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Abstract

We present an all-electron study of the dynamical density-response function of hexagonal close-packed transition

metals Sc and Ti. We elucidate various aspects of the interplay between the crystal structure and the electron dynamics

by investigating the loss function, and the associated dielectric function, for wave vector transfers perpendicular and

parallel to the hexagonal plane. As expected, but contrary to recent work, we find that the free-electron-like aspects of

the dynamical response are rather isotropic for small wave vectors. The crystal local-field effects are found to have an

impact on the plasmon energy for small wave vectors, which gives rise to an interplay with the exchange–correlation

effects built into the many-body kernel. The loss function lineshape shows a significant dependence on propagation

direction; in particular, for propagation on the hexagonal plane the plasmon hybridizes substantially with fine structure

due to d-electron transitions, and its dispersion curve becomes difficult to establish, beyond the small wave vector limit.
The response is calculated in the framework of time-dependent density functional theory (TDDFT), based on a full-

potential linearized augmented-plane-wave (LAPW) ground state, in which the exchange–correlation effects are treated

in the local-density approximation.
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Electronic excitations in solids can be studied

from the knowledge of the dynamical density-

response function, which is directly related to ob-
servables such as inelastic scattering cross sections

for fast electrons and hard X-rays.
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For many years, theoretical investigations of

valence electron excitations were carried out on the

basis of the free-electron gas (FEG) model (or
jellium model), in which valence electrons are de-

scribed by an assembly of interacting electrons

embedded in a uniform background of positive

charge. The physics of the FEG model is com-

pletely controlled by only one parameter, the va-

lence electron density, n0 or, equivalently, by the
electron-density parameter rs which is related to n0
through 1=n0 ¼ 4p=3ðrsa0Þ3, a0 being the Bohr
ed.
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radius. As we shall illustrate below, in real mate-

rials the physics of the excitations is more com-

plex; indeed, the loss spectra shows qualitative

departures from the FEG description.

In the past few years, ab initio calculations of
the density-response function of many simple [1–7]

and noble [8–10] metals have been reported.

Interestingly, in a number of cases it has been

concluded that remarkable anomalies revealed by

experimental measurements arise mainly from

band-structure effects [11]. Examples include the

fine structure in the inelastic X-ray scattering data

for aluminum [1], the negative plasmon energy
dispersion of cesium [3,5], and the positive dis-

persion of the linewidth of the plasmon in potas-

sium [6].

In this paper we utilize an all-electron method

to compute the density-response function of Sc

and Ti starting from the knowledge of an LAPW

ground state [6,7,12]. Our presentation centers on

a discussion of the dominant feature of the exci-
tation spectrum for these hexagonal closed-packed

transition metals for relatively small wave vec-

tors––the collective, plasmon-like mode, and its

interplay with the effects of the crystal lattice; in

particular, we assess the impact of the so-called

crystal local fields, and the dependence on propa-

gation direction. We conclude that the crystal

local-field effects are not negligible, in the small
wave vector limit; this brings about an interplay

with the effects of exchange and correlation, which

thus impact the plasmon dispersion for small wave

vectors, unlike the case of the FEG. Similarly, the

dependence on propagation direction of the re-

sponse function is rather significant: for wave

vector transfers along the hexagonal plane, the

plasmon hybridizes with the fine structure caused
by d-electron transitions and its dispersion curve

becomes difficult to establish beyond the small

wave vector limit. Comparison is made with the

recent pseudopotential-based calculations of the

density-response function of Sc by Sch€one and

Ekardt [13]; the surprising result reported by these

authors that the plasmon-like excitation is not

realized for small wave vectors for propagation in
the hexagonal plane is not supported by our cal-

culations. Our results agree with the intuitive

expectation that the free-electron-like response is
not affected drastically by the propagation direc-

tion.
1. Theory

The density-response function vðr; r0;xÞ [14] of
an interacting electron system gives, within linear-

response theory, the electron density induced in

the system when the latter is exposed to an external

potential V extðr;xÞ through the equation

qindðr;xÞ ¼
Z
dr0vðr; r0;xÞV extðr0;xÞ: ð1Þ

In the framework of time-dependent density-

functional theory (TDDFT) [15], the exact den-

sity-response function vðr; r0;xÞ obeys the integral
equation [16]

vðr; r0;xÞ ¼ vSðr; r0;xÞ þ
Z
dr1

Z
dr2v

S

�ðr; r1;xÞ � vðr1½ � r2Þ
þ fxcðr1; r2;xÞ	vðr2; r0;xÞ; ð2Þ

where vSðr; r0;xÞ is the single-particle density-re-
sponse function of the unperturbed Kohn-Sham

(KS) system [17], vðr� r0Þ is the bare Coulomb

interaction, and fxcðr; r0;xÞ accounts for all
dynamical exchange–correlation (xc) effects.

For a periodic crystal it is convenient to work in

Fourier space, so we write

vðr; r0;xÞ ¼ 1

X

XBZ
k

X
G;G0

eiðkþGÞ
re�iðkþG0Þ
r0vG;G0 ðq;xÞ;

ð3Þ
with a similar Fourier expansion for vSðr; r0;xÞ.
The Fourier coefficients of the KS response func-

tion, vS
G;G0 ðk;xÞ, can be written as

vSG;G0 ðk;xÞ ¼ 1

X

XBZ
k0

X
n;n0

fk0;n � fk0þk;n0

Ek0 ;n � Ek0þk;n0 þ �hðx þ igÞ

� h/k0;nje�iðkþGÞ
rj/k0þk;n0 i
� h/k0þk;n0 jeiðkþG0Þ
rj/k0;ni; ð4Þ

where X represents the normalization volume, G

and G0 are vectors of the reciprocal lattice, and the

second sum runs over the band structure for each
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wave vector k0 of the first Brillouin zone (BZ).

/k;nðrÞ and Ek;n are Bloch eigenfunctions and ei-

genvalues of the KS Hamiltonian of ground state

density-functional theory (DFT) [17], and fk;n are
the occupation numbers, with due account for spin

degeneracy.

In the above Fourier representation, Eq. (2)

turns into a matrix equation

vG;G0 ðk;xÞ ¼ vSG;G0 ðk;xÞ þ
X
G

00

X
G

000
vS
G;G

00 ðk;xÞ

� v
G

00 ðkÞd
G

00
;G

000

h
þ f xc

G
00
;G

000 ðk;xÞ
i

� v
G

000
;G0 ðk;xÞ; ð5Þ

which we solve numerically. The size of this matrix

equation is a measure of the importance of the

crystal local-field effects, arising from the inho-

mogeneity of the electronic environment in the

periodic crystal potential. For later reference, we

note that ignoring the crystal local-field effects
corresponds to solving Eq. (5) while keeping only

the zero–zero element of the KS response matrix.

Within the first Born approximation the

inelastic scattering cross-section for hard X-rays

and fast electrons corresponding to wave vector

transfer q ¼ kþG, is proportional to the dy-

namic-structure factor

Sðq;xÞ ¼ �2�hX 1

vGðkÞ
Im ��1G;Gðk;xÞ

h i
; ð6Þ

where Im½��1
G;G0 ðk;xÞ	 is the so-called energy-loss

function and is related to the response function

through

��1G;G0 ðk;xÞ ¼ dG;G0 þ vGðkÞvG;G0 ðk;xÞ: ð7Þ

The plasmon-energy dispersion is given by the

frequencies at which the real part of the dielectric

function, �ðk;xÞ, is close to zero and the imaginary
part is small. Im��1ðk;xÞ is therefore a maximum.
Throughout this work the plasmon-energy is taken
to be the energy location of the main peak of the

energy-loss function.
2. Numerical implementation

The key ingredient in the calculation of the

energy-loss spectrum is the KS response function
vS of Eq. (4). For this purpose, we need the KS

states which we obtain within the local-density

approximation (LDA) [18], in terms of a varia-

tional expansion in the LAPW basis [19]:

/k;nðrÞ ¼
1

X

X
G

CnðkþGÞwLAPW
kþG ðrÞ: ð8Þ

The LAPW functions wLAPW
kþG ðrÞ are obtained

dividing the unit cell into two regions: non-over-

lapping atomic spheres centered at nuclear sites

and the interstitial region between the spheres.
This allows a faithful description of the localized

strong oscillations near the atomic site, where

atomic-like functions are used, and the smooth

behaviour of the interstitial region, where plane

waves are employed. Local orbitals are also

introduced in order to have an accurate descrip-

tion of the semi-core states.

The use of the symmetry properties of the
crystal allows us to work with Bloch states that

involve momentum transfers in the irreducible

Brillouin zone (IBZ) instead of those in the whole

zone. If ~k is a vector of the IBZ,

/k;nðrÞ ¼ /R�1~k;nðrÞ ¼ e�i
~k
sðRÞ/~k;nðR 
 rþ sÞ; ð9Þ

where Rð~kÞ runs over the sub-set of the point

group of the crystal that generates the star of ~k and
sðRÞ is the partial lattice displacement corre-

sponding to the space-group operation fR; sðRÞg.
The evaluation of the matrix elements in Eq. (4)

is performed with a code that runs in parallel and

scales linearly with the number of nodes used.

With the matrix elements at hand we perform the

sum over k-points and over the pairs of bands al-
lowed by the occupation numbers. We solve Eq.

(5) using two different approximations for fxc. In
the random-phase approximation (RPA), fxc ¼ 0.

In the so-called adiabatic local-density approxi-
mation (ALDA),

f ALDAxc ðr; r0;xÞ ¼ dðr� r0Þ d2ExcðnÞ
dn2

� �
n¼n0ðrÞ

; ð10Þ

where ExcðnÞ is the exchange–correlation energy of
a uniform electron gas of density n, and n0ðrÞ is the
ground state density.

We apply the above formalism to hexagonal

closed-packed transition metals Sc and Ti, whose
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electronic configurations are [Ar]3d14s2 and

[Ar]3d24s2, respectively. The lattice parameters

used are a ¼ 2:95 �A and c ¼ 4:68 �A for Ti and

a ¼ 3:31 �A and c ¼ 5:28 �A for Sc [20]. The ground

state is obtained with a cut-off parameter
RMTKmax¼ 8. Inside the atomic spheres, the LAPW

wave functions are expanded in spherical har-

monics Ylm up to l¼ 10. The response function was

evaluated for q wave vectors perpendicular and

parallel to the hexagonal plane, using 8 · 8 · 16
and 16 · 16 · 8 BZ samplings (the corresponding

number of points in the IBZ being 90 and 150,

respectively) and keeping KS states up to 7.5 Ry,
thereby ensuring convergence in the energy range

under study. The 3s and 3p states were treated as

semi-core states.
3. Results

The upper left (right) panel in Fig. 1 shows the
dynamical-structure factor obtained within ALDA

for Ti (Sc) for energies up to the onset of semicore

excitations (�32.5 eV in Ti and �27.7 eV in Sc)

along the (0 0 1) direction. We have inverted Eq.
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Fig. 1. Top panel: impact of local-filed effects on the dynamic

structure function of Ti and Sc along the hexagonal axis within

ALDA. The values of the momentum transfer are q ¼
4=16ð001Þ and q ¼ 5=16ð001Þ respectively, both in units of

2p=c. The dotted-dashed line corresponds to a FEG calculation

with rs ¼ 1:92 a.u. (Ti) and rs ¼ 2:38 a.u. (Sc). Lower panel:

dielectric function.
(5) using up to 9 shells (55 G-vectors). 2 For clar-

ity, only results for the scalar inversion, corre-

sponding to a 1 · 1 matrix calculation with the

G ¼ G0 ¼ 0 element (dashed line), and for matrix

inversion using 11 (dotted-line), 23 (solid line) and
35 (open circles) G-vectors are displayed. It�s
apparent that convergence is reached for the en-

ergy range under study (the physics of the

dynamical response above the M-edge will be the

subject of another publication); the results shown

in Figs. 2 and 3 correspond to the converged 35 G-

vector calculations. 3 Sðq;x) displays a broad

plasmon-like peak, whose position is shifted up-
wards (between 0.5 eV and 1.0 eV) by the crystal

local-field effects. These peaks correspond (see

lower panels of Fig. 1) to zero values of Re �ðq;xÞ
where Im �ðq;xÞ is small.
For comparison, the upper panels of Fig. 1 also

show (dotted-dashed line) the dynamical structure

factor calculated within the FEG model for

rs ¼ 1:92 a.u. (Ti) and rs ¼ 2:38 a.u. (Sc) for the
same wave vector as the ab initio calculation, rs
being the electron density equivalent to that of

valence electrons, 3d14s2 and 3d24s2, in Ti and Sc

respectively. 4 Clearly, as anticipated at the outset,

the overall loss functions of these transition metals

bear little resemblance to the FEG model, other

than the presence of a broad collective mode;

again, the essentially overdamped mode which
defines the leading feature in Fig. 1 corresponds to

a dielectric function whose nature is quite removed

from the simple, clean, Drude-like zero which de-

fines the textbook plasmon. Additional peaks

around 9 eV in Ti and around 6 eV in Sc arise from

transitions involving the d-electrons and will be

discussed elsewhere.

In order to investigate the dependence on the
direction of the momentum transfer, we show in

Fig. 2 the ALDA dynamic structure factor Sðq;xÞ
for Ti and Sc along the (0 0 1) and (1 1 0) directions
2 The first 9 shells for an hcp crystal contain 1, 3, 9, 11, 23,

35, 37, 43 and 55 G-vectors.
3 The numerical damping introduced in Eq. (4), g, has been

set equal to 0.65 eV. Smaller values of g sharpen the structures
of the energy-loss function without adding new information.

4 The numerical broadening used is also 0.65 eV and is

responsible for the finite linewidth of the FEG peak.
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Fig. 3. Plasmon-energy dispersion for Ti (left) and Sc (right)
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symbols).
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within ALDA.
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for q values of the same order of magnitude. Da-

shed and dotted lines represent Sðq;xÞ for

q ¼ 3=16ð001Þ and q ¼ 4=16ð001Þ, respectively, in
units of 2p=c. The calculation along the (1 1 0)
direction (solid line) is for q ¼ 1=16ð110Þ, in units
of 2p=a. The curves along the (0 0 1) direction are
calculated with a 8 · 8 · 16 sampling over the BZ
and the ones in the (1 1 0) direction with a

16 · 16 · 8 sampling. 5 As the left panel on Fig. 2
5 This choice of the samplings over the BZ for each direction

allows us to use the same value for g and therefore the

comparison of the lineshapes in both directions is meaningful.
illustrates, for both propagation directions the

plasmon peak in Ti hybridizes with fine structure

due to d-electron transitions (prominent peak and
shoulder at its left, respectively). This hybridiza-

tion is more pronounced along the hexagonal
plane. For this reason, the identification of a

plasmon peak for larger momentum transfers

along this direction becomes very ambiguous.

In recent work [13], Sch€one and Ekardt have

reported pseudopotential-based calculations of the

dynamic structure factor for Sc. The intriguing as-

pect of their results is that they suggest that the

collective mode is not realized for small wave vec-
tors for propagation along the hexagonal plane. By

contrast, as shown in Fig. 2 the nature of the col-

lective-like response in Sc (and also in Ti) is, for

small wave vectors, quite similar for propagation

directions parallel and perpendicular to the hexag-

onal plane. Our result agrees with intuitive expec-

tations; on that basis we submit that it is correct.

Fig. 3 shows the plasmon-energy dispersion for
both directions within RPA (solid symbols) and

ALDA (empty symbols). Circles and squares cor-

respond to wave vector transfers that are perpen-

dicular and parallel to the hexagonal plane. As

expected, the ALDA plasmon energy shifts to

slightly smaller values compared to that of the

RPA, due to a less effective electron–electron

interaction.
An interesting feature in both panels of Fig. 3 is

that, in the small wave vector limit, RPA and

ALDA do not yield the same result, as it occurs in

the FEG. Indeed, in the case of the FEG, the

Coulomb term dominates over the exchange–cor-

relation contribution when q ! 0. In the case of

the ab initio calculation, the difference between

RPA and ALDA arises from the inclusion of
crystal local-field effects and its interplay with the

exchange–correlation effects: for small wave vec-

tors, q in Eq. (6) lies in the BZ and hence, the

element we consider after solving the matrix

equation (5) for vG;G0 is the G ¼ G0 ¼ 0 element;

thus, in this case k ¼ q.

Through the inversion process there is a ‘‘mix-

ing’’ between large wave vector arguments kþG
in vS and the small wave vector q of the plasmon,
causing a shift of the collective peak to larger

energies. On the other hand, as mentioned before,
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exchange–correlation effects cause a downwards

shift, smaller than the former one, provoking thus

the difference [21]. The partial cancellation be-

tween both effects leads to a net difference between

the converged, ALDA result, and the scalar RPA
result, for the small-q plasmon dispersion curve.

Ti and Sc show positive plasmon dispersions

and disperse faster along the hexagonal axis. For

jqj values larger than �0.5 �A�1, the assignment of

a collective peak in the (1 1 0) direction becomes a

difficult task. By contrast, this assignment is still

possible along the (0 0 1) direction. This fact rati-

fies, once more, the importance of the underlying
crystal structure.

We note that for Ti, the plasmon energy (�19
eV) is in good agreement with the one measured in

reference [22] for q ¼ 0:7 �A�1 along (0 0 1).
4. Conclusions

We have presented results of calculations of the

dynamic response function of hcp Sc and Ti based

on a full-potential linearized augmented plane

wave method. We have found that crystal local-

field effects have a non-negligible impact on the

plasmon energy for small wave vectors causing an

interplay between the crystal potential and the

exchange–correlation effects. We have investigated
the dependence on propagation direction of the

dynamical-structure factor and we have shown

that, contrary to a recent report [13], the plasmon

loss is quite isotropic; however, the lineshape of

the energy loss shows considerable dependence on

the direction of the wave vector transfer: along the

hexagonal plane, the identification of a dispersion

relation for the plasmon energy beyond the small
wave vector limit, becomes more difficult due to

hybridization with the fine structure originated by

d-electron transitions.
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