delays

Figure 3. Asynchronous dynamics: evolution from fixed
point attractor under large communication delays

Figure 4. Synchronous dynamics for limit cycle attractor.

The lower left region in Fig 4 clearly indicates periodic
behavior. The leading Lyapunov exponent is zero. In
presence of network communication delays, Fig 5 illustrates
the emergence of computational chaos. The Lyapunov
spectrum exhibits two positive exponents:
 (0.216, 0.008, 0.139, 0.6071 2 3 4λ = + λ = + λ = − λ = −).

Remark: We note that the system considered in Section 4 is
more general than a typical nonlinear delayed ODE system,
since here the delays are not fixed, but random. Therefore,
strictly speaking, the dynamics is in a perpetual transient
state, without ever reaching an asymptotic behavior.
However, if the average delay is sufficiently large with
respect to the intrinsic time-scale of the dynamics (as
measured by the inverse of an), then a certain average
stabilization can be reached. This is indeed the case, as
illustrated in Figures 3 and 5, where the Lyapunov
exponents do not stabilize to fixed values, but instead
slightly fluctuate, while maintaining a clearly discernible
average.

6. TAMING COMPUTATIONAL CHAOS

Since asynchronous neurodynamics may become chaotic,
additional tools are needed to guarantee that correct results
are ultimately obtained. The tools we are proposing are
based on the concept of contraction [20]. Contraction plays a
fundamental role in the iterative solution of nonlinear
equations. It is most useful to express contraction in terms of
vector norms, defined as [20] 1| | (| |,... | |)Nx x=x . This
norm induces a partial ordering on RN.

Definition. An operator ϕ: D ⊂ RN → RN is called a Φ -
contraction on a set D0 ⊂ D, if there exists a linear operator
Φ ∈ L(RN) with the following properties:

 , (9)| () () | | a• ∀ ∈ −− ≤ − x yx y x y| Dϕ ϕ Φ

 (9)
(9)1.

b
c

• −

• −

≥
<

Φ
Φ

0
ρ()

The first property implies Lipschitz continuity. Indeed, Φ is
often referred to as the Lipschitz matrix of ϕ. The latter
requirements, namely non-negativity and spectral radius of
Φ , generalize the typical specification of the contractive
constant used in conjunction with the usual norm on RN.

Baudet’s Theorem. If ϕ: RN → RN is a Φ -contraction on
the closed subset D ⊂ Rn, and if ϕ(D) ⊂ D, then any
concurrent asynchronous iteration corresponding to ϕ and
starting with a vector x(0) ∈ D, converges to a unique fixed
point of ϕ on D [15].

These concepts can be applied to study the convergence of
concurrently asynchronous time-evolving processes in
general, and neural networks in particular. We have
previously presented results for node delays [19]. A similar
derivation applies to communication delays as well, since
both fall under the general definition (1), even though
different variational equations are needed for estimating the
Lyapunov spectrum [16].

Let ϕn(x) denote the nth component of the discretized GH
operator obtained from Eq. (2). We have
 (10)()) .(()n n n n nm m m m n

m
x a x T g x I= ∆ ++ − +∑xϕ γ

Let us seek convergence to fixed-point attractors of (2). For
any two phase-space points x and y in a domain of
attraction, we can write

) (11)() () (1 ()

()].[()
n n n

m m

n

nm m m m
m

yx

g y

a
T g x

−

+

− = −∆

∆ −∑
x y

γ

ϕ ϕ
γ
n

m

After taking the vector norm and applying the Mean Value
Theorem, assuming that, for each neuron the transfer
function gn: R → [−1, +1] is of class C 1, and that | | 1ng ′ ≤
(which is indeed the case for the sigmoid response functions
usually considered), we obtain

| | |

| | (12)

() () | 1 |

| .| | |
n n nn

nm m m
m

yx

y

a
T x

⋅ −

+ ⋅ −

− ≤ −∆

∆ ⋅∑
x y|ϕ ϕ

γ
n

m

Let us now define a matrix Φ in the following manner:
 (13)| | | | | | .1nm nm mnmn Ta= + ⋅−∆ ∆Φ δ γ

We see that, by definition, Φ is non-negative. Considering
Eqs. (12−13), we observe that
 | (14)() () | | .−− ≤ ⋅ xx y yΦ|ϕ ϕ

Thus, the GH operator ϕ is Lipschitzian with Lipschitz
matrix Φ . For ϕ to converge to a fixed point in an
appropriate basin of attraction, the spectral radius of Φ
must be less than one. Our basic idea, here, is to use this
requirement to establish constraints on the model
parameters. In order to produce an operational statement, we

Figure 5. Asynchronous dynamics: evolution from limit cycle
attractor under large communication delays

use an inequality immediately deduced from the definition
of ρ . For any vector y with positive components, we can
write:

 1 1
1 1

y y
min max . (15)

y y

m N m N

nm m nm m
m m

n N n N
n n

= =

= =
≤ ≤ ≤ ≤< <

∑ ∑Φ Φ
ρ(Φ)

In particular, we can choose all vector components yn to be
equal. The contraction requirement, ρ(Φ) ≤ 1, then translates
into

1
1

max 1. (16)
m N

n N nm
m

=

≤ ≤
=

<∑Φ

The above inequality induces constrained interrelationships
between the values of the model parameters an, ∆, γn, and
Tnm (with n, m = 1...N). In particular,
 max (17)| | (| | | |) } 11n

m
nm mn Ta∆ +∆ ⋅ <− ∑{ γ

We note that conditions (17), which ensure the stabilization
of the chaotic behavior are sufficient conditions obtained
under certain simplifying assumptions. At this point, they
offer a proof of principle rather than an easily and directly
implementable criterion. Our future effort will focus on
eliminating certain unnecessary assumptions and making
these conditions more general. It is important, at this stage,
to also emphasize that the reader should not confuse
arbitrarily large (but finite) delays with large values of ∆. In
the latter case, Eq. (17) would imply arbitrarily small values
for γn, the system would become almost linear, and chaos
would be excluded by definition. In our paradigm, delays are
handled in the framework of a set-theoretic formalism (they
appear implicitly in the set ξ). Thus, we allow for arbitrarily
large delays, without affecting the structure of the dynamical
system.

7. CONCLUSIONS

The biggest promise of artificial neural networks as
computational tools lies in their potential capability to
emulate information processing of biological systems. Their
paradigmatic advantages (i.e., their inherent ability to
perform distributed, massively parallel, asynchronous
information processing) can not be fully realized under
existing neurodynamics relaxation schemes. In particular,
concurrent asynchronicity has not been used to date, since it
often engenders computational chaos. In this paper, we have
illustrated the emergence of computational chaos and
derived conditions that ensure that it does not occur. The
new methodology was illustrated on a recurrent network
modeled via the Grossberg–Hopfield formalism.

ACKNOWLEDGEMENTS. This research was performed
at the Center for Engineering Science Advanced Research
(CESAR) in the Computer Science and Mathematics
Division, Oak Ridge National Laboratory. Funding was
provided by the Division of Materials Sciences and

Engineering, DOE Office of Basic Energy Sciences, and by
the Missile Defense Agency under contract DE-AC05-
00OR22725 with UT - Battelle, LLC.

REFERENCES
1. Hassoun, M., (1995). Fundamentals of Artificial Neural Networks,

MIT Press.
2. Marcus, C. and M. Westervelt, (1989). “Stability of analog neural

networks with delay”, Phys. Rev. A 39, 347-359.
3. Yamanaka, K., M. Agu, and T. Miyajima, (1997). “A continuous-time

asynchronous Boltzmann machine”, Neural Networks, 10, 1103-1107.
4. VanRullen, R. and S. Thorpe, (1999). “Spatial attention in

asynchronous neural networks”, Neurocomputing, 26-27, 911-918.
5. Benson, M. and J. Hu, (2000). “Asynchronous self-organizing maps”,

IEEE Trans. Neural Networks, 11(6), 1315-1322.
6. Matsuoka, J., Y. Sekine, K. Saeki, and K. Aihara, (2002). “Analog

hardware implementation of a mathematical model of an
asynchronous chaotic neuron”, IEICE Trans Fundamentals, E 85-A,
389-394.

7. Cheung, K., L. Atlas, and R. Marks, (1987). “Synchronous versus
asynchronous behavior of Hopfield’s CAM”, Applied Optics, 26,
4808-4813.

8. Hopfield, J., (1984). “Neurons with graded response have collective
computational properties like those of two-state neurons”, Proc. Nat.
Acad. Sci., 91, 3088-3092.

9. Toomarian, N. and J. Barhen, (1992). “Learning a trajectory using
adjoint functions and teacher forcing”, Neural Networks, 5, 473-484.
ibid, “Fast temporal neural learning using teacher forcing”, U.S.
Patent No. 5,428,710 (June 1995)

10. Chazan, D. and W. Miranker, (1969). “Chaotic relaxations”, Linear
Algebra & Applic., 2, 199-222.

11. Mead, C., (1989). Analog VLSI and Neural Systems, Addison-Wesley.
12. Shamir, J., (1987). “Fundamental speed limitations on parallel

processing”, Applied Optics, 26, 1567-1568.
13. Macukow, B. and H. Arsenault, (1987). “Modification of the threshold

condition for a content addressable memory based on the Hopfield
model”, Applied Optics, 26, 34-36.

14. Barhen, J. and E. C. Halbert, (1986). “ROSES: An efficient scheduler
for precedence-constrained tasks on a hypercube multiprocessor”, in
Hypercube Multiprocessors '86, 3, 123-147, M.T. Heath, ed., SIAM
Publishers.

15. Baudet, G. M., (1978). “Asynchronous iterative methods for
multiprocessors”, Jour. ACM, 25, 226-244.

16. Barhen, S., (2004). “Asynchronous computation in artificial neural
networks”, ORNL/TM-2004/106.

17. Wolf, A., J. Swift, H. Swinney, and J. Vastano, (1985). “Determining
Lyapunov exponents from a time series”, Physica 16D, 285-317.

18. Golub, G. and C. Van Loan, (1996). Matrix Computations, Johns
Hopkins University Press.

19. Barhen, J. V. Protopopescu, S. Barhen, and J. Wells, “Asynchronous
Computation and Emergence of Computational Chaos”, Proceedings
of ADHS’03s, pp. 123-128, IFAC Press (2003).

20. Ortega, J. M. and W. C. Rheinboldt, (1970). Iterative Solution of
Nonlinear Equations in Several Variables, Academic Press.

