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Abstract

Implantation of Co or Mn into single-crystal BaTiO3(K), SrTiO3 or KTaO3(Ca), followed by annealing at 700 �C,
produced ferromagnetic behavior over a broad range of transition metal concentrations. For BaTiO3, both Co and Mn

implantation produced magnetic ordering temperatures near 300 K with coercivities 670 Oe. The M–T plots showed

either a near-linear decrease of magnetization with increasing temperature for Co and a non-Brillouin shaped curve for

Mn. No secondary phases were detected by high-resolution X-ray diffraction. The same basic trends were observed for

both SrTiO3 and KTaO3, with the exception that at high Mn concentrations (�5 at.%) the SrTiO3 was no longer

ferromagnetic. Our results are consistent with recent reports of room temperature ferromagnetism in other perovskite

systems (e.g. LaBaMnO3) and theoretical predictions for transition metal doping of BaTiO3 [Nakayama et al., Jap. J.

Appl. Phys. 40 (2001) L1355].

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Progress in growth of thin film oxide perovskite

materials led to the discovery of a large negative mag-

netoresistance (MR) at room temperature in doped

magnate perovskites [1–6]. This large MR effect is

commonly referred to as colossal magnetoresistance [1].

The resistivity of materials is found to a maximum

around the Curie temperature [6]. These materials have

potential for magnetic sensing applications. Other fam-

ilies of complex oxides are attractive for a broad range

of applications including UV photonics, transparent

electronics, gate dielectrics on semiconductors and novel

device concepts using correlated electron systems in
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which charge or spin can be manipulated via electric-

field gating.

An emerging field of interest is that of spintronics in

which the spin of the electron rather than its charge

would carry the information of interest [7,8]. Dilute

magnetic semiconductors such as GaMnAs, GaMnP

and GaMnN have shown rapid progress in recent years,

with the latter two displaying signature of ferromagne-

tism above room temperature [9–13]. In addition, trans-

parent ferromagnetic ZnMnO [14], ZnCoO [15] and

TiCoO2 [16,17] have all been reported and doping with

other transition metal impurities is predicted to be ef-

fective in stabilizing the ferromagnetic state [18–20].

Very little work has been carried out on oxide perovskite

materials, although there is a prediction that BaTiO3

doped with Mn, Cr or Fe will be promising candidates

for ferromagnetism [21]. MR of a number of other ZnO

and SnO2 films doped with various impurities have

also been reported [22–26], while all perovskite oxide
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film p–n junctions with room temperature ferromagne-

tism have been demonstrated [27].

In this paper we report on investigation of the effects

of direct Co and Mn ion implantation into bulk BaTiO3,

SrTiO3 and KTaO3 single crystals. In each case we ob-

serve signatures of ferromagnetism at or near room

temperature. These results show the promise of semi-

conducting oxides for potential spintronic applications

and the flexibility of ion implantation as a method for

introducing a wide variety of transition metal impurities

into host materials for purposes of measuring their

magnetic properties.
2. Experimental

Bulk, single crystal BaTiO3 (K), SrTiO3 or KtaO3(Ca)

were implanted at �350 �C with 250 keV Coþ or Mnþ

ions at doses of 3 or 5· 1016 cm�2, producing incorpo-

ration depths of �2000 �AA and an average transition

metal concentrations of 3 or 5 at.%. The elevated tem-

perature during implantation is employed to minimize

the possibility of amorphization. Post-implant annealing

at 700 �C for 5 min under flowing N2 was used to par-

tially repair the remaining implant damage. The samples

were examined by high-resolution X-ray diffraction

(XRD) and superconducting quantum interference de-

vice magnetization measurements.
Fig. 1. Magnetization loop at 10 K for field applied perpen-

dicular to the plane of a BaTiO3 sample implanted with 5 at.%

Mn (top), and temperature dependence of the difference of field-

cooled and zero field-cooled magnetization at a field of 1000 Oe

(bottom).
3. Results and discussion

3.1. BaTiO3

Fig. 1 (top) shows a magnetization versus field (M–H )

plot at 10 K from BaTiO3 implanted with 5 at.% Mn,

while the difference in magnetization between field-

cooled and zero field-cooled conditions (at 1000 Oe) is

shown at the bottom of the Figure. Qualitatively similar

results were obtained for 3 at.% Mn samples, with co-

ercivities of �600 G at 10 K and �400 G at 100 K. The

M–T plots do not show a classical Curie–Weiss shape,

but current theories suggest the shape of these plots is

controlled by disorder in the sample and any shape from

concave to linear to convex is possible [28]. Note that the

net magnetization reaches zero at approximately room

temperature. XRD showed no evidence of other phases

present in the implanted samples.

Co implantation also produced signatures of ferro-

magnetism, as shown in Fig. 2. The coercivities were

again of order a few hundred Gauss at 300 K for both 3

and 5 at.% Co concentrations, while the M–T plot

showed an almost linear dependence on temperature.

XRD data showed no evidence of secondary phase
formation or the presence of Co clusters that would

influence the magnetic properties of these samples.

The ab-initio total energy calculations for BaTiO3

doped with all the 3d transition metals from Sc to Cu

indicate that Mn, Fe, Cr and Co are the most promising

candidates for achieving ferromagnetism in conducting

samples. While these calculations should be used as a

guide only due to hybridization effects and the high

transition metal concentrations assumed, they are in

relatively good agreement with our initial experimental

data. The mechanism for the observed ferromagnetism is

still not clear and may be due to bound magnetic pola-

rons [28,29] or the carrier-induced magnetism inherent

in the Zener mechanism [20].



Fig. 3. Magnetization loop at 10 K for field applied perpen-

dicular to the plane of a SrTiO3 sample implanted with 3 at.%

Mn (top), and temperature dependence of the difference of field-

cooled and zero field-cooled magnetization at a field of 500 Oe

(bottom).
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Fig. 2. Magnetization loop at 5 K for field applied perpendic-

ular to the plane of a BaTiO3 sample implanted with 5 at.% Co

(top), and temperature dependence of the magnetization at a

field of 1 kOe for a sample implanted with 3 at.% Co (bottom).

J.S. Lee et al. / Solid-State Electronics 47 (2003) 2225–2230 2227
3.2. SrTiO3

While SrTiO3 samples with 5 at.% Mn showed

paramagnetic behavior, at the 3 at.% Mn concentration

clear signatures of ferromagnetism near 300 K were

evident in theM–H andM–T plots (Fig. 3). These results

would be consistent with the Dietl et al. [20] model in

which the net magnetization is given by the difference

between the carrier-mediated ferromagnetism and the

antiferromagnetic direct interactions between Mnþ ions.

In this model, the Curie temperature TC can be repre-

sented

TC ¼ veffNOSðS þ 1Þb@AFqsjwj
2

12kB
� TAF
where veffNO is the Mn concentration, b is the strength of

the interaction between the Mn and the carriers, q is

proportional to the effective mass of the carriers and TAF

takes into account antiferromagnetic Mn–Mn interac-

tions. Thus, the TC can decrease at high Mn concentra-

tions due to the increase in the latter contribution to the

magnetization.

In the case of Co implantation, hysteresis was ob-

served at 300 K for both the 3 and 5 at.% concentrations

and the M–T showed the opposite curvature to the

normal Brillouin-like dependence. In the disorder model

[28,29], holes are only allowed to hop between transition

metal acceptor sites and the interaction between the

holes and the magnetic ions is of the antiferromagnetic

Heisenberg exchange type. The shape of the M–T plot is

then determined by the wide distribution of exchange

couplings because of disorder because some Mn atoms

do not order until lower temperatures. This unusual
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Fig. 4. Magnetization loop at 300 K for field applied perpen-

dicular to the plane of a SrTiO3 sample implanted with 5 at.%

Co (top), and temperature dependence of the magnetization at

a field of 1 kOe for a sample implanted with 3 at.% Co (bot-

tom).

Fig. 5. Magnetization loop at 10 K for field applied perpen-

dicular to the plane of a KTaO3 sample implanted with 3 at.%

Mn (top), and temperature dependence of the difference in field-

cooled and zero field-cooled magnetization at a field of 500 Oe

(bottom).
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magnetization is in good agreement with our experi-

mental data, as shown in Fig. 4. Another interesting

feature of this theory is that with increasing randomness,

the TC increases and the saturation value of the mag-

netization is decreased [28,29]. Within the same model, if

the carrier concentration is increased, the change of the

magnetization becomes more Brillouin-like because the

width of the exchange interaction decreases [30–33].

3.3. KTaO3

Fig. 5 shows the M–H (top) and M–T (bottom) plots

from the material implanted with 3 at.% Mn. Quanti-
tatively similar results were obtained for the 5 at.%

condition. The magnetic ordering is present to �250 K

and once again no additional peaks were observed in the

XRD spectra from the samples.

The Co implantation produced higher magnetic or-

dering temperatures than for Mn, with hysteresis loops

observed at 300 K for both the 3 and 5 at.% concen-

trations and magnetization extending to at least the

same temperature (Fig. 6). At present there is not pub-

lished data for the theoretically predicted properties of

transition metal-doped KtzO3, so our data serves as a

starting point for understanding the magnetic proper-

ties.
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Fig. 6. Magnetization loop at 300 K for field applied perpen-

dicular to the plane of a KTaO3 sample implanted with 3 at.%

Co (top), and temperature dependence of the magnetization at

a field of 1 kOe (bottom).
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4. Summary and conclusion

Three different oxide perovskites, BaTiO3, SrTiO3

and KtaO3, show promising magnetic behavior when

doped with Mn or Co by direct ion implantation. In

each magnetic ordering was observed at P250 K and

above room temperature in some cases. The magne-

tization has the opposite occurrence to the usual

Brillouin-like dependence on temperature, as is pre-

dicted by a model that takes into account the effects of

disorder in dilute magnetic systems [28–33]. In this

model the ferromagnetism many arise from the inter-

action between magnetic polarons in the case of either
low carrier density or equivalently, strong carrier lo-

calization.
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