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ABSTRACT 
One of the most important features of artificial neural 
networks in emerging, brain-inspired, nanoarchitectural design 
is their inherent ability to perform massively parallel, nonlinear 
signal processing. When operating in a system-wide asynchro-
nous regime, such networks may exhibit a phenomenon 
referred to as “computational chaos”, which impedes the 
efficient retrieval of information usually stored in the system’s 
attractors. In this paper, we illustrate the emergence of 
computational chaos from fixed point and limit cycle attractors 
for node communication delays in a widely used neural 
network model. In particular, the complete Lyapunov spectrum 
associated with the network dynamics is computed, and 
conditions that prevent the emergence of chaos are derived.  

Keywords: asynchronous computing, computational chaos, 
neural networks, Lyapunov spectrum. 
 

1. INTRODUCTION 

Artificial neural networks are massively parallel, adaptive 
dynamical systems [1]. Their models are inspired by the 
general features of biological networks, where asynchronous 
behavior is prevalent. Biological asynchronicity arises from 
delays in nerve signal propagation, refractory periods, and 
adaptive thresholding [2], and has long been recognized as 
one of the most robust mechanisms through which natural 
systems cope with change, learn, and eventually adapt. 
Recently, there has been considerable interest in better 
understanding and exploiting the computational properties of 
asynchronous neurocomputing models (see [3-6] and 
references therein) to achieve similar robustness, adap-
tability and performance in artificial systems, with growing 
emphasis on emerging nanoscale architectures. 

From a computational perspective, two algorithmic schemes 
have traditionally been considered for updating the state of a 
network [7-9]. In the synchronous regime, all nodes simul-

taneously update their state variables. This implies that each 
node must receive, within the interval ∆ characterizing the 
resolution of the discrete-event network dynamics, all the 
necessary information it needs for its computation from all 
the nodes to which it is connected. In what is traditionally 
referred to as the asynchronous regime, only one node 
(usually determined randomly) is allowed to update its state 
on the basis of its inputs, and only after state information has 
been received from all required nodes. Clearly, this 
conventional type of asynchronicity limits the ability of a 
network to perform massively parallel, distributed 
information processing. Hereafter, we will refer to this 
regime as sequentially asynchronous. These two paradigms 
have provided, to date, the algorithmic foundation of most 
computational models reported in the open literature [e.g., 3, 
5, 6].  

However, true computational asynchronicity implies an 
uncoordinated, system−wide activity. We shall refer to it as 
concurrent asynchronicity. There is a strong motivation to 
develop algorithms that can fully exploit such a behavior. 
One of the main reasons progress in this direction has been 
slow is that concurrent asynchronous relaxation algorithms 
usually give rise to an aperiodic oscillatory behavior. This 
long known phenomenon was originally referred to as 
chaotic relaxation [10] or computational chaos.   

In the sequel, we first discuss the limitations of previous 
approaches and some implications and promises of 
concurrently asynchronous neurocomputing. Then we 
characterize the chaotic behavior of our concurrently 
asynchronous model by estimating the complete Lyapunov 
spectrum associated with its dynamics. Finally, in order to 
ensure stable, accurate computations, and thereby enable 
efficient retrieval of information stored in attractors of the 
network, we derive conditions that prevent the emergence of 
computational chaos. We illustrate our results in terms of the 
well established model attributed to Grossberg and Hopfield 
[8].  
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2.  LIMITATIONS OF PREVIOUS APPROACHES 

The lack of capabilities for concurrently asynchronous 
computing in present models of artificial neural nets has 
several important limitations. These include, e.g., problems 
encountered in: (1) VLSI, optical, or opto-electronic compu-
tations; (2) discrete time simulations on large-scale, high 
performance computers; and (3) emulation of biological 
systems. For instance, complex global synchronization 
circuitry is typically needed in VLSI circuits and 
optoelectronic devices to neutralize the clock skew effects 
arising from variation in the physical [11] and/or optical [12] 
path lengths of the actual synaptic interconnections. Not 
only does this circuitry lack biological basis, but it also 
limits the overall network performance to operate at the rate 
of the slowest neuron, and enforces rigid firing sequences 
that would be difficult to sustain due to signal leakages and 
component instability. It is well known [13] that in large-
scale networks such self-induced pathological activation 
may destabilize the entire neuromorphic system. 

From a purely algorithmic perspective, let us consider a 
synchronous algorithm implemented on an MIMD parallel 
computer. The processors associated to sets of neurons must 
communicate their partial results to each other, at every 
instance of time specified by the precedence−constrained 
task graph [14] obtained from the problem decomposition. 
Such almost sequential algorithms produce overheads in the 
form of load imbalance due to processor inactivity. The 
potentially lower processor utilization then enhances 
resource contention due to communication and coordination 
requirements, and may lead to severe performance 
degradation in a real-time network environment.  

Finally, from a biological emulation perspective, the current 
synchronous paradigm implies that neurons are not allowed 
to evaluate a firing threshold without having to wait to 
receive excitatory or inhibitory input signals from all other 
neurons to which they are connected. Thus, failure to receive 
input from some inoperating node in the sequentially 
asynchronous case could lead to blocking of the entire 
network.  

These limitations make it imperative to develop a fully 
operational, stable, system-wide asynchronous computation 
paradigm.  
 

3.  BASIC CONCEPTS 

To this end, we begin by defining more precisely what we 
mean by concurrent asynchronous computation. Let N 
denote the total number of nodes (neurons) in the network. A 
quantity of interest, xn(t), is being estimated at each node n, 
where t indexes a discrete temporal sequence. Let ϕ  be a 
nonlinear operator from RN to RN, whose network 
components are expressed as ϕn(x1, x2, … xN). Also, let tn(t) 
index the availability of the most recently updated state of 
node n. The successive temporal configurations of the 
network are ψ = {t1(t), …, tN(t) | t = 1, …}. 

Definition. A concurrently asynchronous system iteration, 
denoted by the tuple {ϕ, x(0), ξ, ψ}, is a sequence of state 

iterates x(t) of vectors in RN, obtained by the following 
recursion starting from a given vector of initial node states 
x(0): 
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Here St denotes the set of nodes that carry out an update at 
the t-th time grid point. The set ξ = { St | t = 1, 2, …} is the 
sequence of nonempty subsets of nodes that performed an 
update at each t.  

Assumptions. Three operational assumptions are made. Two 
refer to the set ψ, and one constrains the set ξ. Specifically, 
we require that: 

► Each consecutive update uses only state information 
previously available at the node under consideration, 
i.e.,  tn(t) ≤ t – 1. 

► Conservation of temporal logic: evermore recent state 
information must be used in evolving each node.  

► Node n is not starved in ξ, i.e., there exists a finite 
natural number s ∈N, such that each node updates its 
estimate at least once in every s successive time 
intervals.  

 
The above definition provides a formal framework for 
algorithms that implement concurrent, asynchronous 
network dynamics. Such a dynamics is capable of updating 
the nodes in an uncoordinated manner, where the neurons 
are seen as a collection of functionally cooperating 
processes, with no explicit dependencies to enforce waiting 
at synchronization points for the purpose of swapping 
partially computed results. Such a framework encompasses 
both the concept of random node delays introduced by 
Baudet [15], and a newly developed alternative paradigm 
[16], which explicitly models random delays in the 
interconnection (communication) network.  
 

4.  LYAPUNOV SPECTRUM 

We will illustrate our discussion in terms of the temporal 
evolution of a fully connected Grossberg − Hopfield (GH) 
network [8]. Such a system is modeled by the following 
system of coupled, nonlinear differential equations: 
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Here xn represents the internal state of the nth neuron. The 
strength of the synaptic coupling from neuron l to neuron n 
is denoted by Tnl, and the external bias is denoted by In. The 
sigmoidal function gn modulates the neural response, γn 
denotes the gain of the transfer function of the nth neuron, 
and an represents the inverse of a characteristic time constant 
or a decay scaling term.  

In order to quantitatively characterize the behavior of the 
network dynamics, consider a point xe on the trajectory of 



the autonomous system described by the vector field f 
corresponding to the RHS of Eq (2). The local behavior of 
the flow near xe is determined by linearizing the vector field 
at xe, i.e.,     

                          0 (3)) (0)eδ δ δ δ= ( =x f x x x xD  

The linear vector field governs the time evolution of a 
perturbation δx0 in the neighborhood of xe. Let the 
eigenvalues and eigenvectors of fD  at xe be li∈ , and xi 

N∈ , for i = 1,2, … N. We know from linear systems 
theory that (assuming that the eigenvalues are distinct) the 
trajectory with initial conditions xe + δx0 evolves as 

                      
1

)
0 0

1

(4)( , )

...

e

N

t
e e

tt
e N N

t e

c e c eλλ

δ δ+ = +

= + + +

f xx x x x x

x

D (

1ξ ξ
 

where ic ∈ are constants determined from the initial 
conditions. If λi is real, then ξi  and ci are also real. It is clear 
that λi corresponds to the rate of contraction (λi  < 0) or 
expansion (λi  > 0) near xe in the direction ξi. Since the 
matrix fD  is real, if the eigenvalues λi are complex, they 
occur in complex conjugate pairs, and the real part of λi 
gives the rate of expansion or contraction.  

Thus, Lyapunov exponents characterize the behavior of a 
dynamical system which may include equilibrium points, 
periodic solutions, as well as quasi-periodic and chaotic 
regimes. To find all N Lyapunov exponents, a set of N 
linearly independent perturbation vectors δx(k) is repeatedly 
integrated and orthonormalized [17]. Here, a modified 
Gram-Schmidt (GS) procedure [18] is used for improved 
numerical stability.  After each integration stage l of 
duration T, the GS generates two sets of vectors, v(k)(l) and 
r(k)(l), such that v(1)(l) = δx(1) and   
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Note that the set of vectors {v(k)} spans the same subspace as 
{δx(k)} for k = 1… N. Then, at the L-th stage (for L 
sufficiently large), the k-th Lyapunov exponent is computed 
as  

                       ( )
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We now consider asynchronous interconnections, i.e., 
networks with random delays. The variational equation 
corresponding to Eq (2) takes the form [16]: 
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where 
                           (8)( ) ( ) / (0) , (0) .nm n mU t x t xδ δ= =U I  
Note that the vector δx(k) in (5) refers to the k-th column of 
U. In deriving Eq (7), a distribution of one neuron per 
processor was assumed. Here θ  denotes a random delay 

experienced by the data packet mxη  sent at time η  on a path 
from m to n and used by n at ν . We now apply these 
concepts to highlight the emergence of computational chaos.   

 

5.  EMERGENCE OF COMPUTATIONAL CHAOS 

In this study, we have considered a low-dimensional model 
made up of 4 fully interconnected neurons. We show that, 
even in such a small network, asynchronous distributed 
computing gives rise to a variety of complex behaviors.  

In a previous study, we examined emergent behaviors under 
random node delays [19]. Here, the focus is on random 
network delays. All simulations were performed with the 
recently developed A NET code [16]. This code is entirely 
written in Intel Visual FORTRAN 95. The figures corres-
pond to a direct screen dump of a simulation. The A NET 
visualization software creates, in real time, these graphics 
displays. 

Each figure comprises three regions. The upper region 
displays the evolution of the complete Lyapunov Spectrum. 
The color-coded magnitude of each exponent is plotted 
versus consecutive time intervals.  

The lower left region displays the signal output of each 
neuron versus integration time. This time-series plot is a 
basic observational tool for dynamical systems. As 
integration time progresses, one is able to monitor the output 
of each neuron, to ascertain whether it converges to a single 
(fixed) point, follows a cyclic path, or wanders chaotically.  

The lower right region displays a Poincaré plot. This is a 
phase-space diagram where the signal output of one neuron 
is plotted versus the signal output of another neuron over 
time. From a dynamical system perspective, the Poincaré 
plot depicts the trajectories (orbits) of two particular 
components (neurons) of the network. Trajectories that enter 
the domain of a point attractor will approach and remain at 
that point. Then a stable equilibrium solution or fixed point 
has been reached. Trajectories that enter the domain of a 
limit cycle attractor will approach and generate a periodic 
solution. Finally, trajectories that enter the domain of a 
strange attractor, will exhibit divergence from one another, 
and are usually in a state of chaos.  

Our first case addresses a situation, whereby in the 
synchronous regime the dynamics converges to a fixed point 
attractor. In the asynchronous regime, as delays are 
introduced, we observe first a transition to a quasi limit 
cycle. Then, as delays become larger, a chaotic regime 
emerges. The following parameters are used: 

,   1,   0.n n nn a I∀ = = =γ  The elements of the synaptic 
matrix Tnl are shown below: 

 

 

 

Table 1.  Base model data for synaptic interconnection matrix 

0.850D+00 -2.000D+00   1.100D -00  0.500D+00   
1.800D+00   1.150D+00   0.600D+00  0.300D+00  
1.100D+00   2.500D+00   2.500D+00  0.500D -01  
0.100D+00 -0.400D+00 -1.441D -00  1.450D+00



Synchronous dynamics is an idealized situation in which no 
network delays are assumed to occur in information 
propagation between neurons. This is a convenient 
simulation assumption, which is essentially equivalent to the 
requirement of synchronization blocking (and possible 
processor idling) in an actual distributed system. Of course, 
in a real-life system, synchronization requirements reduce 
the overall efficiency of the information processing 
throughput. 

 

 

 

 

 

 

 

 

 

 

 

 

 

As can be observed in Fig. 1, the network dynamics 
converges to a fixed point attractor. All Lyapunov exponents 
are accordingly negative. The actual spectrum calculated by 
the A NET code is: 
              ( 0.047, 0.059, 0.948, 0.9751 2 3 4λ = − λ = − λ = − λ = − ).  

For random communication delays of up to 5∆, the Poincare 
plot in Fig. 2 appears to indicate a quasi limit cycle. This is 
supported by the output signal from each neuron, which 
exhibits almost periodic motion. 

 

 

 

 

 

 

 

 

 

 

 

 

As the bound on random communication delays increases, 
aperiodic oscillations arise. For a maximum allowable 
communication delay of 200∆ (where  ∆ is the integration 
step size), the emergence of computational chaos (Fig. 3) is 
confirmed by the existence of positive components in the 
Lyapunov spectrum. The exponents calculated by the 
A NET code are: 
           ( 0.162, 0.026, 0.303, 0.6081 2 3 4λ = + λ = + λ = − λ = − ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Our second case addresses a situation whereby in the 
synchronous regime the dynamics converges to a limit cycle 
(see Fig. 4). In the asynchronous regime, as delays are 
introduced, we observe (Fig. 5) transition to chaos. The limit 
cycle was obtained by changing three synaptic parameters in 
Table 1: 
                                   

1,2 1,3 1,46.00;   0.55;   2.08T T T= − = − = + .  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Synchronous dynamics for fixed point attractor 

Figure 2.  Asynchronous dynamics: small delays 

Figure 3.  Asynchronous dynamics: evolution from fixed 
point attractor under large communication delays 

Figure 4.  Synchronous dynamics for limit cycle attractor. 



The lower left region in Fig 4 clearly indicates periodic 
behavior. The leading Lyapunov exponent is zero. In 
presence of network communication delays, Fig 5 illustrates 
the emergence of computational chaos. The Lyapunov 
spectrum exhibits two positive exponents: 
              ( 0.216, 0.008, 0.139, 0.6071 2 3 4λ = + λ = + λ = − λ = − ).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Remark: We note that the system considered in Section 4 is 
more general than a typical nonlinear delayed ODE system, 
since here the delays are not fixed, but random.  Therefore, 
strictly speaking, the dynamics is in a perpetual transient 
state, without ever reaching an asymptotic behavior.  
However, if the average delay is sufficiently large with 
respect to the intrinsic time-scale of the dynamics (as 
measured by the inverse of an), then a certain average 
stabilization can be reached.  This is indeed the case, as 
illustrated in Figures 3 and 5, where the Lyapunov 
exponents do not stabilize to fixed values, but instead 
slightly fluctuate, while maintaining a clearly discernible 
average.    
 

6.  TAMING COMPUTATIONAL CHAOS 

Since asynchronous neurodynamics may become chaotic, 
additional tools are needed to guarantee that correct results 
are ultimately obtained. The tools we are proposing are 
based on the concept of contraction [20]. Contraction plays a 
fundamental role in the iterative solution of nonlinear 
equations. It is most useful to express contraction in terms of 
vector norms, defined as [20] 1| | (| |,... | |)Nx x=x . This 
norm induces a partial ordering on RN. 

Definition.  An operator ϕ: D ⊂ RN → RN is called a Φ -
contraction on a set D0 ⊂ D, if there exists a linear operator 
Φ  ∈ L(RN) with the following properties: 
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The first property implies Lipschitz continuity. Indeed, Φ  is 
often referred to as the Lipschitz matrix of ϕ. The latter 
requirements, namely non-negativity and spectral radius of 
Φ , generalize the typical specification of the contractive 
constant used in conjunction with the usual norm on RN.  

Baudet’s Theorem. If ϕ: RN → RN is a Φ -contraction on 
the closed subset D ⊂ Rn, and if ϕ(D) ⊂ D, then any 
concurrent asynchronous iteration corresponding to ϕ and 
starting with a vector x(0) ∈ D, converges to a unique fixed 
point of ϕ on D [15]. 

These concepts can be applied to study the convergence of 
concurrently asynchronous time-evolving processes in 
general, and neural networks in particular. We have 
previously presented results for node delays [19]. A similar 
derivation applies to communication delays as well, since 
both fall under the general definition (1), even though 
different variational equations are needed for estimating the 
Lyapunov spectrum [16]. 

Let ϕn(x) denote the nth component of the discretized GH 
operator obtained from Eq. (2). We have  
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m
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Let us seek convergence to fixed-point attractors of (2). For 
any two phase-space points x and y in a domain of 
attraction, we can write 
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After taking the vector norm and applying the Mean Value 
Theorem, assuming that, for each neuron the transfer 
function gn: R → [−1, +1] is of class C 1, and that | | 1ng ′ ≤  
(which is indeed the case for the sigmoid response functions 
usually considered), we obtain  
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Let us now define a matrix Φ  in the following manner: 
                     (13)| | | | | | .1nm nm mnmn Ta= + ⋅−∆ ∆Φ δ γ  

We see that, by definition, Φ  is non-negative. Considering 
Eqs. (12−13), we observe that 
                     | (14)( ) ( ) | | .−− ≤ ⋅ xx y yΦ|ϕ ϕ  

Thus, the GH operator ϕ  is Lipschitzian with Lipschitz 
matrix Φ . For ϕ  to converge to a fixed point in an 
appropriate basin of attraction, the spectral radius of Φ  
must be less than one. Our basic idea, here, is to use this 
requirement to establish constraints on the model 
parameters. In order to produce an operational statement, we 

Figure 5.  Asynchronous dynamics: evolution from limit cycle 
attractor under large communication delays 



use an inequality immediately deduced from the definition 
of ρ . For any vector y with positive components, we can 
write: 
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In particular, we can choose all vector components yn to be 
equal. The contraction requirement, ρ(Φ) ≤ 1, then translates 
into 
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The above inequality induces constrained interrelationships 
between the values of the model parameters an, ∆, γn, and 
Tnm (with n, m = 1...N). In particular,  
                   max (17)| | (| | | |) } 11n

m
nm mn Ta∆ +∆ ⋅ <− ∑{ γ   

  
We note that conditions (17), which ensure the stabilization 
of the chaotic behavior are sufficient conditions obtained 
under certain simplifying assumptions.  At this point, they 
offer a proof of principle rather than an easily and directly 
implementable criterion.  Our future effort will focus on 
eliminating certain unnecessary assumptions and making 
these conditions more general. It is important, at this stage, 
to also emphasize that the reader should not confuse 
arbitrarily large (but finite) delays with large values of ∆. In 
the latter case, Eq. (17) would imply arbitrarily small values 
for γn, the system would become almost linear, and chaos 
would be excluded by definition. In our paradigm, delays are 
handled in the framework of a set-theoretic formalism (they 
appear implicitly in the set ξ). Thus, we allow for arbitrarily 
large delays, without affecting the structure of the dynamical 
system.   
 
 

7.  CONCLUSIONS 

The biggest promise of artificial neural networks as 
computational tools lies in their potential capability to 
emulate information processing of biological systems. Their 
paradigmatic advantages (i.e., their inherent ability to 
perform distributed, massively parallel, asynchronous 
information processing) can not be fully realized under 
existing neurodynamics relaxation schemes. In particular, 
concurrent asynchronicity has not been used to date, since it 
often engenders computational chaos. In this paper, we have 
illustrated the emergence of computational chaos and 
derived conditions that ensure that it does not occur. The 
new methodology was illustrated on a recurrent network 
modeled via the Grossberg–Hopfield formalism. 
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