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Quantum Monte Carlo calculations of A=9,10 nuclei
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We report on quantum Monte Carlo calculations of the ground and low-lying excited states ®fL0
nuclei using realistic Hamiltonians containing the Argonng two-nucleon potential alone or with one of
several three-nucleon potentials, including Urbana IX and three of the new lllinois models. The calculations
begin with correlated many-body wave functions that haveadike core and multiplep-shell nucleons,
LS-coupled to the appropriate]{;T) quantum numbers for the state of interest. After optimization, these
variational trial functions are used as input to a Green’s function Monte Carlo calculation of the energy, using
a constrained path algorithm. We find that the Hamiltonians that include lllinois three-nucleon potentials
reproduce ten states itLi, °Be, 1°Be, and'%B with an rms deviation as little as 900 keV. In particular, we
obtain the correct 3 ground state forr8, whereas the Argonne;g alone or with Urbana IX predicts a1
ground state. In addition, we calculate isovector and isotensor energy differences, electromagnetic moments,
and one- and two-body density distributions.
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[. INTRODUCTION GFMC method is used to calculate only the lowest state of
given 07;T).

In a series of papergl-3], we have reported quantum  We have calculated ten stable or very narrow natural-
Monte Carlo(QMC) calculations of ground and low-lying parity states in thé\=9,10 nuclei®Li, °Be, %Be, and!’B
excited state energies iA<8 nuclei for realistic nuclear that are experimentally well known. We use three of the new
Hamiltonians. These calculations employed the Argomie  |llinois models(IL2, IL3, IL4) in conjunction with AV18 and
(AV18) two-nucleon potential4] and the Urbana IXUIX)  obtain rms deviations from the experimental energies of the
three-nucleon potentiall], and are accurate te 1-2 % of  states of 900, 1100, and 1700 keV, respectively. We have also
the binding energy for lighp-shell nuclei. More recently, we  calculated most of these states with the AV18 and AV18/UIX
have used the quantum Monte Carlo calculations to help consamiltonians for comparison. The most intriguing result we
struct a series of new and improved pion-exchange-baseghd is that the new AV18/IL2-IL4 models all correctly pre-
three-nucleon potentials, designated the lllinois mo@i&]s  gict a 3" ground state for%B, but the older models wrongly
The five lllinois models(IL1-IL5), when used in conjunc- predict a I ground state. In addition, we have made GFMC
tion with AV18, each reproduce the experimental energies ofa|culations of six other states that are expected within the
17 narrow states irA<8 nuclei with an rms deviation of p.shell formulation of these nuclei and of tifele and °He

~400 keV. This contrasts with a 2.3-MeV rms deviation for ground states; these states either have much larger widths or
the AV18/UIX Hamiltonian, and 7.7 MeV for AV18 alone. gre not clearly identified by experiment.

In this paper, we report the extension of our QMC calcu-  we review briefly the experimental status of the ground
lations toA=9,10 nuclei. The QMC methods include both and |ow-lying excited states in the= 9,10 nuclei in Sec. II.
variational (VMC) and Green's function Monte Carlo The Hamiltonians are described in Sec. lll and the QMC
(GFMC) methods. The VMC method is used to construct acalculations in Sec. IV. Most of this material has been dis-
variational wave function as a product of two- and three-cyssed in detail in Ref§2,3]. The only major new technical
body correlation operators acting on an independent-particlgevelopment is the automation of the construction of the
wave function that has an-like core and multiplep-shell  jhdependent-particle portion of the variational trial wave
nucleons,LS coupled to the appropriateJ{;T) quantum  functions that serve as starting points for the GFMC calcu-
numbers for the state of interest. Monte Carlo evaluation Ofations_ Energy results are given in Sec. V' while e|ectromag-

the energy expectation value is used to optimize the triahetic moments and density distributions are shown in Sec.
function, particularly the mix of independent-particle wave |, we present our conclusions in Sec. VII.

function components. The GFMC method starts from this

trial function and makes a Euclidean propagation that con-

verges to the lowest energy for a state of these quantum Il EXPERIMENTAL STATUS

numbers. A constrained path algorithm is crucial for keeping

the fermion sign problem under control. At present the The experimental status éf=9,10 nuclei is illustrated in
Figs. 1 and 2, where we show the ground states and most
low-lying natural-parity states whose spin assignments are

*Electronic address: spieper@anl.gov reasonably certaif6,7]. We also show some additional nar-
'Electronic address: vargak@ornl.gov row states in°Li and 1°Be whose spins have not been deter-
*Electronic address: wiringa@anl.gov mined experimentally; reasonable guesses are given in pa-
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FIG. 1. First natural-parity states in the experimental spectra of FIG. 2. Low-lying natural-parity states in the experimental spec-
A=9 nuclei. tra of A=10 nuclei.

rentheses, based on standard shell model studies and thdditional narrow states above the breakup threshold have
present calculations. been observed ifiLi, but without firm spin-parity identifi-
The ground state ofBe is an absolutely stable){;T)  cation: a 60-keV-wide state at 4.296 MeV and a 40-keV-wide

=(37;3) state. The first excitation is a;(;3) state(not  state at 6.43 MeV. Within thp shell, these should b& (;3)
shown in Fig. 1 with a width of 217 keV which occurs at the 54 (2~ 2) states: our GFMC evaluations of such states line
threshold for breakup intdBe+n. This unnatural parity up very well with the experimental observations, suggesting

state is _beyond the scope of the present paper; we will repo;glese spin assignments may indeed be correct.
calculations of such intruder states in the future. The secon The ground state of%B is an absolutely stable (30)

excitation is a narrow {;3) state at 2.429 MeV, with a state. The first threshold for breakup ¥B is into ®Li + a.

width <1 keV. Within the p-shell formulation, there can Between the ground state and breakup threshold are two

alsobe §7:3), (£7:3), and € ;%) states. Experimentally, (1*%;0) excited states at 0.718 and 2.154 MeV, oné&;®

the first two are observed at 2.78 and 6.38 MeV excitatiorstate at 3.587 MeV, and the {01) isobaric analog of°Be

but both are quite broad~1 MeV), while no state with at 1.740 MeV. Many additional states are known above the
SLi+ a threshold; in Fig. 2 we show only the (21) iso-

(27:;%) character has been identified. We evaluate all thesgaric analog at 5.164 MeV and the (D) state at 6.025

(J™;T) cases in GFMC, treating the states as if they wer ) . )
particle stable; this should be adequate for narrow states, bl(l eJr\'/.O\)Nea?r?cle'EllI?F%;h:x((?{gt)io?’]rsubr;d étélt/? Canlc:\fltrr?;)%r?gil

may be less satisfactory for broad staf&everal additional ere can also be (Q0) and (5 :0) states, but the former is

unnatural parity states and second excited states of give

(J7:T) are observed above 3 MeV, but are not shown in the® low spatial symmetry while the latter has high angular

figure] The matrix elements of the electromagnetic andﬂow?:tz%itzﬁ)dr:ngnﬁ to_ ﬁ)épiit :ﬁmeﬂzaﬁhﬁg]sé?vgﬁoﬂug?
strong charge-independence-breaking terms in the HamifJg 9y: P

tonian are evaluated perturbatively to infer the energies o?'tr_:_irehﬁzc?gsglggaedz article stable but decavs b
the narrowT = } isobaric analog states itB. P ys

. ) _ emission with the very long half-life of 1.5410° years. As
The ground state Q?L_' is a particle stable § 2) Staté g typical for an even-even nucleus, the ground state is a
that decays by3~ emission to°Be with a half-life of 178 (0%;1) state, and there is a well-separated (2) excited
ms. The first excited state 8ti at 2.691 MeV is believed to  gstate at 3.368 MeV. These are the two prim&iBe states we
be a G ;3) state; it is below the threshold for breakup into evaluate in GFMC. In addition, the tabulation lists a state at
8Li+n and decays only by emission. We calculate both 9.4 MeV as a possible (21) state, but a more recent
these states ifiLi, and again perturbatively evaluate the en- (t,He) experiment makes a (31) assignment more likely
ergies of the isobaric analogs ifBe, °B, and °C. Two  [8,9]. We have made one computation for the"(8) level
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using AV18/IL2 and get reasonable agreement with this en- R

ergy. Other particle-stable states below the threshold for vij o= > vp(rij)Off . (©)

breakup into °Be+n include second (0;1) and (2;1) p=118

stz{tes, also showq in Fig. 2, and the first particle-stablere first 14 CI operators are

(17;1) and (2;1) intruder stategnot shown. The second

excited states are not evaluated at present in GFMC, while oiP].=1,14:[1'Ui.gj Sij ,|_.5,|_2,|_20i.0j (L-97]

the intruder states will be reported on in future work. Again,

the isobaric analog states B and '°C are evaluated per- ®[1,7- 7], (4)

turbatively from 1%Be. .

In addition to these nuclei, we have also mgde calculaWhile the last four,

tions of the expected lowest natural-parity statestte and p=1518_

0He. These are ai(";3) resonance which is observed at Oi [Loi-opSleTy, Tt ©

~1.2 MeV above the threshold for breakup intble+ n, are the strong interaction CD and CSB terms.

and a (0';3) resonance at-1.1 MeV above the®He+n The three-nucleon potentials from the Urbana series of

+n threshold[7,10]. These resonances are observed to bgnodels [12] contain a long-range, two-pion-exchange,

reasonably narrow, with widths of 100 arel300 keV, re-  P-wave term and a short-range phenomenological piece:

spectively. There are recent experimental reports 6f'g )

resonance near threshold fiHe [11], which we have not

attempted to calculate; such a state is likely to be very broad .

and really needs to be treated as a scattering state. We al$§€ UIX model has the strengths of these two terms adjusted

have not attempted to calculate the resonant ground state £ réProduce the binding energy 6, in GFMC calcula-

190 which is broad and still has some experimental uncerionS, and to give a reasonable saturation density in nuclear

tainty. matter, in variational chain summation calculatiofis3],
when used with AV18. The lllinois models add a two-pion-
exchanges-wave term and a three-pion-ring term:

Vie=Var P+ Vi . (6)

I1l. HAMILTONIAN
IL _y\/2mP | \/2mS  \/3mAR /R
The Hamiltonian includes nonrelativistic one-body kinetic Viiie=Vijic” Vi ™+ Vi Vi @)
energy, the AV18 two-nucleon potentifd] and either the

UIX [1] or one of the Illinois[5] three-nucleon potentials: The two-pion-exchang&wave term is required by chiral

symmetry, but in practice its small energy contribution
makes it hard to distinguish from the domin&htvave term.

_ However, the three-pion-ring term, while it is smaller than
H _Z Ki+i§<:j vij 2,: Vijk - D ihe two-pion-exchang®-wave term, has a distinctly differ-
ent isospin dependence, which is crucial for being able to fit
the variety of lightp-shell energy levels studied in Rg¢E].

In the lllinois models, the operator structure and radial forms

(CSB) component due to the difference between proton and'€"€ taken from standard meson-exchange theory, but the
neutron masses. The AV18 is one of a class of highly accuoverall _strengths of the four terms, and one .CUtOﬁ fa_ctor N
rateNN potentials that fit botipp andnp scattering data up the radial dependence, were adjusted to obtain best fits to the
to 350 MeV with ay2/datum~=1. It can be written as a sum energies of 17 narrow states irsA<8 nuclei. In practice,

of electromagnetic and one-pion-exchange terms and gt_m(()js;c threteh parameterslatlat_nme coufl_d bg_#mqutely ddetler-
shorter-range phenomenological part: mined from the energy calculations, so five different models

were constructed in which different subsets of the parameters
v om R were fixed by external considerations, while the remaining
Vij =Tt 2 ones were adjusted.
The CD and CSB terms il are fairly weak, so we can

The electromagnetic terms include one- and two-photontreat them conveniently as a first-order perturbation and use a
exchange Coulomb interaction, vacuum polarizationwave function of good isospin, which is significantly more
Darwin-Foldy, and magnetic moment terms, all with appro-compact. Also, direct GFMC calculations with the spin-
priate proton and neutron form factors. The one-pion-dependent terms that involve the square of the orbital angular
exchange part of the potential includes the small chargemomentum operator can have large statistical fluctuations, as
dependen{CD) terms due to the difference in neutral and discussed in Ref2]. Thus it is useful to defing2] a simpler
charged pion masses. The shorter-range part has about #dscalar interaction, AV8 which contains only the eight
parameters which are adjusted to fit {he andnp scattering  operators[1,0-0},S;,L-S]®[1,7- ;] and an isoscalar
data, the deuteron binding energy, and alsorthescattering  Coulomb interaction. These eight operators are chosen such
length. that AV8' reproduces the CI part of the full AV18 interaction

The one-pion-exchange and the remaining phenomenadn all S and P waves as well as the deuteron. The AV8
logical part of the potential can be written as a sum of 18interaction(without the Coulomb terinwas recently used in
operators, a benchmark test of seven different many-body methods for

The kinetic energy operator is predominantly charge
independentCl), but has a small charge-symmetry breaking
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solving the four-nucleon bound state, with excellent agreeThe operatord indicates an antisymmetric sum over all pos-

ment between GFMC and the other calculatifh4]. sible partitions of theA particles into fours-shell and A
—4) p-shell ones. The pair correlation for particles within
IV. QUANTUM MONTE CARLO the s-shell, f,(r), is the optimal correlation for the par-

ticle. Thefy(r) is similar to thefs(r) at short range, but
with a long-range tail going to a constantl; this allows the

We first construct a variational wave function for the statewave function to develop a cluster structure like-d in °Li
of interest and then optimize it by minimizing the energyor o+« in ®Be at large cluster separations. Tﬂg(r) de-
expectation value as computed by Metropolis Monte Carlgpends on the nucleus and particular independent-particle
integration. The variational wave function for the nuclei channel, e.g., in the case 8Li or ®Be, it is similar to the
studied here has the form optimal deuteron or alpha correlations.
The LY n] components of the independent-particle wave

SLIJ- (1+Uij)|‘1’J>- (8) function are given by
|PALSIN]IMTT3) 12345 .A)

A. Variational Monte Carlo

|\va>:

1+ > O
i<j<k

The Ujj, and U\ are noncommuting two- and three-
nucleon correlation operators, afds a symmetrization op- =
erator. TheU;; includes spin, isospin, and tensor terms in-

duced by the two-nucleon potential, while toy reflects
the structure of the dominant parts of the three-nucleon in-
teraction. This trial function has the advantage of being effi-
cient to evaluate while including the bulk of the correlation
effects. A more sophisticated variational function can be con-
structed by including two-body spin-orbit correlations and ®
additional three-body correlations, as discussed in F3f.
but the time to compute these extra terms is significant, while
the gain in the variational energy is relatively small. Studies
have shown that the GFMC algorithm easily corrects for the
omission of these term2].

The two-body correlations are generated by the solution
of coupled differential equations with embedded variationawhere
parameterd15]. We have found that the parameters opti-
mized for thea particle are near optimal for use in the light
p-shell nuclei. Likewise, the best parameters for the threer. . .0.o independent-particle wave function. The
body correlations are remarkably constant for diffeiersnd LS ) .
p-shell nuclei, so they have not been changed significantly, P (R“') arep-wave solutions _of.a particle of reduced mass
from the previousA<8 work [2,3). =M, in an effectivea-N potential:

For the p-shell nuclei studied here, the totally antisym- W C
metric Jastrow wave functiof’; starts with a sum over V“N(r)_V“NS(rHV“N(r)' (12
independent-particle terms,, that have four nucleons in
an «a-like core and A—4) nucleons inp-shell orbitals. We
useL S coupling to obtain the desirediM value of a given

state, as suggested by standard shell-model stitiéds\We

®,(0000)1235 [ 5T (Ry)
4<|=A

X Yim (Qa)

4<|=<A

LM, [n]

(1 ) 10
sdizn ! §t3 ™, ' (10

¢,(0000=A(pTplnTnl) 11)

The ¢FL)S are functions of the distance between the center of
mass of thea core (which contains particles 1-4 in this
partition) and nucleor, and again may be different for dif-

| d ' th ial ¢ th | ferentLS n] components. For each state considered in the
also need to specify the spatial symmeliny of the angular  ; oqent work, we have used bound-state asymptotic condi-

mom.entum coupling of .thqa-shell nucleqns{l?]. Different __tions for theLS, even if the state is particle unstable. The
possibleL §[ n] combinations lead to multiple components in Woods-Saxonp :
) o . o potential
the Jastrow wave function. This independent-particle basis is
acted on by products of central pair and triplet correlation r—R
functions, which depend upon the shelsdr p) occupied VXVNS(r)zv;S 1+ex;{ )
by the particles and on thHeS[n] coupling: ap
has variational paramete¥s;®, R,, anda,, while the Cou-
|\PJ)=A{ H icjk H fsdrij) H fsp(rir) lomb potential is obtained by folding over nuclear and
i<j<k=a Ti<j=4 k=a<l=A nucleon form factors. The wave function is translationally
invariant, hence there is no spurious center of mass motion.
X E (,BLS[H] H fg‘g(nm) A major technical advance in the present work is the au-
LSin] A<l<m=A tomatic generation of the independent-particle wave function

&, with the appropriate spatial symmetries discussed above.
|<I>A(LS[n]JMTT3)1234:5..A)>]. 9 We describe here the construction of the spatial symmetry

-1
} : (13)
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TABLE I. Permutation symmetry terms f&rS coupling inA=9,10 nuclei and corresponding spin states.

A [n] L (T,9) Highest symmetry states
9 [41] 1,2,3,4 11 Be(i-27)
2 123 CRICHICE. LG -3
[311] 02 29396963
[221] 1 53939323 EHG *He(3 ™, 5
10 [42] 0,2,3,4 (1,0)(0,1) 0ge(0*,2"-4%), ¥B(17-5")
[33] 1,3 (1,1)(0,0) 10Be(1")
[411] 1,3 (1,1)(0,0)
[321] 1,2 (2,1)(2,0)(1,2)(1,8(1,0)(0,2)(0,1) 0j(0"-3™), 9B(0™)
[222] 0 (3,0)(2,1)(1,2)(1,0)(0,3)(0,1) e (0™)

[n]. One can use different coupling schemes to form theableau. The number of different tableally is the dimen-
spatial (or spin and isospinpart of the wave function with sion of the representation. Then we prepare the Young opera-

good quantum numbers. We use simple sequential couplingrs Y, ... Yy corresponding to the Young tableau and
in which the spatial part of the wave function is written as calculate the matrix elements of these operators with the ba-

Om =Y 1(Qus) Y1(Que) 11 Y1 (Lo by, - - - Iim,s sis functionst, . We then have
(14)

and a similar construction is used for the spin and isospin YkaLML#ZEA: <0LML/”|YK| HLML)\>0LML7" (16)

part. The functions having the sarheand M but different
intermediate quantum numbers, labeledubyare orthogonal  Let us denote the successively coupled Sfsospin func-
and form a complete set of eigenstatesLfandL,. The tions by wsmgu (@77,,/). To form an antisymmetric wave

permutation operatorsP, of the valence pazlrticlesl function for theN particle system one has to multiply the
=56,.. . Alk=1,...,(A=4)!], commute with.“andL,  pasjs functions of the space part of a given Young tableau,

so that the above functions form a basis for the representev . . o .
. : . kOim ., by the basis functions of the spin-isospin part be-
tion of the symmetric group as well: LM

longing to the conjugatefin] Young diagram(obtained by
reversal of the roles of rows and columns
?k[n]wSMSVwTT3V/ and sum over all possible tableaux. Thus

Eq.(10) b
The permutation symmetry is conveniently depicted by d. (10) becomes

using “Young diagrams,” consisting o adjoining square |DALSIN]IMTT3) 1034:5..4)
boxes with rows numbered numerically downward, and col- '
umns rightward; there may not be more rows in column LSin - &
than in columni—1, nor columns in rowj than in rowj - ¢0(0000)12344<,HsA ¢PS[ ](Ra')Ek PYinIYidn]
—1. Each Young diagram corresponds to a representation of
the permutation group. The basis functions defining a given
representation can be labeled by using a Young tableau,
which is an arrangement of the numbers, 1,2 N in the
Young diagram, such that numbers always increase along afhere p, is the parity of the permutation of the numbers
rOV:/AS/ and dt%W” ?” columns.t : et & basis | (starting from the top and going left to right in each dow
_ We use the "Young operators” to construct a basis func-y, o young diagram. The Young operaty n] (¥,[n]) acts
tion that has the symme:cry properties of a given Young tabbn the sgatial?spin-isospim fungtl:ti(?ns (E?{Ehe]lig,[&].). A
leau. The Young operatdf is a product of a symmetriz&  valence particles. Any choice gf and »,»’ generates the
and an antisymmetrizéd: Y=QR. The operatoR symme- same wave function.
trizes all particle indices which are in the same row &hd The different possiblé § n] contributions toA=9,10 nu-
antisymmetrizes all particles in the same column. Both op<lei are given in Table |. After other parameters in the trial
erators are constructed as a combination of the permutatidionction have been optimized, a series of energy evaluations
operatorsP . are made in which th@, g, of Eq. (9) are different in the

To construct the spatial part of the wave function belongeft- and right-hand-side wave functions to obtain the diago-
ing to a given representation of the permutation group, wenal and off-diagonal matrix elements of the Hamiltonian and
first have to draw the Young diagram and insert the numberthe corresponding normalizations and overlaps. The resulting
1,2,... N into the pattern in any order to give a Young NN matrices are diagonalized to find tigeg, eigenvec-

PkeLML,u:; Unu(Pi) Oim - (15

X[OLuos, lsmoTT, ) 17
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TABLE Il. VMC diagonalization forg, g,; components irBe.

Jm 2P 41] D41 2H 41] 2G[41] 4P 32] 4p[32] 4F32] 2[ 32 2D[32] 2H 32

3- 0.936 -0.337 0.035 -0.024 0.047  -0.026 0.049

5- 0.952 0.273 -0.064 -0.040 0.060 0.062  -0.041
- 0.990 0.117 -0.039 0.002

- 0.868 0.488 0.019 -0.064 0.034
3« 0.356 0.921 0.087 -0.098 0.052  -0.050 -0.003

5 -0.248 0.925 0.273 0.007 0.045 0.037  -0.051
2- 0.978 0.207

1% -0.104 0.905 0.286 -0.153

I-x -0.474 0.836 -0.260 0.009 0.042

Jm 49311] 4p[311] 29(311] 2pr31y] 5P 221] ‘P221 2p221]

3- 0.046 -0.025 0.011 0.029 -0.010 0.010
5- 0.053 —0.005 -0.025 -0.015

3~ —0.054 -0.023 -0.038 0.024
- 0.057 -0.015

3« 0.046 0.035 -0.000 -0.005 0.000 0.010
3w 0.003 -0.035 -0.017 0.021

o

3w -0.112 0.216 -0.077 0.005
7% -0.080 -0.015

tors, using generalized eigenvalue routines because the canoments can also be significantly shifted. In general, the
related¥, are not orthogonal. This allows us to project out dominantA=9 amplitudes are in good agreeméntodulo

not only the ground-state trial functions, but also excited-sign) with the shell-model wave functions of Kumgi8].

state trial functions of the sam@T; T) quantum numbers. In The B g Values for 108 states are given in Table IV,
our present studies, we have carried out Aer9 diagonal-  and for °Be states in Table V. The neglect of tf@21] or
ization in a completg-shell basis, but for°B and °Be we  |ower symmetry states in these nuclei is justified on the
have limited ourselves to the three highest spatial symmeyrounds that this is the leading spatial symmetry 8ii,
tries, i.e.[42], [33], and[411]. The diagonalization is carried \ynose isobaric analog state first appears at 21 MeV in the
out for the AV18/UIX Hamiltonian; thes, gy amplitudes o, itation spectrum of%Be. For %8, the [42] symmetry

ShOL.”.d not be _significantly_ dif_ferent_ for the_ other moqels'states are dominant, and addition of {i88] and[411] sym-

Additional spatial symmetries |_nvoIV|ng pa_rt|cle excitations | yioc improves the energies by only 0.2 MeV. However,

out of thep shell are built up n the fu”. trial .functlon by for 19Be, these extra components can give significant addi-

means of the tensor correlations contained in tthe and tional binding of ;

~TNI g of up to 3 MeV. In this case, the extra states

Ujjc of Eq. (8). correspond to low-lying excitations that may not be filtered
Thus in °Be, the Jastrow wave function for thé (;3)  out of the trial function by a GEMC propagation to limited

ground state is constructed from 13 amplitudes, and a 13s discussed below. Thus it is crucial to carry out the diago-

X 13 diagonalization is performed to find the optimal mix- nalization in the trial function to get an optimal starting point

ing. The B gy values for this and othetBe states, includ- for the GFMC calculation.

ing some second excited states, are given in Table Il, while The A= 10 nuclei are exactly midway through tpeshell

the values for various states #Li are given in Table lll. In  and are unique in having two linearly independent states of

the case ofBe, the[41] symmetry states dominate; addition the same spatial symmetry contribute, i.e., tWf 42] states

of the lower spatial symmetries improves the energies byn 1%Be and two®D[42] states in'%B. To uniquely identify

typically 0.25 MeV. The additional states do not significantly these two possible combinations, we diagonalize Jastrow

alter the rms radii or electromagnetic moments. By contrastirial functions containing just the twéS*1D[42] states in

the leading[32] symmetry in°Li is not so dominant; addi- the quadrupole moment operator, so the fBs ) ampli-

tion of lower spatial symmetries gives a significant 1-2-tude reported in Tables IV —V for each state corresponds to

MeV improvement to some of the energies. Electromagnetithe lower(negative quadrupole eigenvalue and the second
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TABLE IIl. VMC diagonalization for 8, gnj cOmponents irLi.

Jm 2M32] 2D[32] 2F[32] 49311 “D[311] 29311 2D[311] “P221] 2P221]

3- 0.859 —0.089 -0.446  —0.070 -0.198 0.107  -0.004
i- 0.841 -0.487 0.219 0.028 0.085
5- 0.968 —0.234 -0.045 -0.060  —0.042

3-%  _0.130  0.844 -0.489 0.016 0.160 -0.017  -0.075
- 0.826 -0.563

1-%  _0.029 0.333 0.934 -0.109 0.054
S« -0.088 -0.518 0.821 0.163  -0.154

to the higher(positive quadrupole eigenvalue. Interestingly, of first derivatives and diagonal second derivatives of the
we see that most states where these two symmetries contribrave function. These are obtained by evaluating the wave
ute are dominated by either one amplitude or the other, e.gfunction at 6A slightly shifted positions of the coordinat®s

the first 3" in 1%B is almost pure positive quadrupole while and taking finite differences. Terms quadraticlinrequire

the second 3 is almost pure negative quadrupole in compo-mixed second derivatives and additional wave-function
sition. Similarly the first 2 in °Be is almost pure negative evaluations and finite differences.

qguadrupole while the second is pure positive quadrupole.
This is analogous to using theK, labeling scheme applied

to 198 by Kurath in a traditional shell model calculatiptg], B. Green's function Monte Carlo

and there is good agreement as to the domif¥@itsymme- The GFMC method20,21] projects out the exact lowest-
try amplitudes with his Table 3. Only the first Xtate in'%B energy state\V, for a given set of quantum numbers, using
does not seem to fit in with these observations. Vo=Ilim,_ ., exd —(H—Ey)7|¥+, where¥ is an optimized

Energy expectation values with the fally, of Eq. (8) are  trial function from the VMC calculation. If the maximum
evaluated by a Metropolis Monte Carlo algorithm as de-actually used is large enough, the eigenvatyes calculated
scribed in Ref[2]. The full wave function at any given spa- exactly while other expectation values are generally calcu-
tial configurationR=r,,r,,---r, can be represented by a lated neglecting terms of ordg¥ ,— W|2 and highef2]. In
vector of 22X 1(A,T) complex numbers, contrast, the error in the variational energy is of ortg

—W.|2, and other expectation values calculated wih
have errors of orderV,—W¢|. In the following we present
‘I’(R)‘; YalR) ), (18 a brief overview ofe|thg nuchtlaar GFMC methgd; mlfjch more
detail may be found in Ref$2,3].
where they,(R) are the complex coefficients of each state We start with a¥'; defined agsee Eq(3.13 of Ref.[3]]
|@) which has specific third components of spin and linear
combinations of good isospin. For the nuclei considered
here, this leads to vectors ranging in length from 13 824 for TNI
He to 92 160 for'’Be, although a savings of a factor of 2 is Y= SLI, 1+Ui+ E Uit 1), (19
possible in ever nuclei by computing in theVl = 0 sub-
states. The spin, isospin, and tensor opera@ﬁs con-
tained in the potential and other operators of interest ar
sparse matrices in this basis and thus easily evaluated. Ki-
netic energy and spin-orbit operators require the computation Y(r)=e H By =[e-H-EdATI"p_ (20

gnd define the propagated wave functibiir)

TABLE IV. VMC diagonalization forg, g,y components in%s.

Jm 3942] °D[42] °D[42] °H42] 3G[42] P33 'A33 P41y MH417
3" 0.036  0.995  —0.086 0.001 0.016 0.003
1t 0.889 -0.225  0.368 0.068 -0.137

1+* 0.179 0.922  0.024 -0.021 -0.342

2" 0.467  0.884 0.023

3t 0.917  0.368 0.016  —0.047 0.021 0.142
1t  _0.042 -0.014  0.998 -0.025 -0.038

27 -0.141 0978 -0.154

4" 0.901 0.433
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TABLE V. VMC diagonalization for3, g,y components in'‘Be.

Jm 19421 'D[42] 'D[42] 'H42] 'G[42] °M33]  3F33] GP411]  3F417

o+ 0.812 0.109 0.573
2+ 0.944 -0.071 —-0.050 0.005 0.288 —0.138
2+* —-0.035 0.998 —-0.030 0.019 0.032 0.017
0** -0.462 —-0.492 0.738
3* 0.969 0.102 -0.225
4* 0.867 —0.228 —0.443
where we have introduced a small time stépz= 7/n; ob- Quantities of interest are evaluated in terms of a “mixed”

viously ¥ (7=0)=V; and V(r—x)=V,. The W(7) is expectation value betweeh and¥ (7):
represented by a vector function Rfusing Eq.(18), and the

Green's functionG,,4(R,R") is a matrix function ofR and (O ixed

R’ in spin-isospin space, defined as

Gup(RR")=(R,ale”""FI%7R", g). (21) (PP ()
It is calculated with leading errors of ordef\¢)3. Omitting f dP.WH(R,)OG(R,,R, 1)- - -G(R, Ro)¥1(Ry)
the spin-isospin indicea, B for brevity, ¥(R,,,7) is given _ neTe nen '
by ’
f dP W T(Ry)G(Ry Ry 1)+ - - G(Ry,Ro) W(Ry)
YR~ [ G(Ry Ry ) G(RyRY 23

XW¥i(Rp)dR,_;---dR1dRy, (22)  where P,=Rg,R;y, ..., R, denotes the “path,” anddP,
=dRydR;- - -dR,, with the integral over the paths being car-
with the integral being evaluated stochastically. The shortried out stochastically. The desired expectation values would,
time propagator is constructed with the exact two-bodyof course, haveV(r) on both sides; by writingV' (7)=V¥+
propagator and additional terms coming from the three-body+ 6% () and neglecting terms of ordpW (7)]?, we obtain

interaction. the approximate expression
+ ] 3l = ]
L]
40La e "B(2H
] YB(3™)
5 -50|
U .
Z
— e
[
il +® [ * L . ¢
T oo Tat0st 2024 0%4el e’ P
'-~!""¢_*E J o o '! ...'.'.l
AR | .-'-!!“xlh'" amE ] &
. - & L :
= l [ |
?U . | | ]
TR '(}.'2: i L e s
T(MeV!)

FIG. 3. (Color) GFMC E(r) for states of'°B calculated for the AV18/IL2 Hamiltonian. The solid lines show the averages that are
reported in the text; the dashed lines show the corresponding statistical errors.
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TABLE VI. Total GFMC energies in MeV.

AV8’ AV18 UIX IL2 IL3 IL4 Expt.

9He(%’) —22.5(2) —20.7(3) —28.7(3) —28.2(5) —28.8(4) —30.21(8)
%L(3-)  —36.6(2) ~—337(3) -—409(3) ~—46.0(4) —46.7(5) —47.6(4) 4534
o%Li (i) —36.8(2) —34.0(3) —39.4(3) —43.8(4) —44.2(4) —445(5) —42.65
%LU (s-)  —36.0(2) —321(3) ~—37.9(4) -—411(4) -—410(4) —40.6(4) —39.96(?)
%L(Z-)  —3820(2) -29.7(3) ~—352(3) —39.0(4) —38.7(4) -—40.8(4) —38.91(?)
Be(3-) —49.9(2) -—46.4(4) -551(3) -582(5) —57.8(5) —58.0(6) —58.16
%Be(3) —47.8(2) —435(3) -51.3(5) -55.8(5) —541(4) —55.1(5) —55.73
%Be(i-) —482(2) —45.0(4) -509(6) —54.3(4) —557(5) —55.5(4) —55.36
Be(l-) —435(2) —40.3(3) —51.5(5) —-51.8(7) —51.78
Be(2) —40.1(2) —36.7(3) —47.9(6) —47.5(5)

YHe(0*) —21.2(2) —19.8(3) —28.4(3) —27.2(6) —27.7(5) —30.34
1%Be(0") —56.1(2) —52.0(5) —59.2(6) —66.8(7) —652(7) —67.4(6) —64.98
YBe(2") —-51.9(2) —47.7(5) -57.1(6) —61.8(5) —59.9(6) —61.1(6) —-61.61
19Be(3") —55.7(6) —55.58
198(3%) —53.2(3) —48.6(6) —59.0(4) —65.6(5) —64.1(5) —65.6(6) —64.75
08(1%) —-55.7(3) —51.6(6) —60.3(5) —64.7(4) —62.8(5) —65.1(5) —64.03
0g(2) —-52.2(2) —47.2(5) —-61.7(5) —60.6(7) —62.4(5) —61.16
198(4*)  —50.0(3) —45.0(5) -60.0(5) —58.2(6) —61.5(4) —58.72

(V(7)|O|W(7)) to (R, ,7) involve only local properties, while antisymme-
(O(T)>=W try is a global property. Thus the propagation can mix in the

boson solution. This has @much lower energy than the
~(O(7))mixed T [{O(7))mixea—(O)7],  (24)  fermion solution and thus is exponentially amplified in sub-
sequent propagations. In the final integration with the anti-

where(O)+ is the variational expectation value. _ symmetric¥;, the desired Fermionic part is projected out,
Aspecial case is the expectation value of the Hamiltonianyt in the presence of large statistical errors that grow expo-
The (H(7))wixea CaN be reexpressed as nentially with 7. Because the number of pairs that can be
(W]~ H-EQ 2o (H-Eo)72 .y exchanged grows with, the sign problem also grows expo-
(H(T) ) yixed= — — >E,, nentially with mcre.asmg\. ForA=8, _the errors grow so fast
(W|e (H-Ed)72g=(H=Eo) 72y ) that convergence im cannot be achieved.
(25 To remedy this situation, a “constrained path” approxi-

mation has been developd®]. The basic idea of the

since the propagator ejxp(H—Ey)7] commutes with the constrained-path method is to discard those configurations
Hamiltonian. Thus(H(7))uixea approachess, in the limit  that, in future generations, will contribute only noise to ex-
7—, and the expectation value obeys the variational prinpectation values. Many tests of the constrained path have
ciple for all 7. been made and it usually gives results that are consistent

As mentioned above, the propagation is actually madegyith unconstrained propagation, within statistical errors, al-
with a simplified HamiltoniarH' that includes the CI kinetic though there are cases in which it converges to the wrong
energy operator, the AV8wo-nucleon interaction including energy[3]. Up to now, this problem was always solved by
isoscalar Coulomb, and a slightly alterlah{:]k three-nucleon using a small numbem,=10-20, of unconstrained steps
interaction. The AV 8 is a little more attractive than AV18, before evaluating expectation values. These few uncon-
so a slightly more repulsive/j is used to keep(H')  strained steps, out of 400 or more total steps, were enough to
~(H). This ensures the GFMC algorithm will not propagatedamp out errors introduced by the constraint in all the tests
to excessively large densities due to overbinding. Consethat we had done. The statistical errors in calculations with
quently, the upper bound property applies(td’(7)), and n,=10 are not substantially greater than fgr=0. How-
(H—H") must be evaluated perturbatively. ever, forA=10, the error fromn,=20 is 60—90 % larger

Another complication that arises in the GFMC algorithmthan that fromn,=10, i.e., 2.5-3.5 more configurations
is the “fermion sign problem.” This arises from the stochas- must be used to get the same error. In the present work, we
tic evaluation of the matrix elements in E@3). The Monte  find that A=9,10 calculations with the AV18/IL3 Hamil-
Carlo techniques used to calculate the path integrals leadirtgnian (which has the strongest long-range partgf) are
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particularly sensitive to,, and most of these are made with made a calculation fot’°He with AV18/IL2 and aW¥ that
n,=20. Tests made with the other Hamiltonians show thatontained noNNN correlation. Even thougm,=20 was

n,= 10 is enough, except for!He.

used, the result was overbound by(6)3VeV. (In Ref.[3] a

Previously[3] we had found that obtaining reliable results calculation of°Li with a much worse¥;, which contained

for 8He was particularly difficult. In the present work we noNN tensor correlations, also gave an overbound result but
find that this persists fof'®e which show large statistical this was corrected with onlp,=10.) The statistical errors
fluctuations. In addition the constrained-path method appeanssing n,= 40 are very large, making a confirmation of the
to be less reliable than for other nuclei. For example, wen,= 20 results presented here difficult; we have attempted
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TABLE VII. Isovector energies in keV.

AV18 UIX IL2 IL3 IL4 Expt.
%Li(37) 19008) 186Q7) 200Q7) 2041(7) 21137) 2104
oLi(37) 1831(8) 18043) 20037) 1891(7) 20479) 1946
9Be( % ) 175110 17389) 185710) 183310) 187814) 1851
9Be(2- 170010 17048) 175312) 175412) 186913) 1783
()
1%8e(0") 197010 211512 223512 214013 230711 2329
1%e(2%) 211111 197Q12) 218912 212411) 207911 2322

this for AV18/IL2 and obtain no significant change in the ancy significantly to 2—4 MeV iMA=9 and 4-6 MeV in
binding energy within a statistical error of 0.7 MeV. A=10. However, addition of the IL2-IL4 models to AV18
Figure 3 shows the progress with increasingf typical  results in much better energies, some high and some low, but
constrained GFMC calculations, in this case for variousgenerally within 2 MeV. In particular, the AV18/IL2 and
states of'%B using the AV18/IL2 Hamiltonian. The values AV18/IL3 Hamiltonians come within=3% of the experi-
shown atr=0 are the VMC values using’r. The GFMC  mental bindings for the ground states%fi, °Be, °Be, and
very rapidly makes a large improvement on these energies?%B, which is about as good as can be expected, given the
by 7=0.01 MeV !, the ¥ energies have been reduced by 1—-2% total errors in the GEFMC calculation.
~20 MeV. This rapid improvement corresponds to the re- Despite their systematic underbinding, the older Hamilto-
moval of small admixtures of states with excitation energieshians were able to give the correct ordering of excited states
~1 GeV from W;. Typically, averages over ther in the A<8 nuclei, albeit usually with insufficient splitting
=0.1-MeV ! values are used as the GFMC energy. Thebetween states that are spin-orbit partnfFk In the A
standard deviation, computed using block averaging, of all 0f=9,10 nuclei this no longer holds true. The most dramatic
the individual energies for thesevalues is used to compute case is the question of the proper ground state i:
the corresponding statistical error. The solid lines show thesgvg’, Av18, and AV18/UIX all clearly and wrongly predict
averages; the corresponding dashed lines show the statistiqfe (1";0) state to be lower than the (30) state, while all
errors. the AV18/IL2-IL4 models correctly reproduce the experi-
mental ordering. This result for the AV18 interaction was
V. ENERGY RESULTS first obtained by Navitid who also finds it for the CD-Bonn
interaction[22]. This incorrect ordering of states by the two-

In this section we present GFMC energy resultsAn o4y Hamiltonians also seems to be present in the case of the
=9,10 nuclei for the simplified AY8 NN Hamiltonian, the -1y and (t~:1) excitations of°Be, and may be a prob
12 ] -

full AV18 interaction, and AV18 with each of th’INN in- |2 f2 h d state 8Li althouah with th
teractions UIX, IL2, IL3, and IL4(Results forA<8 nuclei em for the proper ground staté OLl, although wi €

may be found in Refl5].) The total energies for 18 states are S?ES%I( eggrzvi;/trz ::Laéllctjnlatc;o? It blts irrlotthso cI(;.-atr. Tirr:e
shown in Table VI and in Fig. 4; excitation spectra are show a ) 0dels obta ese slates

in Fig. 5. Not all states have been calculated with all the h_e proper or_der, V.V'th one exception, and generally with
Hamiltonians. Numbers in parentheses are the Monte CarIBilrly good spln-orblt splittings. .

statistical errors; in addition there may be systematic errors As noted in Sec. Il, two narrow, particle-unstable states
from the GFMC algorithm of the order of 1-2% as dis-

cussed above. TABLE IX. Proton rms radii in fm.
The energies of the particle-stable ground states calcu
lated with just theN N interactions are underbound by 8—-12 Av8’  UIX L2 IL3 L4 Expt.

MeV in A=9 and 12-16 MeV inA=10, with the AV8 .
being somewhat more attractive than AV18. Addition of the®Li (37) 2191 2.201) 2.041) 2.021) 1.941)
older UIX NNN interaction to AV18 reduces this discrep- 9 () 22711 2231 2111 2.291) 2.011)

Be(37) 2.41(1) 2.411) 2.381) 2.361) 2.331) 2.401)
9Be(37) 2411) 2411) 2381) 2461) 2.271)

L 0Be(2") 2.331) 2.421) 2.261) 2.291) 2.281)
;) 1829 1829) 1978 20211 2049) 176 iqp oy’ 5 401) 2491) 2331) 2381) 2.271) 2.3312)
Li(37) 172A7) 181(8) 1938) 1818 18410) 160  198(1*) 2.451) 2.481) 2.491) 2.521) 2.421)
0Be(0") 257(25) 20533) 25024) 284(29) 314(27) 241 g2ty  2.461) 2.391) 2.591) 2.291)
0Be(2") 22327 19635 21618) 18323 20828 199 04"y 2.421) 2.300) 2.41(1) 2.150)

TABLE VIII. Isotensor energies in keV.
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have been observed ftLi without definite spin assignments. TABLE X. Neutron rms radii in fm.
On the basis of the close agreement between the AV18/ILZ

energies for the lowest3(';3) and (3 ;%) states and the
observed excitations, as illustrated in Fig. 5, we think these, ; (3 2721 2.761) 2571) 2521  2.391)
are in fact the most likely assignments for these states. Also,
our one calculation of the expected (@) state in%Be  °Li(z7) 2841 2.801) 2561 2761 2531
lines up with the observed state at 9.4 MeV, suggesting thaaBe(g—) 2.631) 2.631) 2551) 2561 2.521)
is its proper spin assignment. B

The current calculations significantly underbifd®e, i?e(i) 261D 268D 262D 268D 248D
even when the AV18/IL2-IL4 models are used. Because botqoBe(o ) 276€1) 2561 2471 259D 2.481)
these nuclei are particle unstable, they should properly beBe(2") ~ 2.661) 2781) 2551) 2601) 2621
calculated as resonant states, so the current GFMC result®(3") 2401 2491 2331 2.381) 227
may be somewhat less reliable than for the other ground’B(1") 2451 2481 2491 2521 2421
states. However, the experimental widths of these states afé3(2") 2.461) 2381 2591 2.291)
not large, and our calculations for other comparably narrow'’B(4*) 2.421) 2.300) 2411 2150
states have generally been good. It may be that some signif
cant admixture of &;,, orbitals from thesd shell should be ) . ]
introduced in the Jastrow trial function, as suggested by recientsa;(A,T) are shown in Table VII, while the isotensor
cent shell-model studief23]; we have not yet attempted COefficientsay(A,T), are given in Table VIII.
such a modification. In addition, as was discussed in the The dominant contribution in each case is from the regu-
previous Section, the Constrained_path propagation may n(!ﬁ.r Coulomb interaction between pl’OtOhS, but there are addi-
be as reliable for these nuclei. If the present resultSfdHe  tional contributions of~5% coming from the other electro-
are correct, then there is a need for further tuning of thénagnetic and strong terms. Because the AV18 and AV18/
isospin dependence of tNN interactions. UIX models underbind these nuclei, the density distributions

In addition to the total energies discussed above, we hav&nd to be more diffuse and the Coulomb interaction is re-
calculated the energy differences between isobaric analogtc€d, leaving a sizable discrepancy with experiment for the
states perturbatively by evaluating the expectation values dgovector coefficients. The AV18/IL2-IL4 models give much
the electromagnetic and strong CSB and CD parts of th&etter binding energies and consequently larger isovector co-
AV18 Hamiltonian in the wave function of thd,=—T1  €fficients which are within 5% of the experimental values.
nucleus. The CSB and CD terms can induce correspondingoWwever, the isotensor coefficients come out a bit too large.
changes in the nuclear wave functions, leading to higher-
order perturbative corrections to the splitting of isospin mass VI. MOMENTS AND DENSITY DISTRIBUTIONS

multiplets, but it is difficult for us to estimate these higher- Point proton and neutron rms radii are shown in Tables IX

order effects reliably in either VMC or GFMC calculations. and X. The AV18/IL2-IL4 Hamiltonians give significantly

ggﬁdzge;gsgles for a given isomultiplet of states can be ®Xsmaller radii than the older models, presumably because of

their greater binding. The experimentally measured charge
radii [25] for the °Be and '°B ground states are in good
Eat(T)= 2 ay(AT)Qu(T,T,), (26)  agreement with the calculations from the new models.
n=2T Quadrupole moments are shown in Table XI, as evaluated
in impulse approximation. Experimental values are from
whereQy=1, Q;=T,, andQ,= %(STE—TZ) are isoscalar, Refs.[6,7]. The contribution of two-body charge operators to
isovector, and isotensor terni4]. The isovector coeffi- the quadrupole moment are expected to be small, as in the

AV18 UIX IL2 IL3 IL4

TABLE XI. Quadrupole moments in ff

Av8’ UIX IL2 IL3 IL4 Expt.

o€Li(2) —3.1(1) —2.9(1) —2.7(1) —2.7(1) —2.5(1) —2.7(1)
Be(2) 5.003) 7.402) 8.503) 5.7(2) 6.803) 5.91)
9Be(3) —2.3(2) —2.6(2) —2.9(2) —4.8(2) —4.1(2)

%c(e) —3.7(3) —5.5(3) —5.1(3) —4.4(3) —5.3(3)

1"Be2(2+) —10.1(3) —8.0(4) —5.0(4) —9.6(4) 7.22)

108(3™) 8.7(2) 12.02) 9.52) 9.4(2) 8.812) 8.51)
10(1™) 1.2(1) 3.212) 3.1(1) 3.21) 2.1(1)

10g(2™) —1.9(2) —0.6(2) —1.8(3) —1.8(2)

108(4™) 3.93) 3.82) 5.4(4) 3.82)
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TABLE XIll. Magnetic moments irnwy -

Av8’ UIX L2 IL3 IL4 Expt.
oL (37 2.91(1) 2.542) 2.472) 2.542) 2.542) 3.440)
9% (1) —0.23(2) —0.19(3) —0.29(2) —0.25(3) —0.24(3)

Be(d) —1.35(2) -1.11(1) —1.14(2) —1.03(2) —1.17(3) —1.18(0)
%Be(3) —0.95(1) —0.96(1) —0.88(1) —0.84(1) —0.85(1)

c@) —1.08(3) —0.71(5) —0.63(4) —0.72(4) —0.70(4) —1.39(0)
108(3%) 1.821) 1.801) 1.801) 1.800)
(1) 0.751) 0.7891) 0.741) 0.771) 0.6312)

deuteron andfLi [4,26], because both the isoscalar and is-With the former more peaked at the origin, and the latter
ovector charge operators are relativistic corrections of ordeghowing a broad flat interior. The protons fii cluster at
(v/c)?. Expectation values of the quadrupole operator tendhe origin because two out of three are confined to d¢he
to have a much larger variance than radii because of theore, while the neutrons show a substantial skin with a hint
cancellations from the,, operator. Given this caveat, the of ap-shell peak around 1 fm. The low central densities for
agreement with the measured quadrupole moments is reasdd@th protons and neutrons i#Be are probably due to the
able. large 2 component in its®Be core. The densities fol’Be
The impulse approximation magnetic moments are showand *°B are shown in Fig. 7. They have somewhat higher
in Table XlI; experimental values are from Ref6,7,27,28. central values than iffBe, but are also broader and flatter
Experience in lighter nuclei shows that there are significanthan °Li, presumably due to the dominafiBe core.
two-body current contributions to the magnetic operators,

particularly the isovector part. In the trinucleons, the isosca- VIl. CONCLUSIONS
lar portion is boosted by+0.034uy or ~8%, while the
isovector portion is corrected by 0.778uy or ~18% [29]. We have made quantum Monte Carlo calculations for the

However, in the isoscalafLi case, the correction is a tiny ground states and low-lying excited statesAef 9,10 nuclei,
+0.003 uy [26]. On this basis, we expect substantial im- based on realistic two- and three-nucleon potentials. The new
provement in the®Li and °C results shown in Table XiI lllinois NNN models do a good job of explaining the binding
when two-body contributions to the current operator areenergies of the ten best-knowk=9,10 states of different
added, while the already goddB results will not be signifi- quantum numbers, but the results f5He may indicate a
cantly affected. However, the reasonable agreement betweéleficiency in the models. If we also include the 17 narrow
the IA calculations and experiment féBe may not survive. States to which these forces were fitAs<8 nuclei[5], we
The nucleon densities fotLi and °Be are shown in Fig. find rms deviations from the experimental energies of 0.6
6, on both a lineacleft) and logarithmic(right) scale. The MeV for AV18/IL2, 0.8 MeV for AV18/IL3, and 1.0 MeV for
densities are normalized such that the integrated value equady/18/IL4. This contrasts with rms deviations of 3.2 MeV for
the appropriate total value dfl or Z. These densities are AV18/UIX and 9.9 MeV for AV18 alone. Thus AV18/IL2
rather similar to those calculated earlier firi and 8Be[3]  becomes our preferred model Hamiltonian with AV18/IL3
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FIG. 6. Proton and neutron densities #8=9 nuclei on both FIG. 7. Proton and neutron densities #r 10 nuclei on both
linear (left) and logarithmic(right) scales. linear (left) and logarithmic(right) scales.
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almost as good, although AV18/IL4 will be somewhat dep-memory. However, the present codes are in principle capable

recated. of computing nuclei like'Be and '%C; such calculations
We conclude that a fairly consistent picture of nuclearmay become feasible with the next generation of computers.

binding can be constructed fét<10 nuclei using a single

Hamiltonian and a single computational framework. This ap-

plies also to the energy differences among isobaric multip- ACKNOWLEDGMENTS
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