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Abstract
This work examines the magnetic order and spin dynamics of a double-exchange
model with competing ferromagnetic and antiferromagnetic Heisenberg
interactions between the local moments. The Heisenberg interactions are
periodically arranged in a Villain configuration in two dimensions with nearest-
neighbour, ferromagnetic coupling J and antiferromagnetic coupling −ηJ .
This model is solved at zero temperature by performing a 1/

√
S expansion in the

rotated reference frame of each local moment. When η exceeds a critical value,
the ground state is a magnetically frustrated, canted antiferromagnet. With
increasing hopping energy t or magnetic field B , the local moments become
aligned and the ferromagnetic phase is stabilized above critical values of t or B .
In the canted phase, a charge-density wave forms because the electrons prefer
to sit on lines of sites that are coupled ferromagnetically. Due to a change
in the topology of the Fermi surface from closed to open, phase separation
occurs in a narrow range of parameters in the canted phase. In zero field, the
long-wavelength spin waves are isotropic in the region of phase separation.
Whereas the average spin-wave stiffness in the canted phase increases with t
or η, it exhibits a more complicated dependence on field. This work strongly
suggests that the jump in the spin-wave stiffness observed in Pr1−x CaxMnO3

with 0.3 � x � 0.4 at a field of 3 T is caused by the delocalization of the
electrons rather than by the alignment of the antiferromagnetic regions.

1. Introduction

The persistence of antiferromagnetic (AFM) short-range order in the ferromagnetic (FM)
phase of the manganites has been recognized for many years [1]. In metallic manganites like
La0.7Ca0.3MnO3 that contain a preponderance of AFM-coupled polaronic regions [2, 3], the
Curie temperature TC is suppressed but the magnetoresistance is strongly enhanced. Close
to but below TC, the spin dynamics of La0.7Ca0.3MnO3 contains both a propagating spin-
wave (SW) branch from the FM regions and a diffusive component from polaronic regions
with suppressed FM interactions [4]. The low-temperature insulating phase of the manganite
Pr1−x Cax MnO3 with 0.3 � x � 0.4 was originally believed [5–7] to be a canted AFM (CAF)
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Figure 1. (a) The generalized
Villain model with Heisenberg
couplings J or −ηJ , (b) the local
moments in the xz plane subtend
angles θa and θb with the z axis,
and (c) the electron spins also lie
in the xz plane but subtend angles
ψa < θa and ψb < θb with the z
axis.

but may actually contain regions with both FM and AFM short-range order [8–13]. When an
applied field B exceeds about 3 T, the resistivity drops by several orders of magnitude [6], the
AFM regions shrink [12], and the SW stiffness Dsw jumps by a factor of three [11]. Despite
the central role played by AFM interactions in the manganites, little is known theoretically
about how they affect the propagating SW dynamics. As first shown by Anderson and
Hasegawa [14], the effective electron-hopping energy between two local moments making
a relative angle � is proportional to cos�/2 in the limit of large Hund’s coupling. So AFM
interactions may suppress the contribution of electron-mediated double-exchange (DE) to the
SW dynamics [15]. By aligning the local moments, a magnetic field or electron hopping
will alter the DE contribution to the SW dynamics. This paper examines the effects of AFM
interactions on the ground-state properties and SW dynamics of electrons coupled to the local
moments of a generalized Villain model [16–19].

The generalized Villain model is one of the simplest periodic models to exhibit magnetic
frustration. As described in figure 1(a), three-dimensional local moments Si are coupled by
the FM interaction J along the y direction and by either the FM interaction J or the AFM
interaction −ηJ along the x direction. The CAF phase is stable when η exceeds the critical
value ηc, which is 1/3 when B = B ẑ = 0 but increases as B increases. Due to the different
environments of the a and b sites, the angle θb at the b sites is always larger than θa at the
a sites, as shown in figure 1(b).

In the hybrid model considered here, the Heisenberg interactions between the local
moments are in the Villain configuration while electrons with density p = 1−x are FM coupled
to the local moments by Hund’s coupling JH and hop between neighbouring sites with energy
t . The DEV model (so called because it combines the DE and Villain models) provides several
advantages as a basis for understanding the effects of AFM interactions and non-collinearity on
the spin dynamics. First, except in a narrow range of parameters, a homogeneous CAF phase is
stable against phase separation when the AFM control parameter η exceeds ηc. By contrast, the
well-studied hybrid model with AFM interactions −J between all neighbouring local moments
phase separates before the AFM exchange J is large enough to cant the spins [20–23]. This
phase instability is caused by a ‘site-local continuous degeneracy’ [21, 23]1 that is absent in

1 In the canted phase of a two-sublattice model with AFM interactions, the local moment on any site of sublattice a
must make an angle�with the local moments on sublattice b. So the possible orientations for any a spin trace out a cone
around the equilibrium direction of the b spins [21, 23]. In the canted phase of a two-sublattice model with FM interac-
tions in plane but AFM interactions between planes, the moments in any plane a are free to rotate about the equilibrium
direction of the moments on neighbouring planes b. These local or planar degeneracies are absent in the DEV model.
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the DEV model. Second, unlike the case in a hybrid model with AFM exchange only, the
ground state of the DEV model contains a FM component even when t = 0 and B = 0. So it
can be used to evaluate the change in SW stiffness Dsw as the electrons become mobile. Third,
because the DEV model contains both FM and AFM Heisenberg interactions, it can be used to
study insulating manganites like Pr0.66Ca0.34MnO3, where the AFM interactions are produced
by superexchange and the FM interactions by short-ranged orbital order [24]2.

For simplicity, we have constructed a model that is translationally symmetric in two
dimensions. Since this model is solved at zero temperature, the qualitative results will be
unchanged in three dimensions. More problematically, the AFM interactions are arranged
periodically rather than in clusters. In the low-temperature phase of Pr0.67Ca0.33MnO3, the FM
interactions may be confined to two-dimensional sheets with widths of roughly 25 Å in a ‘red
cabbage’ structure [12, 13]. Neutron-scattering results [11], on the other hand, suggest that the
FM clusters in the insulating phase are about 40 Å in diameter. So for wavelengths much longer
than 40 Å, the SWs will average over the FM and AFM regions. Hence, the DEV model will
provide qualitatively accurate predictions for the average SW stiffness Dav

sw = (Dx
sw + Dy

sw)/2
defined in the long-wavelength limit.

The Hamiltonian of the DEV model is given by

H = −t
∑
〈i, j〉

∑
α

(
c†

iαc jα + c†
jαciα

) − 2JH

∑
i

si · Si −
∑
〈i, j〉

Ji j Si · S j − B
∑

i

Siz, (1)

where c†
iα and ciα are the creation and destruction operators for an electron with spin α at

site i , si = (1/2)c†
iασαβciβ is the electronic spin, and Si is the spin of the local moment with

magnitude S. Nearest-neighbour Heisenberg interactions Ji j take the values J (FM interaction)
or −ηJ (AFM interaction), as described in figure 1(a). This model is solved at zero temperature
by expanding the Hamiltonian in powers of 1/

√
S. To guarantee that the contributions to the

SW frequencies from hopping and from the Heisenberg interactions are of the same order in
1/

√
S, t is considered to be of the same order in 1/

√
S as JH S, J S2 and BS. Hence, the

dimensionless parameters of our model are t ′ = t/J S2, η, B ′ = B/J S and JH/J S. To lowest
order in 1/S, the magnetic field B only couples to the local moments and not to the electrons.
While the theory developed below can be extended to treat all values of the Hund’s coupling,
we shall for simplicity consider the limit of large JH S or in dimensionless terms, JH/J S � 1
and JH S/t � 1. An earlier work [25] discussed the dependence of the SW dynamics on t ′.
Those results are substantially extended here to describe the dependence on η and field.

This paper is divided into five sections. The Villain model is discussed in some detail in
section 2, where we provide new results for the SW stiffness. The ground-state properties of
the DEV model are presented in section 3. In section 4, we evaluate the SW frequencies of the
DEV model. Section 5 contains a discussion and summary. Two appendices contain results
for the coefficients of the harmonic Hamiltonian and for the hopping matrix elements of the
band Hamiltonian.

2. Generalized Villain model

This section presents, for the first time, a Holstein–Primakoff expansion for the generalized
Villain model. In an equivalent approach, Saslow and Erwin [19] numerically evaluated the
mode frequencies by linearizing the equations of motion for the spins. However, a formal

2 While the FM coupling between neighbouring Mn4+ and Mn3+ ions are induced by the hopping of electrons between
those sites, that coupling is significantly enhanced by the polaronic distortions of the O atoms around some Mn4+

ions [24]. So the Heisenberg coupling J incorporates the enhancement of the FM interaction beyond that produced
by the uniform hopping of electrons between neighbouring sites on an undistorted lattice.



5486 R S Fishman

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1 1.5 2
η

B' = 0

0.5
1.0

1.5
2.0

2.5

x 

y 

3.00

0.5

1

1.5

0 0.5 1 1.5 2

θ
a

b

t' = 0

Dsw/JS

Figure 2. The SW stiffnesses
versus η for t ′ = 0 and various
values of the field B ′. In the
inset are plotted the equilibrium
angles θa and θb versus η for the
same set of fields.

Holstein–Primakoff expansion is required to lay the foundation for the solution of the full
DEV model in section 4.

The Hamiltonian Hv of the generalized Villain model is given by equation (1) with t = 0
and JH = 0. The spin dynamics is immensely simplified in the rotated reference frame for each
spin: S̄i = U rot

i Si , where U rot
i is the unitary rotation matrix for site i . A Holstein–Primakoff

expansion is performed within each rotated reference frame: S̄iz = S−a†
i ai , S̄i x +iS̄iy = √

2Sai

and S̄i x − iS̄iy = √
2Sa†

i . Then the zeroth-order term (in powers of 1/
√

S) in Hv can be written
as

Eh = 1
2 N J S2{− cos 2θa + η cos 2θb − 2 cos(θa − θb)− B ′(cos θa + cos θb

)}
, (2)

which is of order J S2.
Minimizing Eh with respect to θa and θb yields the relations

sin 2θa + sin(θa − θb) + 1
2 B ′ sin θa = 0, (3)

−η sin 2θb − sin(θa − θb) + 1
2 B ′ sin θb = 0. (4)

In zero field, it is easy to show that θb = 3θa for all η. The equilibrium angles are plotted versus
η for several different values of B ′ ranging from 0 to 3 in the inset to figure 2. In the limit of
large η with B ′ = 0, θb → π/2 and θa → π/6. For nonzero field, θb still approaches π/2 but
θa approaches an angle smaller than π/6. In figure 3(a), we plot the equilibrium angles versus
B ′ for several values of η.

After linearizing equations (3) and (4), we find that the phase boundary between the CAF
and FM phases satisfies the relation

B ′ − 2η + 4 − 2
√
(η + 1)2 + 1 = 0, (5)

which was first obtained by Gabay et al [18]. While ηc = 1/3 in zero field, ηc increases with
the field B ′ as seen in the inset to figure 2 and in 3(a).

Expanded as Hv = Eh + Hv1 + Hv2 + · · · in powers of 1/
√

S, the first-order term Hv1

vanishes provided that the angles θa and θb satisfy equations (3) and (4). In terms of the
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Figure 3. (a) Equilibrium angles and (b) SW
stiffnesses versus applied field B ′ for several
values of η and t ′ = 0. Inset in (b) are the SW
stiffnesses when η = 1 for very small fields
and kα = 0.015π .

Fourier-transformed spin operators a(r)k and a(r)†k on the r = a or b sublattice, the second-order
term Hv2 can be written as

Hv2 = J S
∑
k,r,s

{
a(r)†k a(s)k A(r,s)k +

(
a(r)−ka(s)k + a(r)†−k a(s)†k

)
B(r,s)

k

}
, (6)

with coefficients given in appendix A. The Hamiltonian of equation (6) is easily diagonalized
by applying the method of Walker and Walstedt [26], which was originally developed for
spin glasses. The SW frequency ωk is given by equation (A.10) of appendix A. This
formal result agrees with the numerical results of Saslow and Erwin [19]. In the long-
wavelength limit, the SW stiffnesses in the x and y directions are obtained from the expression
limk→0 ωk = B + Dx

swk2
x + Dy

swk2
y.

In the FM phase, the SW frequency can be solved analytically:

ωk = B + J S
(
3 − η + (η − 1) cos kx

) − J S
√
(1 + η)2(1 − cos kx)2 + 4 cos2 ky. (7)

So for kx = 0, ωk = B + 2J S(1 − cos ky) is independent of η. The SW stiffnesses in the FM
phase are given by the simple results Dx

sw = (J S/2)(1 − η) and Dy
sw = J S, independent of

field. The FM phase becomes unstable when ωQ = 0, where Q = (π, 0) is the AFM Bragg
vector. This yields the same condition for the CAF–FM phase boundary as equation (5).
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In the CAF phase, analytic results for the SW stiffnesses were found only when B = 0:

Dx
sw = ηDy

sw = J S
√

2η

√
1 −

√
η

η + 1
. (8)

When η → ∞, Dx
sw → J S

√
2η and Dy

sw → J S
√

2/η. For B > 0, Dy
sw tends to a nonzero

limit but Dx
sw still diverges as η → ∞. So the average SW stiffness always diverges when

η → ∞, regardless of the field.
As shown in figure 2, Dx

sw is a linearly decreasing function of η in the FM phase below
ηc. In the CAF phase above ηc, Dx

sw increases and Dy
sw decreases with η. Long-wavelength

SWs become isotropic when Dx
sw and Dy

sw cross. For B = 0, Dx
sw = Dy

sw when η = 1. This
crossing point moves to progressively larger values of η with increasing field.

The SW stiffnesses are plotted versus field in figure 3(b) for four different values of η.
In the FM phase above Bc, the stiffnesses are independent of field. But in the CAF phase
below Bc, the dependence on field is more complex. For η > 1, Dx

sw > Dy
sw at zero field and

the stiffnesses cross as the field increases. If the SW stiffness in the α direction is defined
at fixed kα by Dα

sw(kα, B) = (ωk − B)/k2
α, then Dα

sw(kα, B) increases rapidly near the field
B	 = Dα

sw(kα, 0)k2
α as shown in the inset to figure 3(b) for kα = 0.015π . As discussed in detail

elsewhere [27], this behaviour is typical of any CAF with a quadratic SW dispersion. Since
the drop in Dx

sw is then steeper than the rise in Dy
sw, Dav

sw decreases with field for B � B	.
Surprisingly, figure 3(b) indicates that the stiffness in the x direction becomes negative

for sufficiently large η. To understand this behaviour, we have plotted the SW frequencies
versus k for η = 1 and several fields in figure 4(b). Due to the reduced symmetry of the CAF
phase, the first Brillouin zone extends from −π to π along kx but from −π/2 to π/2 along
ky.3 Since ωQ = 0 and ω0 = B in the CAF phase, the SW stiffness in the x direction must
decrease as the field B becomes comparable to J S. When η = 1, Dx

sw = 0 for all fields above
Bc = 2(

√
5 − 1)J S ≈ 2.472J S. For η > 1 and B > Bc, Dx

sw < 0 in the FM phase.
The SW frequencies are plotted versus k for B = 0 and various values of η in figure 4(a).

When η = −1, all of the Heisenberg interactions equal J and the SWs are isotropic. For
η < ηc = 1/3 in the FM phase, the SW frequencies are independent of η along ky but not
along kx , as implied by equation (7). With increasing η in the CAF phase, the SW stiffness
increases along the x direction but decreases along the y direction, as predicted by equations (8)
and shown in figure 2. Also notice that the SW velocity at Q is an increasing function of η in
the CAF phase.

Both figures 4(a) and (b) indicate that the SW velocity at Q softens as the CAF phase
becomes unstable. In the FM phase, dωk/dkx vanishes at Q for all B > Bc or η < ηc.
The softening of the SW velocity at the CAF–FM phase boundary is a very general result, as
discussed by Román and Soto [28].

3. Ground-state properties of the DEV model

In this section, we discuss the ground-state properties of the DEV model, which is constructed
by placing electrons with density p on the Villain lattice. An electron on site i is coupled to the
local moment at that site by Hund’s coupling −2JHsi ·Si and is allowed to hop to neighbouring
sites with hopping energy t , as specified by the DEV Hamiltonian of equation (1).

3 Since there are four inequivalent sites on the Villain lattice, it might seem that the first Brillouin zone should be
reduced in both the x and y directions. However, all a or b sites experience the same environment regardless of
whether the spins tilt to the +x or −x directions: each a spin, for example, makes an angle of θb − θa with its b
neighbours and an angle 2θa with its a neighbours.
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(a)

(b)

Figure 4. (a) The SW frequencies for B ′ = 0, t ′ = 0 and several values of η; (b) the SW frequencies
for p = 0.66, η = 1, t ′ = 0 and various fields B ′.

With the Fermion creation and destruction operators c̄(r)†kα and c̄(r)kα defined in the reference
frames of the local moments, the band Hamiltonian of the electrons can be written

Hb =
∑

k

∑
i, j

∑
α,β

(
H i j

b0αβ + K i j
αβ(k)

)
c̄(i)†kα c̄( j)

kβ , (9)

where c̄(i)kα = {c̄(a)kα , c̄(a)k+Q,α, c̄(b)kα , c̄(b)k+Q,α} defines the i j subspace. The sum over k is restricted to
the first Brillouin zone andα = ±1 corresponds to spin up or down in the local reference frames.
The zeroth-order band Hamiltonian includes just the Hund’s coupling: H i j

b0αβ = −JH Sδi jσ
z
αβ .

The hopping energies K i j
αβ(k), smaller by t/JH S, are given in appendix B. Like Eh of

equation (2), Hb is also of the order of J S2.
The hopping energies K i j

αβ(k) are treated within degenerate perturbation theory. Second-
order perturbation theory with corrections of order t/JH S will be required to obtain the SW
frequencies in the next section. But to order (t/JH S)0 or to first order in the hopping energies,
the spin up and down subspaces decouple and the band Hamiltonian Hb is easily transformed
into the diagonal form Hb = ∑

k,α,r ε
(r)
kα d(r)†kα d(r)kα by the rotations c̄(a)kα = u(a)k d(a)kα + u(b)k d(b)kα and

c̄(b)kα = u(b)k d(a)kα − u(a)k d(b)kα where ε(r)kα = −JHSα + ε̃(r)k ,

u(a)2k = 1 − u(b)2k = 1

2

{
1 +

1

wk

(
cos θa − cos θb

)
cos kx

}
, (10)

ε̃
(r)
k = −t cos kx

(
cos θa + cos θb

) ∓ twk, (11)
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wk =
√(

cos θa − cos θb
)2

cos2 kx + 4 cos2
(
(θa − θb)/2

)
cos2 ky. (12)

The upper and lower signs in ε̃(r)k refer to the r = a and b bands, respectively. With Hb in
diagonal form, Eb = 〈Hb〉 is easy to evaluate.

It is straightforward to minimize the zeroth-order energy E0 = Eh + Eb with respect to the
angles θa and θb in the limit of large JH S. The relations that generalize equations (3) and (4)
are

sin 2θa + sin(θa − θb) +
1

2
B ′ sin θa +

1

N J S2

∑
k

{
dε̃(a)k

dθa
f (ε̃(a)k ) +

dε̃(b)k

dθa
f (ε̃(b)k )

}
= 0, (13)

−η sin 2θb − sin(θa − θb) +
1

2
B ′ sin θb +

1

N J S2

∑
k

{
dε̃(a)k

dθb
f (ε̃(a)k ) +

dε̃(b)k

dθb
f (ε̃(b)k )

}
= 0,

(14)

where f (ε̃) = �(µ̃− ε̃) is the Fermi function at T = 0 and µ̃ = µ− JHS sgn(p − 1) is the
shifted chemical potential. For fixed η and B ′, the equilibrium angles decrease with increasing
t ′. The phase boundary between the CAF and FM phases is now given by the condition

B ′ − 2η + 4 + 3K/4J S2 − 2
√
(1 + η)2 + 1 + K/4J S2 + (K/8J S2)2 = 0, (15)

where K = −(〈ε̃(a)k 〉 + 〈ε̃(b)k 〉)/2 � 0 is the average kinetic energy of the electrons in the FM
phase. This reduces to equation (5) when K = 0. For t ′ = 10 and B ′ = 0, the dependence
of the equilibrium angles on η is plotted in figure 5(a). Also shown is the average spin
M = S(cos θa + cos θb)/2 of the local moments. Their dependence on field B ′ is plotted in
figure 6(a) for t ′ = 3 and η = 2. Both θa and θb were shown to vanish as t ′ → t ′

c in [25].
Surprisingly, the electronic occupation of the a and b sites on the Villain lattice are

different. For p < 1, the occupancies of the a and b sublattices are given by

na = 2

N

∑
k

{
u(a)2k f (ε̃(a)k ) + u(b)2k f (ε̃(b)k )

}
, (16)

nb = 2

N

∑
k

{
u(b)2k f (ε̃(a)k ) + u(b)2k f (ε̃(a)k )

}
. (17)

From the relation u(a)2k + u(b)2k = 1, it follows that (na + nb)/2 = p is just the average number
of electrons per site.

In the CAF phase, electrons prefer to sit on the a sites of the Villain lattice. The fraction
fa = na/2 p � 1/2 of such electrons is plotted in figures 5(a) and 6(a). For t ′ = 3 and η = 2
in figure 6(a), fa has a maximum of 0.564 in zero field and approaches 1/2 as B ′ → B ′

c ≈ 4.8.
Similar behaviour is found in figure 5(a), where fa is shown to be an increasing function of η
above ηc ≈ 1.6. In [25], it was shown that fa decreases with t ′ and approaches 1/2 as t ′ → t ′

c.
This behaviour is easy to understand: the largest angles between neighbouring spins are

along the x axis between b sites with angles differing by 2θb. When an electron hops onto a
b site, it cannot easily hop to other b sites and so quickly moves on to a neighbouring a site,
where it can readily travel between other a sites with angular difference 2θa 
 2θb. Hence, the
non-collinearity of the local moments quite naturally produces a charge-density wave (CDW)
with a substantial amplitude. As η → ∞, θb approaches π/2 and fa approaches 0.593. So
even when the electrons are unable to hop between sites on the b sublattice (since the angles on
neighbouring b sites differ by π), roughly 40% of the electrons can still be found on b sites at
any one time. Because neither the CAF nor FM densities-of-states contain a gap, both phases
are metallic within the DEV model for t ′ > 0.
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of the local moments, the total local
magnetization M/S, the fraction fa of
the electrons on the a sites, and (b) the
spin-wave stiffnesses for p = 0.66,
t ′ = 10 and B ′ = 0 versus η.

Due to short-range orbital ordering, a CDW with the same period as the one predicted
here has in fact been observed in the AFM regions of Pr0.7Ca0.3MnO3 [7, 29]. However, the
observed charge ordering is perfect: all of the Mn3+ ions lie on one sublattice and all of the Mn4+

ions lie on the other. Such perfect charge ordering is never achieved within the DEV model.
Another surprising result is that phase separation occurs within a narrow range of t ′. In a

plot of filling p versus chemical potential µ, phase separation appears as a jump
p in p(µ).
For the parameters η = 3 and B = 0 in figure 7,
p reaches a maximum of about 0.0028 when
t ′ ≈ 10.0 and shrinks as t ′ increases. If p is fixed at 0.66, then phase separation occurs within
a very narrow range of t ′ between about 9.98 and 10.02. For fixed p, phase separation appears
as jumps in the equilibrium angles θr and in the electron fraction fa , as seen in figure 5(a) for
zero field.

Like the Pomeranchuk instability [30, 31] in the two-dimensional Hubbard model, the
phase instability in the DEV model occurs close to, but slightly above, the Van Hove filling
and is marked by a change in Fermi surface (FS) topology from closed to open. In the usual
Pomeranchuk instability, however, the change in FS topology spontaneously breaks the square
symmetry of the lattice. Square symmetry is already broken in the DEV model by the Villain
arrangement of the Heisenberg interactions. The FS of the DEV model is sketched in figure 8
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Figure 6. (a) The angles θa and θb

of the local moments, the total local
magnetization M/S and the fraction
fa of the electrons on the a sites,
and (b) the spin-wave stiffnesses for
p = 0.66, t ′ = 3 and η = 2 versus
B ′.

for η = 3, B = 0, p = 0.66, and for values of t ′ on either side of the phase-separated range.
For t ′ just above 10.0, the extra electrons in the neck of the a FS around k = 0 are offset by the
holes in the b FS around k = (π, π/2). Although phase separation occurs for any t ′ around
some value of the filling, it becomes significant only if the b FS is already present when the
necks in the a FS develop. For the parameters in figure 7, this requires that t ′ � 9.9.

A magnetic field very quickly narrows and then eliminates the region of phase separation.
For t ′ = 3 and η = 2, phase separation does not occur with increasing field. The small kinks
in the equilibrium angles and electron fraction seen in figure 6(a) correspond to points of Van
Hove filling (where the necks in the a FS first appear) but not to a phase-separated region.

4. Spin dynamics of the DEV model

In this section, we evaluate the SW frequencies for the DEV model by following the general
formalism developed by Golosov [23]. While introducing some new physics, the presence of
non-collinear spins also complicates things a bit.

When JH S/t is finite, the relationships given above for c̄(r)kα in terms of d(s)kα must contain
admixtures of the opposite-spin terms (t/JH S)d(s)k+Q,−α . As sketched in figure 1(c), this implies
that the equilibrium angles ψr of the electrons are smaller than the angles θr of the local
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Figure 7. The filling p versus shifted
chemical potential µ̃ = µ + JHS
for various values of t ′, η = 3 and
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discontinuities in p.
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Figure 8. The FS is plotted for η = 3, B ′ = 0, p = 0.66, and t ′ = 9.8, 10.2, 12, 16 or 21.2. For
t ′ > 10, the a FS develops necks around k = 0.

moments because the electrons try to align their spins as much as possible. For large Hund’s
coupling, θr −ψr ∝ t/JH S and the electrons always exert a small torque on the local moments.
In the local reference frame of site i on the r sublattice, 〈s̄i x 〉 = (nr/2) sin(θr −ψr ) so these new
terms produce a correction to the Hund’s coupling −JHSi · si that survives in the JH S → ∞
limit. Indeed, these torque terms are required to obtain sensible results for the SW frequencies.

To second order in perturbation theory, the new relationships for the Fermion operators
are given by

c̄(a)kα = u(a)k d(a)kα + u(b)k d(b)kα +
t

JH S

{(
u(a)k cos ky sin

(
(θa − θb)/2

) − u(b)k cos kx sin θa
)
d(a)k+Q,−α

− (
u(a)k cos kx sin θa + u(b)k cos ky sin

(
(θa − θb)/2

))
d(b)k+Q,−α

}
, (18)

c̄(b)kα = u(b)k d(a)kα − u(a)k d(b)kα +
t

JH S

{
−(

u(a)k cos kx sin θb + u(b)k cos ky sin
(
(θa − θb)/2

))
d(a)k+Q,−α

+
(−u(a)k cos ky sin

(
(θa − θb)/2

)
+ u(b)k cos kx sin θb

)
d(b)k+Q,−α

}
. (19)
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On the r sublattice, these equations imply that θr − ψr is related to the band and harmonic
energies by

nr

2
sin(θr − ψr ) = 1

JH S

d

dθr

Eb

N
= − 1

JHS

d

dθr

Eh

N
, (20)

which can also be obtained by minimizing the classical energy E(θa, θb) =
−JH S

∑
i ni cos(θi − ψi ) + Eh(θa, θb) with respect to θa or θb. Hence, the torque exerted

by the electrons on the local moments opposes the tendency of the local moments to return to
the angles that minimize Eh.

In terms of the Fermion operators d(r)kα and d(r)†kα that diagonalize Hb, the full Hamiltonian
can be expanded in a power series in 1/

√
S as H = H0 + H1 + H2 + · · ·. The first-order term

may be written

H1 = −2JH

√
S

N

∑
k,q,r,s

d(r)†k+q,↓d(s)k,↑
{

u(r)k+qu(s)k a(a)q + v(r)k+qv
(s)
k a(b)q

}

− 2t√
SN

∑
k,q,r,s

{
d(r)†k+q,↑d(s)k+Q,↑

(
u(r)k+qx (s)k a(a)q + v(r)k+q y(s)k a(b)q

)
+ d(r)†k+q+Q,↓d(s)k↓

(
u(s)k x (r)k+qa(a)q + v(s)k y(r)k+qa(b)q

)}
+ h.c., (21)

where

x (a)k = u(a)k cos ky sin
(
(θa − θb)/2

) − u(b)k cos kx sin θa, (22)

y(a)k = −u(b)k cos ky sin
(
(θa − θb)/2

) − u(a)k cos kx sin θb, (23)

and x (b)k = −x (a)k+Q, y(b)k = y(a)k+Q, v(a)k = u(b)k , and v(b)k = −u(a)k . The second term in
equation (21) is produced by the torque exerted by the electrons on the local moments. Notice
that H1 is linear in the boson operators. The expectation value of the Fermion factor multiplying
the boson operators in equation (21) vanishes provided that θr satisfy equations (13) and (14).
The second-order Hamiltonian can be written as

H2 = 2JH

N

∑
k,q1,q2,r,s

∑
α,β

σ z
αβd(r)†k−q1,α

d(s)k−q2,β

{
a(a)†q1

a(a)q2
u(r)k−q1

u(s)k−q2
+ a(b)†q1

a(b)q2
v
(r)
k−q1

v
(s)
k−q2

}
. (24)

Since JH/J S and t/J S are of the order of S0, H1/J S2 is of the order of 1/
√

S and H2/J S2 is
of the order of 1/S.

To eliminate the first-order term in H and to express the Hamiltonian in terms of the true
SW operators for the total spin Si,tot = Si + si , we perform the unitary transformation [23]
H ′ = e−U H eU where U is constructed to satisfy [U, H0] = H1. This transformation produces
a modified second-order term H ′

2 = H2 + [U, H1]/2. The anti-Hermitian operator U that
fulfills these requirements is

U = −2JH

√
S

N

∑
k,q,r,s

d(r)†k+q,↓d(s)k↑
(
a(a)q u(r)k+qu(s)k + a(b)q v

(r)
k+qv

(s)
k

) 1

ε̃
(s)
k − ε̃

(r)
k+q − 2JH S

− 2t√
SN

∑
k,q,r,s

{
d(r)†k+q,↑d(s)k+Q,↑

(
a(a)q u(r)k+qx (s)k + a(b)q v

(r)
k+q y(s)k

)

+ d(r)†k+q,↓d(s)k+Q,↓
(
a(a)q u(s)k+Qx (r)k+q+Q + a(b)q v

(s)
k+Q y(r)k+q+Q

)} 1

ε̃
(s)
k+Q − ε̃

(r)
k+q

− h.c., (25)

which is clearly of the order of (J S2)/
√

S.
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Performing the unitary transformation and taking the limit JHS → ∞ produces a rather
complicated expression for H ′

2. This expression can be considerably simplified by tracing over
the Fermion degrees of freedom,thereby replacing the combination of Fermi operators d(r)†k↑ d(s)k′↑
by its expectation value δrsδk,k′ f (ε̃(r)k ). Then H ′

2 can be written as an effective Hamiltonian
for the SW operators a(r)k and a(r)†k that takes the same form as the harmonic Hamiltonian of
equation (6) but with revised coefficients given in appendix A. The SW frequencyωk is given
by equation (A.10) with Ã(r,s)k and B̃(r,s)

k replacing the harmonic coefficients.
Note that the torque terms in H1 produce the corrections D(r,s)

k and E (r,s)
k (given by

equations (A.7) and (A.8)) to the harmonic coefficients. Both sets of terms vanish in the
FM phase, leaving only the correction C (r,s)

k to Ã(r,s)k . But in the CAF phase, these corrections
are required to preserve rotational symmetry and the relations ωQ = 0 and ω0 = B .

An analytic expression for the SW frequency is possible in the FM phase:

ωk = B + J S
(
3 − η + (η − 1) cos kx

)
+ K (2 − cos kx)/4S

− J S
√
(1 + η)2(1 − cos kx)2 + (2 + K/4J S2)2 cos2 ky, (26)

which generalizes equation (7) for the Villain model. The FM phase becomes unstable when
ωQ = 0, which yields the same condition for the CAF–FM phase boundary as equation (15).
In the FM phase, the SW stiffnesses are the sum of DE and Heisenberg contributions:
Dx

sw = K/8S + J S(1 − η)/2 and Dy
sw = K/8S + J S, both independent of field. For J = 0,

these results agree with the SW frequencies of the DE model first obtained by Furukawa [32].
When η = −1, the SWs are isotropic because all nearest-neighbour interactions equal J .

In the CAF phase, the SW frequency and stiffnesses are solved numerically by integrating
over the first Brillouin zone to obtain C (r,s)

k , D(r,s)
k and E (r,s)

k . The changes in the SW frequency
with increasing t ′ were discussed in [25] for η = 3 and B = 0. For all t ′ � t ′

c ≈ 21.2, the
SW frequency vanishes at both the FM and AFM Bragg vectors. Above the phase separation
region around t ′ ≈ 10.0 but below t ′

c, ωk develops kinks that correspond to transitions across
the neck of the a FS (
q1 = Q−k1) and across the length of the b FS (
q2 = Q−k2). These
transitions are sketched in figure 8. Since the nesting across
q2 is much weaker than across

q1, the kink in the SW frequency at k2 is much weaker than the one at k1. As t ′ → 10.0,

qi → 0 so the kinks at k1 and k2 merge with Q. Whereas ωk is a non-monotonic function
of t ′ along the x direction, it is a monotonically increasing function of t ′ along the y direction.

As plotted in figure 2 of [25] for η = 3 and B ′ = 0, the SW stiffness in the x direction
reaches a minimum at t ′

c, above which both Dx
sw and Dy

sw are linearly increasing functions of
t ′. The stiffnesses in the x and y directions cross in the region of phase separation, where the
SWs become isotropic. For η = 3 and B ′ = 0, the average SW stiffness Dav

sw doubles as t ′
increases from zero to t ′

c.
With increasing η, the SW stiffnesses plotted in figure 5(b) for t ′ = 10 and B = 0 again

cross in the region of phase separation around η = 3.0. For larger η, Dx
sw > Dy

sw. Due to the
strong increase in Dx

sw with η, the average SW stiffness actually grows as the local moments
become more non-collinear. Similar behaviour was found when t = 0 in figure 2, where Dav

sw
was also found to be an increasing function of η. The SW frequencies are plotted for t ′ = 10,
B ′ = 0 and various values of η in figure 9(a). As shown, the SW frequency softens at Q as
η approaches the critical value of 1.6. The kinks in the SW spectrum at k1 and k2 are clearly
seen for η = 2.9. Otherwise, the behaviour of the SW frequencies is very similar to that shown
in figure 4(a) in the absence of electron hopping.

The effect of a magnetic field is demonstrated in figures 6(b) and 9(b) for η = 2 and
t ′ = 3. Absent from figure 6(b) is the region of very low fields, where the behaviour of the
SW stiffness is complicated by the dependence of the function Dα

sw(kα, B) = (ωk − B)/k2
α on
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(a)

(b)

Figure 9. (a) The SW frequencies for p = 0.66, t ′ = 3, B ′ = 0 and various values of η, and (b)
the SW frequencies for p = 0.66, η = 2, t ′ = 3 and various values of B ′.

the ratio kα/
√

B ′ [27]. For larger fields, there is a gradual increase in Dy
sw and a decrease in

Dx
sw as B grows from 0 to Bc ≈ 4.8J S. The drop in Dx

sw with field is caused by the growth of
the SW gap ω0 = B at k = 0, while the SW frequency continues to vanish at Q = (π, 0) for
B < Bc, as seen in figure 9(b). Hence, the average SW stiffness drops from roughly 1.2J S at
B = 0 to 0.54J S at Bc. Because a magnetic field very quickly destroys the region of phase
separation, the crossing point of the x and y stiffnesses does not coincide with a region of phase
separation. As expected, the SW stiffnesses are independent of field above Bc. Notice from
figures 9(a) and (b) that the SW velocity at Q softens within the CAF phase as t approaches tc
or B approaches Bc. This behaviour occurs at the CAF–FM phase boundary of any magnetic
system [28].

5. Discussion and conclusion

Applying the results of this work to the manganites requires an estimation of the relevant
parameters. Using S = 3/2, ηJ S ≈ 8.6 meV, η ∼ 1 [33] and t ≈ 200 meV for the metallic
phase gives t ′ ≈ 32 and B ′ ≈ 0.028B(T ). When η = 1, the critical values of the DEV model
are t ′

c = 5.3 in zero field and B ′
c = 2.5 for t ′ = 0. Hence, the metallic value for the hopping

energy is more than sufficient to stabilize the FM phase but an applied field of 3 T cannot align
the local moments when t ′ is much below t ′

c.
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Metal–insulator transitions in many of the manganites have been successfully interpreted
within the framework of percolation theory [34, 35]. When the FM fraction f exceeds a critical
value fc, a FM backbone spans the sample and the system becomes metallic. The percolation
threshold fc in those manganites lies between 0.17 and 0.19. But it is rather difficult to
explain the jump in the SW stiffness observed in Pr0.7Ca0.3MnO3 [11] within the framework of
percolation theory. Assuming that the metal–insulator transition in Pr1−x Cax MnO3 is produced
by the percolation of metallic FM clusters [10], there is no reason why the SW stiffness should
change when a FM backbone spans the sample. Within percolation theory, one would more
naturally expect the SW stiffness to gradually increase with field as a growing fraction of the
sample becomes metallic.

Estimates of the FM fraction f in Pr1−x Cax MnO3 manganites also pose a difficulty for
percolation theory. The accepted range for the percolation threshold fc within continuum
models falls between 0.15 and 0.22. While one experimental estimate of fc ≈ 0.08 [10] at the
metal–insulator transition lies well below this accepted range,a recent estimate of fc ≈ 0.6 [13]
based on more complete magnetization data lies well above this range. At zero field and low
temperatures, estimates for f range from 0.3 [13] to 0.5 [9]. If those estimates are correct and
the FM regions are metallic, then the percolation threshold would already be exceeded and the
low-temperature phase would be metallic in zero field.

On the other hand, our results clearly indicate that the jump in the SW stiffness at a field
of 3 T cannot be produced by simply aligning the AFM regions while keeping the bandwidth
∼t fixed. As found in figure 6(b), a magnetic field would act to suppress rather than enhance
the average SW stiffness under those conditions. Moreover, a field of 3 T corresponding to
B ′ ≈ 0.086 
 B ′

c will have little affect on the alignment of the local moments. Whereas
experiments indicate that the AFM regions begin to shrink under a magnetic field greater
than 3 T, a sizeable fraction of the sample remains AFM even above the metal–insulator
transition [10, 11, 13].

The large increase in the SW stiffness predicted by our work as t ′ increases from 0
to t ′

c suggests an entirely different scenario: at the critical field, electrons in the insulating
and possibly canted FM regions delocalize as the hopping energy t sharply increases. Since
the integrated optical weight is just K ∼ t , the jump in the hopping energy at 3 T should
be observable in optical measurements. Indeed, measurements by Okimoto et al [7] on
Pr0.6Ca0.4MnO3 reveal a rapid rise in σ(ω) and a rapid drop in the CDW gap near the critical
field. If the percolation threshold for the FM regions is exceeded when the electrons delocalize,
as suggested by the measurements discussed above, then the jump in the SW stiffness will
coincide with the metal–insulator transition. Otherwise, the metal–insulator transition will
occur at a slightly larger field.

Supporting this picture are the plethora of probes that can produce a metal–insulator
transition in Pr1−x CaxMnO3 (0.3 � x � 0.4). Besides a magnetic field, application of
an electric field [36], high pressure [37], exposure to x-rays [38] and exposure to visible
light [39] all induce a metal–insulator transition. The identical resistivities produced by
application of a magnetic field or exposure to x-rays [38] suggest a common mechanism:
the excitation of charge carriers out of polaronic traps produced by the electron–lattice
coupling. The subsequent relaxation of the lattice [9, 38] may prevent retrapping of the
electrons.

The jump in the SW stiffness as a function of field in Pr0.7Ca0.3MnO3 [11] also bears
a striking resemblance to the jump in the SW stiffness observed in La1−x CaxMnO3 at the
metal–insulator transition with x ≈ 0.22 [40]. In fact, the sizes of the SW stiffnesses on either
side of the doping-induced transition in La1−x Cax MnO3 are almost exactly the same as on
either side of the field-induced transition in Pr0.7Ca0.3MnO3. This suggests that there are also



5498 R S Fishman

large increases in the hopping energy and electronic kinetic energy in La1−x Cax MnO3 at the
critical concentration of x ≈ 0.22.

Compare the jump in the SW stiffness across the metal–insulator transition with the smooth
dependence of the spin-diffusion coefficient� [4, 40], which gives the lifetime τ (k) = 1/�k2

of paramagnetic spin fluctuations. Measurements [40] of the spin-diffusion coefficient were
performed just below TC, where paramagnetic spin relaxation occurs within polaronic regions
of the FM phase. While Dsw is a linear function of the electronic kinetic energy in the FM
phase, �χ depends only on doping and is independent of the electronic bandwidth W in the
low-temperature limit T 
 W [4]. So long as the bandwidth of the polaronic regions remains
large compared to the temperature, the spin-diffusion coefficient will not change across the
metal–insulator transition.

Except in a very narrow range of parameters, phase separation is absent in the DEV model.
Phase separation appears quite commonly in DE models with AFM Heisenberg interactions [1]
and even occurs near p = 1 in a DE model without Heisenberg interactions [41]. Results for the
DEV model contrast with both a DE model with AFM interactions between all neighbouring
local moments [20–23] and a DE model with FM interactions in plane but AFM interactions
between neighbouring planes [42]. Due to the high symmetry of both models, AFM order
is not frustrated when t = 0. But in both cases, phase separation occurs before the AFM
interactions become strong enough to cant the spins. Work by Golosov [21, 23] indicates that
the canted phase is destabilized by the presence of local degeneracies (see footnote 1) that are
absent in the DEV model. Our results suggest that phase separation only occurs within a very
narrow range of parameters when the AFM Heisenberg interactions are frustrated and local
degeneracies are absent. For doping concentrations away from multiples of a quarter filling,
long-range orbital ordering is impossible and magnetic frustration may be present in a wide
range of manganites. Therefore, the DE model may not provide as straightforward a pathway
to phase separation in the manganites as believed. A much more important role may be played
by the quenched disorder associated with chemical inhomogeneities [43].

Román and Soto [28] pointed out that the nature of the FM and AFM regions can be
probed by measuring the SW spectrum about the AFM Bragg vector Q. In a CAF, the SWs
at Q are not gapped for any field B below Bc, as shown in figures 4(b) and 9(b). But in a
phase-separated mixture, the SW branch of the FM regions will not vanish at Q. As discussed
elsewhere [27] and seen in the inset to figure 3(b), the rapid increase in the SW stiffness for
fields near B	 is another signature of a canted phase.

Since CE-type AFM ordering occurs at half-filling, the local charge ordering observed
in the manganites Pr0.6Ca0.4MnO3 [7, 29] and La0.7Ca0.3MnO3 [2, 3] would be simplified if
the polaronic regions were rich in holes and poor in electrons compared to the bulk. Our
model provides a natural explanation for this behaviour, since the electronic fraction on b sites
is substantially smaller than the fraction on a sites as the electrons avoid regions with more
pronounced AFM order.

This paper has studied the general effects of AFM interactions and non-collinearity on the
magnetic ordering and spin dynamics of DE systems. The competition between DE and AFM
interactions is responsible for several interesting properties. In a narrow region of hopping
energies, weak phase separation occurs as the FS topology changes from closed to open.
Because electrons prefer to occupy sites that are coupled by FM interactions, a CDW appears
in the absence of a CDW gap. For finite Hund’s coupling, the electron spins are more closely
aligned than the local moments of the CAF. The CAF becomes unstable above critical values
of field and hopping energy and below a critical value of η. Perhaps the most surprising
result is that DE changes none of the qualitative features of the CAF state. The SW gap ω0

at k = 0 remains equal to B and the gap ωQ at the AFM Bragg vector Q continues to vanish
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for any hopping energy below tc. The average SW stiffness still softens with magnetic field
and hardens with strengthening AFM interactions; the SW velocity at Q still vanishes at the
CAF–FM transition. Clearly, a great deal can be learned about the general properties of CAFs,
even of the more complex variations that appear in many manganites, by considering simple
models such as the DEV model.
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Appendix A

The coefficients of the harmonic Hamiltonian of the generalized Villain model (equation (6))
are

A(a,a)k = 2 cos 2θa + 2 cos(θa − θb)− 2 cos2 θa cos kx + B ′ cos θa, (A.1)

A(a,b)k = A(b,a)q = −2 cos2((θa − θb)/2
)

cos ky, (A.2)

A(b,b)k = 2 cos(θa − θb)− 2η cos 2θb + 2η cos2 θb cos kx + B ′ cos θb, (A.3)

B(a,a)
k = sin2 θa cos kx, (A.4)

B(a,b)
k = B(b,a)

k = sin2
(
(θa − θb)/2

)
cos ky, (A.5)

B(b,b)
k = −η sin2 θb cos kx, (A.6)

where the lattice constant is set to one.
For the DEV model, the revised coefficients of the harmonic Hamiltonian are Ã(r,s)k =

A(r,s)k + C (r,s)
k + D(r,s)

k and B̃(r,s)
k = B(r,s)

k + E (r,s)
k , with new contributions

C (r,s)
k = − 1

N

∑
q,l

f (ε̃(l)q )
{

u(l)2q

(
2t ′ cos θa cos(kx + qx) + ε̃(l)q

)
δr,aδs,a

+ v(l)2q

(
2t ′ cos θb cos(kx + qx) + ε̃(l)q

)
δr,bδs,b

+ 2t ′ cos
(
(θa − θb)/2

)
cos(ky + qy)u

(l)
q v

(l)
q (δr,aδs,b + δr,bδs,a)

}
, (A.7)

D(r,s)
k = 4t ′2 J S2

N

∑
q,l,m

(
u(l)k+qx (m)q δr,a + v(l)k+q y(m)q δr,b

)

× (
u(l)k+qx (m)q δs,a + v(l)k+q y(m)q δs,b

) f (ε̃(m)q+Q)− f (ε̃(l)k+q)

ε̃
(m)
q+Q − ε̃

(l)
k+q

, (A.8)

E (r,s)
k = 2t ′2 J S2

N

∑
q,l,m

(
u(m)q+Qx (l)k+q+Qδr,a + v(m)q+Q y(l)k+q+Qδr,b

)

× (
u(l)k+qx (m)q δs,a + v(l)k+q y(m)q δs,b

) f (ε̃(m)q+Q)− f (ε̃(l)k+q)

ε̃
(m)
q+Q − ε̃

(l)
k+q

. (A.9)
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The spin excitation frequencies are given in terms of the coefficients A(r,s)k and B(r,s)
k (or

in terms of the revised coefficients Ã(r,s)k and B̃(r,s)
k ) by

ωk = J S√
2

√
A(a,a)2k + A(b,b)2k + 2

(
A(a,b)2k − B(a,b)2

k

) − 4
(
B(a,a)2

k + B(b,b)2
k

) − Rk, (A.10)

R2
k = 4

{
A(a,a)2k + A(b,b)2k − 4

(
B(a,a)2

k + B(b,b)2
k

)}(
A(a,b)2k − B(a,b)2

k

)
+

{
A(a,a)2k − A(b,b)2k − 4

(
B(a,a)2

k − B(b,b)2
k

)}2
+ 8

(
A(a,a)k A(b,b)k + 4B(a,a)

k B(b,b)
k

)
× (

A(a,b)2k + B(a,b)2
k

) − 32A(a,b)k B(a,b)
k

(
A(a,a)k B(b,b)

k + A(b,b)k B(a,a)
k

)
. (A.11)

The SW frequency satisfies the condition ωk=0 = B .

Appendix B

The hopping energy of the DEV band Hamiltonian (equation (9)) has matrix elements

K 11
αβ(k) = −K 22

αβ(k) = −2t cos kx cos θaδαβ , (B.1)

K 33
αβ(k) = −K 44

αβ(k) = −2t cos kx cos θbδαβ, (B.2)

K 12
αβ(k) = −K 21

αβ(k) = −2ti cos kx sin θaσ
y
αβ, (B.3)

K 34
αβ(k) = −K 43

αβ(k) = −2ti cos kx sin θbσ
y
αβ . (B.4)

K 13
αβ(k) = K 24

αβ(k) = K 31
αβ(k) = K 42

αβ(k) = −2t cos ky cos((θa − θb)/2)δαβ, (B.5)

K 14
αβ(k) = K 23

αβ(k) = −K 41
αβ(k) = −K 32

αβ(k) = 2ti cos ky sin((θa − θb)/2)σ
y
αβ . (B.6)

Notice that the σ y
αβ terms couple the up and down spin states.
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