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Quantum Monte Carlo calculations of AÄ9,10 nuclei

Steven C. Pieper,1,* K. Varga,1,2,† and R. B. Wiringa1,‡
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We report on quantum Monte Carlo calculations of the ground and low-lying excited states ofA59,10
nuclei using realistic Hamiltonians containing the Argonnev18 two-nucleon potential alone or with one of
several three-nucleon potentials, including Urbana IX and three of the new Illinois models. The calculations
begin with correlated many-body wave functions that have ana-like core and multiplep-shell nucleons,
LS-coupled to the appropriate (Jp;T) quantum numbers for the state of interest. After optimization, these
variational trial functions are used as input to a Green’s function Monte Carlo calculation of the energy, using
a constrained path algorithm. We find that the Hamiltonians that include Illinois three-nucleon potentials
reproduce ten states in9Li, 9Be, 10Be, and10B with an rms deviation as little as 900 keV. In particular, we
obtain the correct 31 ground state for10B, whereas the Argonnev18 alone or with Urbana IX predicts a 11

ground state. In addition, we calculate isovector and isotensor energy differences, electromagnetic moments,
and one- and two-body density distributions.

DOI: 10.1103/PhysRevC.66.044310 PACS number~s!: 21.10.2k, 21.45.1v, 21.60.Ka, 27.20.1n
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I. INTRODUCTION

In a series of papers@1–3#, we have reported quantum
Monte Carlo~QMC! calculations of ground and low-lying
excited state energies inA<8 nuclei for realistic nuclear
Hamiltonians. These calculations employed the Argonnev18
~AV18! two-nucleon potential@4# and the Urbana IX~UIX !
three-nucleon potential@1#, and are accurate to'1 –2 % of
the binding energy for lightp-shell nuclei. More recently, we
have used the quantum Monte Carlo calculations to help c
struct a series of new and improved pion-exchange-ba
three-nucleon potentials, designated the Illinois models@5#.
The five Illinois models~IL1–IL5!, when used in conjunc
tion with AV18, each reproduce the experimental energies
17 narrow states inA<8 nuclei with an rms deviation o
'400 keV. This contrasts with a 2.3-MeV rms deviation f
the AV18/UIX Hamiltonian, and 7.7 MeV for AV18 alone.

In this paper, we report the extension of our QMC calc
lations toA59,10 nuclei. The QMC methods include bo
variational ~VMC! and Green’s function Monte Carl
~GFMC! methods. The VMC method is used to construc
variational wave function as a product of two- and thre
body correlation operators acting on an independent-par
wave function that has ana-like core and multiplep-shell
nucleons,LS coupled to the appropriate (Jp;T) quantum
numbers for the state of interest. Monte Carlo evaluation
the energy expectation value is used to optimize the t
function, particularly the mix of independent-particle wa
function components. The GFMC method starts from t
trial function and makes a Euclidean propagation that c
verges to the lowest energy for a state of these quan
numbers. A constrained path algorithm is crucial for keep
the fermion sign problem under control. At present t
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GFMC method is used to calculate only the lowest state
given (Jp;T).

We have calculated ten stable or very narrow natu
parity states in theA59,10 nuclei9Li, 9Be, 10Be, and10B
that are experimentally well known. We use three of the n
Illinois models~IL2, IL3, IL4 ! in conjunction with AV18 and
obtain rms deviations from the experimental energies of
states of 900, 1100, and 1700 keV, respectively. We have
calculated most of these states with the AV18 and AV18/U
Hamiltonians for comparison. The most intriguing result w
find is that the new AV18/IL2-IL4 models all correctly pre
dict a 31 ground state for10B, but the older models wrongly
predict a 11 ground state. In addition, we have made GFM
calculations of six other states that are expected within
p-shell formulation of these nuclei and of the9He and10He
ground states; these states either have much larger width
are not clearly identified by experiment.

We review briefly the experimental status of the grou
and low-lying excited states in theA59,10 nuclei in Sec. II.
The Hamiltonians are described in Sec. III and the QM
calculations in Sec. IV. Most of this material has been d
cussed in detail in Refs.@2,3#. The only major new technica
development is the automation of the construction of
independent-particle portion of the variational trial wa
functions that serve as starting points for the GFMC cal
lations. Energy results are given in Sec. V, while electrom
netic moments and density distributions are shown in S
VI. We present our conclusions in Sec. VII.

II. EXPERIMENTAL STATUS

The experimental status ofA59,10 nuclei is illustrated in
Figs. 1 and 2, where we show the ground states and m
low-lying natural-parity states whose spin assignments
reasonably certain@6,7#. We also show some additional na
row states in9Li and 10Be whose spins have not been dete
mined experimentally; reasonable guesses are given in
©2002 The American Physical Society10-1
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rentheses, based on standard shell model studies and
present calculations.

The ground state of9Be is an absolutely stable (Jp;T)

5( 3
2

2; 1
2 ) state. The first excitation is a (1

2
1; 1

2 ) state ~not
shown in Fig. 1! with a width of 217 keV which occurs at th
threshold for breakup into8Be1n. This unnatural parity
state is beyond the scope of the present paper; we will re
calculations of such intruder states in the future. The sec

excitation is a narrow (52
2; 1

2 ) state at 2.429 MeV, with a
width ,1 keV. Within the p-shell formulation, there can

also be (12
2; 1

2 ), ( 7
2

2; 1
2 ), and (92

2; 1
2 ) states. Experimentally

the first two are observed at 2.78 and 6.38 MeV excitat
but both are quite broad ('1 MeV), while no state with

( 9
2

2; 1
2 ) character has been identified. We evaluate all th

(Jp;T) cases in GFMC, treating the states as if they w
particle stable; this should be adequate for narrow states
may be less satisfactory for broad states.@Several additional
unnatural parity states and second excited states of g
(Jp;T) are observed above 3 MeV, but are not shown in
figure.# The matrix elements of the electromagnetic a
strong charge-independence-breaking terms in the Ha
tonian are evaluated perturbatively to infer the energies
the narrowT5 1

2 isobaric analog states in9B.

The ground state of9Li is a particle stable (32
2; 3

2 ) state
that decays byb2 emission to9Be with a half-life of 178
ms. The first excited state of9Li at 2.691 MeV is believed to

be a (12
2; 3

2 ) state; it is below the threshold for breakup in
8Li1n and decays only byg emission. We calculate bot
these states in9Li, and again perturbatively evaluate the e
ergies of the isobaric analogs in9Be, 9B, and 9C. Two

FIG. 1. First natural-parity states in the experimental spectra
A59 nuclei.
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additional narrow states above the breakup threshold h
been observed in9Li, but without firm spin-parity identifi-
cation: a 60-keV-wide state at 4.296 MeV and a 40-keV-w

state at 6.43 MeV. Within thep shell, these should be (5
2

2; 3
2 )

and (7
2

2; 3
2 ) states; our GFMC evaluations of such states l

up very well with the experimental observations, suggest
these spin assignments may indeed be correct.

The ground state of10B is an absolutely stable (31;0)
state. The first threshold for breakup of10B is into 6Li1a.
Between the ground state and breakup threshold are
(11;0) excited states at 0.718 and 2.154 MeV, one (21;0)
state at 3.587 MeV, and the (01;1) isobaric analog of10Be
at 1.740 MeV. Many additional states are known above
6Li1a threshold; in Fig. 2 we show only the (21;1) iso-
baric analog at 5.164 MeV and the (41;0) state at 6.025
MeV. We calculate the (31;0) ground state and first (11;0),
(21;0), and (41;0) excitations by GFMC. In thep shell
there can also be (01;0) and (51;0) states, but the former is
of low spatial symmetry while the latter has high angu
momentum, leading us to expect both of them to be qu
high in excitation energy; no experimental observation
either has been made.

The nucleus10Be is particle stable but decays byb2

emission with the very long half-life of 1.513106 years. As
is typical for an even-even nucleus, the ground state i
(01;1) state, and there is a well-separated (21;1) excited
state at 3.368 MeV. These are the two primary10Be states we
evaluate in GFMC. In addition, the tabulation lists a state
9.4 MeV as a possible (21;1) state, but a more recen
(t,3He) experiment makes a (31;1) assignment more likely
@8,9#. We have made one computation for the (31;1) level

f FIG. 2. Low-lying natural-parity states in the experimental sp
tra of A510 nuclei.
0-2
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QUANTUM MONTE CARLO CALCULATIONS OF . . . PHYSICAL REVIEW C 66, 044310 ~2002!
using AV18/IL2 and get reasonable agreement with this
ergy. Other particle-stable states below the threshold
breakup into 9Be1n include second (01;1) and (21;1)
states, also shown in Fig. 2, and the first particle-sta
(12;1) and (22;1) intruder states~not shown!. The second
excited states are not evaluated at present in GFMC, w
the intruder states will be reported on in future work. Aga
the isobaric analog states in10B and 10C are evaluated per
turbatively from 10Be.

In addition to these nuclei, we have also made calcu
tions of the expected lowest natural-parity states in9He and
10He. These are a (1

2
2; 5

2 ) resonance which is observed
'1.2 MeV above the threshold for breakup into8He1n,
and a (01;3) resonance at'1.1 MeV above the8He1n
1n threshold@7,10#. These resonances are observed to
reasonably narrow, with widths of 100 and<300 keV, re-

spectively. There are recent experimental reports of a (1
2

1; 5
2 )

resonance near threshold in9He @11#, which we have not
attempted to calculate; such a state is likely to be very br
and really needs to be treated as a scattering state. We
have not attempted to calculate the resonant ground sta
10Li, which is broad and still has some experimental unc
tainty.

III. HAMILTONIAN

The Hamiltonian includes nonrelativistic one-body kine
energy, the AV18 two-nucleon potential@4# and either the
UIX @1# or one of the Illinois@5# three-nucleon potentials:

H5(
i

Ki1(
i , j

v i j 1 (
i , j ,k

Vi jk . ~1!

The kinetic energy operator is predominantly charg
independent~CI!, but has a small charge-symmetry breaki
~CSB! component due to the difference between proton
neutron masses. The AV18 is one of a class of highly ac
rateNN potentials that fit bothpp andnp scattering data up
to 350 MeV with ax2/datum'1. It can be written as a sum
of electromagnetic and one-pion-exchange terms an
shorter-range phenomenological part:

v i j 5v i j
g 1v i j

p1v i j
R . ~2!

The electromagnetic terms include one- and two-phot
exchange Coulomb interaction, vacuum polarizati
Darwin-Foldy, and magnetic moment terms, all with app
priate proton and neutron form factors. The one-pio
exchange part of the potential includes the small char
dependent~CD! terms due to the difference in neutral an
charged pion masses. The shorter-range part has abou
parameters which are adjusted to fit thepp andnp scattering
data, the deuteron binding energy, and also thenn scattering
length.

The one-pion-exchange and the remaining phenome
logical part of the potential can be written as a sum of
operators,
04431
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v i j
p1v i j

R5 (
p51,18

vp~r i j !Oi j
p . ~3!

The first 14 CI operators are

Oi j
p51,145@1,s i•s j ,Si j ,L•S,L2,L2s i•s j ,~L•S!2#

^ @1,t i•t j #, ~4!

while the last four,

Oi j
p515,185@1,s i•s j ,Si j # ^ Ti j , tzi1tz j , ~5!

are the strong interaction CD and CSB terms.
The three-nucleon potentials from the Urbana series

models @12# contain a long-range, two-pion-exchang
P-wave term and a short-range phenomenological piece:

Vi jk
U 5Vi jk

2p,P1Vi jk
R . ~6!

The UIX model has the strengths of these two terms adjus
to reproduce the binding energy of3H, in GFMC calcula-
tions, and to give a reasonable saturation density in nuc
matter, in variational chain summation calculations@13#,
when used with AV18. The Illinois models add a two-pio
exchangeS-wave term and a three-pion-ring term:

Vi jk
IL 5Vi jk

2p,P1Vi jk
2p,S1Vi jk

3p,DR1Vi jk
R . ~7!

The two-pion-exchangeS-wave term is required by chira
symmetry, but in practice its small energy contributio
makes it hard to distinguish from the dominantP-wave term.
However, the three-pion-ring term, while it is smaller th
the two-pion-exchangeP-wave term, has a distinctly differ
ent isospin dependence, which is crucial for being able to
the variety of lightp-shell energy levels studied in Ref.@5#.
In the Illinois models, the operator structure and radial for
were taken from standard meson-exchange theory, but
overall strengths of the four terms, and one cutoff factor
the radial dependence, were adjusted to obtain best fits to
energies of 17 narrow states in 3<A<8 nuclei. In practice,
at most three parameters at a time could be uniquely de
mined from the energy calculations, so five different mod
were constructed in which different subsets of the parame
were fixed by external considerations, while the remain
ones were adjusted.

The CD and CSB terms inH are fairly weak, so we can
treat them conveniently as a first-order perturbation and u
wave function of good isospin, which is significantly mo
compact. Also, direct GFMC calculations with the spi
dependent terms that involve the square of the orbital ang
momentum operator can have large statistical fluctuations
discussed in Ref.@2#. Thus it is useful to define@2# a simpler
isoscalar interaction, AV88, which contains only the eigh
operators @1,s i•s j ,Si j ,L•S# ^ @1,t i•t j # and an isoscalar
Coulomb interaction. These eight operators are chosen s
that AV88 reproduces the CI part of the full AV18 interactio
in all S and P waves as well as the deuteron. The AV8
interaction~without the Coulomb term! was recently used in
a benchmark test of seven different many-body methods
0-3
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STEVEN C. PIEPER, K. VARGA, AND R. B. WIRINGA PHYSICAL REVIEW C66, 044310 ~2002!
solving the four-nucleon bound state, with excellent agr
ment between GFMC and the other calculations@14#.

IV. QUANTUM MONTE CARLO

A. Variational Monte Carlo

We first construct a variational wave function for the sta
of interest and then optimize it by minimizing the ener
expectation value as computed by Metropolis Monte Ca
integration. The variational wave function for the nuc
studied here has the form

uCV&5F11 (
i , j ,k

Ũ i jk
TNIGS)

i , j
~11Ui j !uCJ&. ~8!

The Ui j , and Ũ i j ;k
TNI are noncommuting two- and three

nucleon correlation operators, andS is a symmetrization op-
erator. TheUi j includes spin, isospin, and tensor terms
duced by the two-nucleon potential, while theŨ i j ;k

TNI reflects
the structure of the dominant parts of the three-nucleon
teraction. This trial function has the advantage of being e
cient to evaluate while including the bulk of the correlati
effects. A more sophisticated variational function can be c
structed by including two-body spin-orbit correlations a
additional three-body correlations, as discussed in Ref.@3#,
but the time to compute these extra terms is significant, w
the gain in the variational energy is relatively small. Stud
have shown that the GFMC algorithm easily corrects for
omission of these terms@2#.

The two-body correlations are generated by the solu
of coupled differential equations with embedded variatio
parameters@15#. We have found that the parameters op
mized for thea particle are near optimal for use in the lig
p-shell nuclei. Likewise, the best parameters for the thr
body correlations are remarkably constant for differents- and
p-shell nuclei, so they have not been changed significa
from the previousA<8 work @2,3#.

For the p-shell nuclei studied here, the totally antisym
metric Jastrow wave functionCJ starts with a sum ove
independent-particle terms,FA , that have four nucleons in
an a-like core and (A24) nucleons inp-shell orbitals. We
useLS coupling to obtain the desiredJM value of a given
state, as suggested by standard shell-model studies@16#. We
also need to specify the spatial symmetry@n# of the angular
momentum coupling of thep-shell nucleons@17#. Different
possibleLS@n# combinations lead to multiple components
the Jastrow wave function. This independent-particle bas
acted on by products of central pair and triplet correlat
functions, which depend upon the shells (s or p) occupied
by the particles and on theLS@n# coupling:

uCJ&5AH )
i , j ,k<4

f i jk
c )

i , j <4
f ss~r i j ! )

k<4, l<A
f sp~r kl!

3 (
LS[n]

S bLS[n] )
4, l ,m<A

f pp
[n]~r lm!

uFA~LS@n#JMTT3!1234:5•••A& D J . ~9!
04431
-

o
i

-

-
-

-

le
s
e

n
l

-

-

ly

is
n

The operatorA indicates an antisymmetric sum over all po
sible partitions of theA particles into fours-shell and (A
24) p-shell ones. The pair correlation for particles with
the s-shell, f ss(r ), is the optimal correlation for thea par-
ticle. The f sp(r ) is similar to thef ss(r ) at short range, but
with a long-range tail going to a constant'1; this allows the
wave function to develop a cluster structure likea1d in 6Li
or a1a in 8Be at large cluster separations. Thef pp

[n] (r ) de-
pends on the nucleus and particular independent-par
channel, e.g., in the case of6Li or 8Be, it is similar to the
optimal deuteron or alpha correlations.

The LS@n# components of the independent-particle wa
function are given by

uFA~LS@n#JMTT3!1234:5•••A&

5UFa~0000!1234 )
4, l<A

fp
LS[n]~Ra l !

3H F )
4, l<A

Y1ml
~Va l !G

LML[n]

^ F )
4, l<A

x l S 1

2
msD G

SMS

J
JM

^ F )
4, l<A

n l S 1

2
t3D G

TT3
L , ~10!

where

Fa~0000!5A~p↑p↓n↑n↓ ! ~11!

is the a-core independent-particle wave function. Th
fp

LS(Ra l) arep-wave solutions of a particle of reduced ma
4
5 mn in an effectivea-N potential:

VaN~r !5VaN
WS~r !1VaN

C ~r !. ~12!

The fp
LS are functions of the distance between the cente

mass of thea core ~which contains particles 1–4 in thi
partition! and nucleonl, and again may be different for dif
ferent LS@n# components. For each state considered in
present work, we have used bound-state asymptotic co
tions for thefp

LS , even if the state is particle unstable. Th
Woods-Saxon potential

VaN
WS~r !5Vp

LSF11expS r 2Rp

ap
D G21

, ~13!

has variational parametersVp
LS , Rp , andap , while the Cou-

lomb potential is obtained by folding over nuclear a
nucleon form factors. The wave function is translationa
invariant, hence there is no spurious center of mass mot

A major technical advance in the present work is the
tomatic generation of the independent-particle wave funct
FA with the appropriate spatial symmetries discussed abo
We describe here the construction of the spatial symm
0-4
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TABLE I. Permutation symmetry terms forLS coupling inA59,10 nuclei and corresponding spin state

A @n# L (T,S) Highest symmetry states

9 @41# 1,2,3,4 ~
1
2,

1
2! 9Be~

1
2

2 – 9
2

2!

@32# 1,2,3 ~
3
2,

1
2! ~

1
2,

3
2! ~

1
2,

1
2! 9Li ~ 1

2
2 – 7

2
2!

@311# 0,2 ~
3
2,

3
2! ~

3
2,

1
2! ~

1
2,

3
2! ~

1
2,

1
2!

@221# 1 ~
5
2,

1
2! ~

3
2,

3
2! ~

3
2,

1
2! ~

1
2,

5
2! ~

1
2,

3
2! ~

1
2,

1
2! 9He~

1
2

2, 3
2

2!

10 @42# 0,22,3,4 (1,0)(0,1) 10Be(01,21 –41), 10B(11 –51)
@33# 1,3 (1,1)(0,0) 10Be(11)
@411# 1,3 (1,1)(0,0)
@321# 1,2 (2,1)(2,0)(1,2)(1,1)2(1,0)(0,2)(0,1) 10Li(0 1 –31), 10B(01)
@222# 0 (3,0)(2,1)(1,2)(1,0)(0,3)(0,1) 10He(01)
th
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@n#. One can use different coupling schemes to form
spatial~or spin and isospin! part of the wave function with
good quantum numbers. We use simple sequential coup
in which the spatial part of the wave function is written a

uLMLm5@$@Y1~Va5!Y1~Va6!# l 56
Y1~Va7!% l 567

. . . #LML
,

~14!

and a similar construction is used for the spin and isos
part. The functions having the sameL andML but different
intermediate quantum numbers, labeled bym, are orthogonal
and form a complete set of eigenstates ofL2 and Lz . The
permutation operatorsPk of the valence particlesl
55,6, . . . ,A @k51, . . . ,(A24)!#, commute withL2 andLz
so that the above functions form a basis for the represe
tion of the symmetric group as well:

PkuLMLm5(
l

Ulm~Pk!uLMLl . ~15!

The permutation symmetry is conveniently depicted
using ‘‘Young diagrams,’’ consisting ofN adjoining square
boxes with rows numbered numerically downward, and c
umns rightward; there may not be more rows in columi
than in columni 21, nor columns in rowj than in row j
21. Each Young diagram corresponds to a representatio
the permutation group. The basis functions defining a gi
representation can be labeled by using a Young table
which is an arrangement of the numbers 1,2, . . . ,N in the
Young diagram, such that numbers always increase alon
rows and down all columns.

We use the ‘‘Young operators’’ to construct a basis fun
tion that has the symmetry properties of a given Young t
leau. The Young operatorŶ is a product of a symmetrizerR
and an antisymmetrizerQ: Ŷ5QR. The operatorR symme-
trizes all particle indices which are in the same row andQ
antisymmetrizes all particles in the same column. Both
erators are constructed as a combination of the permuta
operatorsPk .

To construct the spatial part of the wave function belon
ing to a given representation of the permutation group,
first have to draw the Young diagram and insert the numb
1,2, . . . ,N into the pattern in any order to give a Youn
04431
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tableau. The number of different tableauxNY is the dimen-
sion of the representation. Then we prepare the Young op
tors Ŷ1 , . . . ,ŶNY

corresponding to the Young tableau an
calculate the matrix elements of these operators with the
sis functionsuLMLm . We then have

ŶkuLMLm5(
l

^uLMLmuŶkuuLMLl&uLMLl . ~16!

Let us denote the successively coupled spin~isospin! func-
tions by vSMSnu (vTT3n8). To form an antisymmetric wave
function for theN particle system one has to multiply th
basis functions of the space part of a given Young table
ŶkuLMLm , by the basis functions of the spin-isospin part b

longing to the conjugated@ n̄# Young diagram~obtained by
reversal of the roles of rows and column!

Ŷk@ n̄#vSMSnvTT3n8 and sum over all possible tableaux. Th
Eq. ~10! becomes

uFA~LS@n#JMTT3!1234:5•••A&

5UFa~0000!1234 )
4, l<A

fp
LS[n]~Ra l !(

k
pkŶk@n#Ŷk@ n̄#

3@uLmvSn#JMvTT3n8L , ~17!

where pk is the parity of the permutation of the numbe
~starting from the top and going left to right in each row! in
the Young diagram. The Young operatorŶk@n# (Ŷk@ n̄#) acts
on the spatial~spin-isospin! functions of thel 55,6, . . . ,A
valence particles. Any choice ofm and n,n8 generates the
same wave function.

The different possibleLS@n# contributions toA59,10 nu-
clei are given in Table I. After other parameters in the tr
function have been optimized, a series of energy evaluat
are made in which thebLS[n] of Eq. ~9! are different in the
left- and right-hand-side wave functions to obtain the diag
nal and off-diagonal matrix elements of the Hamiltonian a
the corresponding normalizations and overlaps. The resul
N3N matrices are diagonalized to find thebLS[n] eigenvec-
0-5
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TABLE II. VMC diagonalization forbLS[n] components in9Be.

Jp 2P@41# 2D@41# 2F@41# 2G@41# 4P@32# 4D@32# 4F@32# 2P@32# 2D@32# 2F@32#

3
2

2 0.936 –0.337 0.035 –0.024 0.047 –0.026 0.049
5
2

2 0.952 0.273 –0.064 –0.040 0.060 0.062 –0.0
1
2

2 0.990 0.117 –0.039 0.002
7
2

2 0.868 0.488 0.019 –0.064 0.03
3
2

2* 0.356 0.921 0.087 –0.098 0.052 –0.050 –0.003
5
2

2* –0.248 0.925 0.273 0.007 0.045 0.037 –0.0
9
2

2 0.978 0.207
1
2

2* –0.104 0.905 0.286 –0.153
7
2

2* –0.474 0.836 –0.260 0.009 0.04

Jp 4S@311# 4D@311# 2S@311# 2D@311# 6P@221# 4P@221# 2P@221#

3
2

2 0.046 –0.025 0.011 0.029 –0.010 0.010
5
2

2 0.053 –0.005 –0.025 –0.015
1
2

2 –0.054 –0.023 –0.038 0.024
7
2

2 0.057 –0.015
3
2

2* 0.046 0.035 -0.000 –0.005 0.000 0.010
5
2

2* 0.003 –0.035 –0.017 0.021
9
2

2

1
2

2* –0.112 0.216 –0.077 0.005
7
2

2* –0.080 –0.015
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tors, using generalized eigenvalue routines because the
relatedCV are not orthogonal. This allows us to project o
not only the ground-state trial functions, but also excite
state trial functions of the same (Jp;T) quantum numbers. In
our present studies, we have carried out ourA59 diagonal-
ization in a completep-shell basis, but for10B and 10Be we
have limited ourselves to the three highest spatial sym
tries, i.e.,@42#, @33#, and@411#. The diagonalization is carried
out for the AV18/UIX Hamiltonian; thebLS[n] amplitudes
should not be significantly different for the other mode
Additional spatial symmetries involving particle excitatio
out of the p shell are built up in the full trial function by
means of the tensor correlations contained in theUi j and
Ũ i jk

TNI of Eq. ~8!.

Thus in 9Be, the Jastrow wave function for the (3
2

2; 1
2 )

ground state is constructed from 13 amplitudes, and a
313 diagonalization is performed to find the optimal mi
ing. ThebLS[n] values for this and other9Be states, includ-
ing some second excited states, are given in Table II, w
the values for various states in9Li are given in Table III. In
the case of9Be, the@41# symmetry states dominate; additio
of the lower spatial symmetries improves the energies
typically 0.25 MeV. The additional states do not significan
alter the rms radii or electromagnetic moments. By contr
the leading@32# symmetry in 9Li is not so dominant; addi-
tion of lower spatial symmetries gives a significant 1–
MeV improvement to some of the energies. Electromagn
04431
or-
t
-

e-

.

3

le

y

t,

-
ic

moments can also be significantly shifted. In general,
dominantA59 amplitudes are in good agreement~modulo
sign! with the shell-model wave functions of Kumar@18#.

The bLS[n] values for 10B states are given in Table IV
and for 10Be states in Table V. The neglect of the@321# or
lower symmetry states in these nuclei is justified on
grounds that this is the leading spatial symmetry of10Li,
whose isobaric analog state first appears at 21 MeV in
excitation spectrum of10Be. For 10B, the @42# symmetry
states are dominant, and addition of the@33# and@411# sym-
metries improves the energies by only 0.2 MeV. Howev
for 10Be, these extra components can give significant ad
tional binding of up to 3 MeV. In this case, the extra sta
correspond to low-lying excitations that may not be filter
out of the trial function by a GFMC propagation to limitedt,
as discussed below. Thus it is crucial to carry out the dia
nalization in the trial function to get an optimal starting poi
for the GFMC calculation.

TheA510 nuclei are exactly midway through thep shell
and are unique in having two linearly independent states
the same spatial symmetry contribute, i.e., two1D@42# states
in 10Be and two3D@42# states in10B. To uniquely identify
these two possible combinations, we diagonalize Jast
trial functions containing just the two2S11D@42# states in
the quadrupole moment operator, so the firstbLS[n] ampli-
tude reported in Tables IV –V for each state correspond
the lower ~negative! quadrupole eigenvalue and the seco
0-6
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TABLE III. VMC diagonalization forbLS[n] components in9Li.

Jp 2P@32# 2D@32# 2F@32# 4S@311# 4D@311# 2S@311# 2D@311# 4P@221# 2P@221#

3
2

2 0.859 –0.089 –0.446 –0.070 –0.198 0.107 –0.0
1
2

2 0.841 –0.487 0.219 0.028 0.085
5
2

2 0.968 –0.234 –0.045 –0.060 –0.042
3
2

2* –0.130 0.844 –0.489 0.016 0.160 –0.017 –0.0
7
2

2 0.826 –0.563
1
2

2* –0.029 0.333 0.934 –0.109 0.054
5
2

2* –0.088 –0.518 0.821 0.163 –0.154
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to the higher~positive! quadrupole eigenvalue. Interestingl
we see that most states where these two symmetries con
ute are dominated by either one amplitude or the other, e
the first 31 in 10B is almost pure positive quadrupole whi
the second 31 is almost pure negative quadrupole in comp
sition. Similarly the first 21 in 10Be is almost pure negativ
quadrupole while the second is pure positive quadrup
This is analogous to using theLKL labeling scheme applied
to 10B by Kurath in a traditional shell model calculation@19#,
and there is good agreement as to the dominant@42# symme-
try amplitudes with his Table 3. Only the first 21 state in10B
does not seem to fit in with these observations.

Energy expectation values with the fullCV of Eq. ~8! are
evaluated by a Metropolis Monte Carlo algorithm as d
scribed in Ref.@2#. The full wave function at any given spa
tial configurationR5r1 ,r2 ,•••rA can be represented by
vector of 2A3I (A,T) complex numbers,

C~R!5(
a

ca~R!ua&, ~18!

where theca(R) are the complex coefficients of each sta
ua& which has specific third components of spin and line
combinations of good isospin. For the nuclei conside
here, this leads to vectors ranging in length from 13 824
9He to 92 160 for10Be, although a savings of a factor of 2
possible in even-A nuclei by computing in theM50 sub-
states. The spin, isospin, and tensor operatorsOi j

p52,6 con-
tained in the potential and other operators of interest
sparse matrices in this basis and thus easily evaluated
netic energy and spin-orbit operators require the computa
04431
ib-
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-
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-

r
d
r
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of first derivatives and diagonal second derivatives of
wave function. These are obtained by evaluating the w
function at 6A slightly shifted positions of the coordinatesR
and taking finite differences. Terms quadratic inL require
mixed second derivatives and additional wave-funct
evaluations and finite differences.

B. Green’s function Monte Carlo

The GFMC method@20,21# projects out the exact lowest
energy state,C0, for a given set of quantum numbers, usin
C05 limt→` exp@2(H2E0)t#CT , whereCT is an optimized
trial function from the VMC calculation. If the maximumt
actually used is large enough, the eigenvalueE0 is calculated
exactly while other expectation values are generally cal
lated neglecting terms of orderuC02CTu2 and higher@2#. In
contrast, the error in the variational energy is of orderuC0
2CTu2, and other expectation values calculated withCT
have errors of orderuC02CTu. In the following we present
a brief overview of the nuclear GFMC method; much mo
detail may be found in Refs.@2,3#.

We start with aCT defined as@see Eq.~3.13! of Ref. @3##

uCT&5S)
i , j

S 11Ui j 1 (
kÞ i , j

Ũ i j ;k
TNID uCJ&, ~19!

and define the propagated wave functionC(t)

C~t!5e2(H2E0)tCT5@e2(H2E0)nt#nCT , ~20!
TABLE IV. VMC diagonalization forbLS[n] components in10B.

Jp 3S@42# 3D@42# 3D@42# 3F@42# 3G@42# 1P@33# 1F@33# 1P@411# 1F@411#

31 0.036 0.995 –0.086 0.001 0.016 0.003
11 0.889 –0.225 0.368 0.068 –0.137
11* 0.179 0.922 0.024 –0.021 –0.342
21 0.467 0.884 0.023
31* 0.917 0.368 0.016 –0.047 0.021 0.142
11** –0.042 –0.014 0.998 –0.025 –0.038
21* –0.141 0.978 –0.154
41 0.901 0.433
0-7
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TABLE V. VMC diagonalization forbLS[n] components in10Be.

Jp 1S@42# 1D@42# 1D@42# 1F@42# 1G@42# 3P@33# 3F@33# 3P@411# 3F@411#

01 0.812 0.109 0.573
21 0.944 –0.071 –0.050 0.005 0.288 –0.13
21* –0.035 0.998 –0.030 0.019 0.032 0.01
01* –0.462 –0.492 0.738
31 0.969 0.102 –0.225
41 0.867 –0.228 –0.443
or
d
od

d’’

r-
uld,
where we have introduced a small time step,nt5t/n; ob-
viously C(t50)5CT and C(t→`)5C0. The C(t) is
represented by a vector function ofR using Eq.~18!, and the
Green’s functionGab(R,R8) is a matrix function ofR and
R8 in spin-isospin space, defined as

Gab~R,R8!5^R,aue2(H2E0)ntuR8,b&. ~21!

It is calculated with leading errors of order (nt)3. Omitting
the spin-isospin indicesa, b for brevity, C(Rn ,t) is given
by

C~Rn ,t!5E G~Rn ,Rn21!•••G~R1 ,R0!

3CT~R0!dRn21•••dR1dR0 , ~22!

with the integral being evaluated stochastically. The sh
time propagator is constructed with the exact two-bo
propagator and additional terms coming from the three-b
interaction.
04431
t-
y
y

Quantities of interest are evaluated in terms of a ‘‘mixe
expectation value betweenCT andC(t):

^O&Mixed

5
^CTuOuC~t!&

^CTuC~t!&

5

E dPnCT
†~Rn!OG~Rn ,Rn21!•••G~R1 ,R0!CT~R0!

E dPnCT
†~Rn!G~Rn ,Rn21!•••G~R1 ,R0!CT~R0!

,

~23!

where Pn5R0 ,R1 , . . . ,Rn denotes the ‘‘path,’’ anddPn
5dR0dR1•••dRn with the integral over the paths being ca
ried out stochastically. The desired expectation values wo
of course, haveC(t) on both sides; by writingC(t)5CT
1dC(t) and neglecting terms of order@dC(t)#2, we obtain
the approximate expression
are
FIG. 3. ~Color! GFMC E(t) for states of10B calculated for the AV18/IL2 Hamiltonian. The solid lines show the averages that
reported in the text; the dashed lines show the corresponding statistical errors.
0-8
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TABLE VI. Total GFMC energies in MeV.

AV88 AV18 UIX IL2 IL3 IL4 Expt.

9He~
1
2

2! 222.5(2) 220.7(3) 228.7(3) 228.2(5) 228.8(4) 230.21(8)

9Li ~
3
2

2! 236.6(2) 233.7(3) 240.9(3) 246.0(4) 246.7(5) 247.6(4) 245.34

9Li ~
1
2

2! 236.8(2) 234.0(3) 239.4(3) 243.8(4) 244.2(4) 244.5(5) 242.65

9Li ~
5
2

2! 235.0(2) 232.1(3) 237.9(4) 241.1(4) 241.0(4) 240.6(4) 239.96(?)

9Li ~
7
2

2! 232.0(2) 229.7(3) 235.2(3) 239.0(4) 238.7(4) 240.8(4) 238.91(?)

9Be~
3
2

2! 249.9(2) 246.4(4) 255.1(3) 258.2(5) 257.8(5) 258.0(6) 258.16

9Be~
5
2

2! 247.8(2) 243.5(3) 251.3(5) 255.8(5) 254.1(4) 255.1(5) 255.73

9Be~
1
2

2! 248.2(2) 245.0(4) 250.9(6) 254.3(4) 255.7(5) 255.5(4) 255.36

9Be~
7
2

2! 243.5(2) 240.3(3) 251.5(5) 251.8(7) 251.78

9Be~
9
2

2! 240.1(2) 236.7(3) 247.9(6) 247.5(5)
10He(01) 221.2(2) 219.8(3) 228.4(3) 227.2(6) 227.7(5) 230.34
10Be(01) 256.1(2) 252.0(5) 259.2(6) 266.8(7) 265.2(7) 267.4(6) 264.98
10Be(21) 251.9(2) 247.7(5) 257.1(6) 261.8(5) 259.9(6) 261.1(6) 261.61
10Be(31) 255.7(6) 255.58
10B(31) 253.2(3) 248.6(6) 259.0(4) 265.6(5) 264.1(5) 265.6(6) 264.75
10B(11) 255.7(3) 251.6(6) 260.3(5) 264.7(4) 262.8(5) 265.1(5) 264.03
10B(21) 252.2(2) 247.2(5) 261.7(5) 260.6(7) 262.4(5) 261.16
10B(41) 250.0(3) 245.0(5) 260.0(5) 258.2(6) 261.5(4) 258.72
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^O~t!&5
^C~t!uOuC~t!&

^C~t!uC~t!&

'^O~t!&Mixed1@^O~t!&Mixed2^O&T#, ~24!

where^O&T is the variational expectation value.
A special case is the expectation value of the Hamiltoni

The ^H(t)&Mixed can be reexpressed as

^H~t!&Mixed5
^CTue2(H2E0)t/2He2(H2E0)t/2uCT&

^CTue2(H2E0)t/2e2(H2E0)t/2uCT&
>E0 ,

~25!

since the propagator exp@2(H2E0)t# commutes with the
Hamiltonian. Thuŝ H(t)&Mixed approachesE0 in the limit
t→`, and the expectation value obeys the variational p
ciple for all t.

As mentioned above, the propagation is actually ma
with a simplified HamiltonianH8 that includes the CI kinetic
energy operator, the AV88 two-nucleon interaction including
isoscalar Coulomb, and a slightly alteredVi jk8 three-nucleon
interaction. The AV 88 is a little more attractive than AV18
so a slightly more repulsiveVi jk8 is used to keep̂ H8&
'^H&. This ensures the GFMC algorithm will not propaga
to excessively large densities due to overbinding. Con
quently, the upper bound property applies to^H8(t)&, and
^H2H8& must be evaluated perturbatively.

Another complication that arises in the GFMC algorith
is the ‘‘fermion sign problem.’’ This arises from the stocha
tic evaluation of the matrix elements in Eq.~23!. The Monte
Carlo techniques used to calculate the path integrals lea
04431
.

-

e
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ng

to C(Rn ,t) involve only local properties, while antisymme
try is a global property. Thus the propagation can mix in t
boson solution. This has a~much! lower energy than the
fermion solution and thus is exponentially amplified in su
sequent propagations. In the final integration with the a
symmetricCT , the desired Fermionic part is projected ou
but in the presence of large statistical errors that grow ex
nentially with t. Because the number of pairs that can
exchanged grows withA, the sign problem also grows expo
nentially with increasingA. ForA>8, the errors grow so fas
that convergence int cannot be achieved.

To remedy this situation, a ‘‘constrained path’’ approx
mation has been developed@3#. The basic idea of the
constrained-path method is to discard those configurat
that, in future generations, will contribute only noise to e
pectation values. Many tests of the constrained path h
been made and it usually gives results that are consis
with unconstrained propagation, within statistical errors,
though there are cases in which it converges to the wr
energy@3#. Up to now, this problem was always solved b
using a small number,nu510–20, of unconstrained step
before evaluating expectation values. These few unc
strained steps, out of 400 or more total steps, were enoug
damp out errors introduced by the constraint in all the te
that we had done. The statistical errors in calculations w
nu510 are not substantially greater than fornu50. How-
ever, for A510, the error fromnu520 is 60–90 % larger
than that fromnu510, i.e., 2.5–3.5 more configuration
must be used to get the same error. In the present work
find that A59,10 calculations with the AV18/IL3 Hamil-
tonian ~which has the strongest long-range part ofVi jk) are
0-9
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FIG. 4. ~Color! GFMC and ex-
perimental energies forA59,10
nuclei. The light shading shows
the Monte Carlo statistical error
or experimental widths.
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particularly sensitive tonu , and most of these are made wi
nu520. Tests made with the other Hamiltonians show t
nu510 is enough, except for9,10He.

Previously@3# we had found that obtaining reliable resu
for 8He was particularly difficult. In the present work w
find that this persists for9,10He which show large statistica
fluctuations. In addition the constrained-path method app
to be less reliable than for other nuclei. For example,
04431
t

rs
e

made a calculation for10He with AV18/IL2 and aCT that
contained noNNN correlation. Even thoughnu520 was
used, the result was overbound by 1.5~6! MeV. ~In Ref. @3# a
calculation of 6Li with a much worseCT , which contained
no NN tensor correlations, also gave an overbound result
this was corrected with onlynu510.! The statistical errors
using nu540 are very large, making a confirmation of th
nu520 results presented here difficult; we have attemp
r

FIG. 5. ~Color! GFMC and ex-

perimental excitation energies fo
A59,10 nuclei.
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TABLE VII. Isovector energies in keV.

AV18 UIX IL2 IL3 IL4 Expt.

9Li ~
3
2

2! 1900~8! 1860~7! 2000~7! 2041~7! 2113~7! 2104

9Li ~
1
2

2! 1831~8! 1804~8! 2003~7! 1891~7! 2047~8! 1946

9Be~
3
2

2! 1751~10! 1738~9! 1857~10! 1833~10! 1878~14! 1851

9Be~
5
2

2! 1700~10! 1704~8! 1753~12! 1754~12! 1869~13! 1783
10Be(01) 1970~10! 2115~12! 2235~12! 2140~13! 2307~11! 2329
10Be(21) 2111~11! 1970~12! 2189~12! 2124~11! 2079~11! 2322
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this for AV18/IL2 and obtain no significant change in th
binding energy within a statistical error of 0.7 MeV.

Figure 3 shows the progress with increasingt of typical
constrained GFMC calculations, in this case for vario
states of10B using the AV18/IL2 Hamiltonian. The value
shown att50 are the VMC values usingCT . The GFMC
very rapidly makes a large improvement on these energ
by t50.01 MeV21, the CT energies have been reduced
;20 MeV. This rapid improvement corresponds to the
moval of small admixtures of states with excitation energ
;1 GeV from CT . Typically, averages over thet
>0.1-MeV21 values are used as the GFMC energy. T
standard deviation, computed using block averaging, of a
the individual energies for theset values is used to comput
the corresponding statistical error. The solid lines show th
averages; the corresponding dashed lines show the stati
errors.

V. ENERGY RESULTS

In this section we present GFMC energy results inA
59,10 nuclei for the simplified AV88 NN Hamiltonian, the
full AV18 interaction, and AV18 with each of theNNN in-
teractions UIX, IL2, IL3, and IL4.~Results forA<8 nuclei
may be found in Ref.@5#.! The total energies for 18 states a
shown in Table VI and in Fig. 4; excitation spectra are sho
in Fig. 5. Not all states have been calculated with all
Hamiltonians. Numbers in parentheses are the Monte C
statistical errors; in addition there may be systematic er
from the GFMC algorithm of the order of 1–2 % as di
cussed above.

The energies of the particle-stable ground states ca
lated with just theNN interactions are underbound by 8–1
MeV in A59 and 12–16 MeV inA510, with the AV88
being somewhat more attractive than AV18. Addition of t
older UIX NNN interaction to AV18 reduces this discrep

TABLE VIII. Isotensor energies in keV.

AV18 UIX IL2 IL3 IL4 Expt.

9Li ~
3
2

2! 182~9! 182~9! 197~8! 202~11! 204~9! 176

9Li ~
1
2

2! 172~7! 181~8! 193~8! 181~8! 184~10! 160
10Be(01) 257~25! 205~33! 250~24! 284~29! 314~27! 241
10Be(21) 223~27! 196~35! 216~18! 183~23! 208~28! 199
04431
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ancy significantly to 2–4 MeV inA59 and 4–6 MeV in
A510. However, addition of the IL2-IL4 models to AV1
results in much better energies, some high and some low
generally within 2 MeV. In particular, the AV18/IL2 and
AV18/IL3 Hamiltonians come within63% of the experi-
mental bindings for the ground states of9Li, 9Be, 10Be, and
10B, which is about as good as can be expected, given
1–2% total errors in the GFMC calculation.

Despite their systematic underbinding, the older Hamil
nians were able to give the correct ordering of excited sta
in the A<8 nuclei, albeit usually with insufficient splitting
between states that are spin-orbit partners@5#. In the A
59,10 nuclei this no longer holds true. The most drama
case is the question of the proper ground state for10B:
AV88, AV18, and AV18/UIX all clearly and wrongly predic
the (11;0) state to be lower than the (31;0) state, while all
the AV18/IL2-IL4 models correctly reproduce the expe
mental ordering. This result for the AV18 interaction w
first obtained by Navra´til who also finds it for the CD-Bonn
interaction@22#. This incorrect ordering of states by the two
body Hamiltonians also seems to be present in the case o

( 5
2

2; 1
2 ) and (1

2
2; 1

2 ) excitations of9Be, and may be a prob
lem for the proper ground state of9Li, although with the
statistical errors of the calculation it is not so clear. T
AV18/UIX and AV18/IL2-IL4 models obtain these states
the proper order, with one exception, and generally w
fairly good spin-orbit splittings.

As noted in Sec. II, two narrow, particle-unstable sta

TABLE IX. Proton rms radii in fm.

AV88 UIX IL2 IL3 IL4 Expt.

9Li ~
3
2

2! 2.19~1! 2.20~1! 2.04~1! 2.02~1! 1.94~1!

9Li ~
1
2

2! 2.27~1! 2.23~1! 2.11~1! 2.29~1! 2.07~1!

9Be~
3
2

2! 2.41~1! 2.41~1! 2.38~1! 2.36~1! 2.33~1! 2.40~1!

9Be~
5
2

2! 2.41~1! 2.41~1! 2.38~1! 2.46~1! 2.27~1!
10Be(01) 2.38~1! 2.30~1! 2.21~1! 2.32~1! 2.19~1!
10Be(21) 2.33~1! 2.42~1! 2.26~1! 2.29~1! 2.28~1!
10B(31) 2.40~1! 2.49~1! 2.33~1! 2.38~1! 2.27~1! 2.33~12!
10B(11) 2.45~1! 2.48~1! 2.49~1! 2.52~1! 2.42~1!
10B(21) 2.46~1! 2.38~1! 2.59~1! 2.29~1!
10B(41) 2.42~1! 2.30~0! 2.41~1! 2.15~0!
0-11
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have been observed in9Li without definite spin assignments
On the basis of the close agreement between the AV18

energies for the lowest (5
2

2; 1
2 ) and (7

2
2; 1

2 ) states and the
observed excitations, as illustrated in Fig. 5, we think th
are in fact the most likely assignments for these states. A
our one calculation of the expected (31;1) state in 10Be
lines up with the observed state at 9.4 MeV, suggesting
is its proper spin assignment.

The current calculations significantly underbind9,10He,
even when the AV18/IL2-IL4 models are used. Because b
these nuclei are particle unstable, they should properly
calculated as resonant states, so the current GFMC re
may be somewhat less reliable than for the other gro
states. However, the experimental widths of these states
not large, and our calculations for other comparably narr
states have generally been good. It may be that some sig
cant admixture of 1s1/2 orbitals from thesd shell should be
introduced in the Jastrow trial function, as suggested by
cent shell-model studies@23#; we have not yet attempte
such a modification. In addition, as was discussed in
previous section, the constrained-path propagation may
be as reliable for these nuclei. If the present results for9,10He
are correct, then there is a need for further tuning of
isospin dependence of theNNN interactions.

In addition to the total energies discussed above, we h
calculated the energy differences between isobaric an
states perturbatively by evaluating the expectation value
the electromagnetic and strong CSB and CD parts of
AV18 Hamiltonian in the wave function of theTz52T
nucleus. The CSB and CD terms can induce correspon
changes in the nuclear wave functions, leading to high
order perturbative corrections to the splitting of isospin m
multiplets, but it is difficult for us to estimate these highe
order effects reliably in either VMC or GFMC calculation
The energies for a given isomultiplet of states can be
panded as

EA,T~Tz!5 (
n<2T

an~A,T!Qn~T,Tz!, ~26!

whereQ051, Q15Tz , andQ25 1
2 (3Tz

22T2) are isoscalar,
isovector, and isotensor terms@24#. The isovector coeffi-
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cientsa1(A,T) are shown in Table VII, while the isotenso
coefficientsa2(A,T), are given in Table VIII.

The dominant contribution in each case is from the re
lar Coulomb interaction between protons, but there are a
tional contributions of'5% coming from the other electro
magnetic and strong terms. Because the AV18 and AV
UIX models underbind these nuclei, the density distributio
tend to be more diffuse and the Coulomb interaction is
duced, leaving a sizable discrepancy with experiment for
isovector coefficients. The AV18/IL2-IL4 models give muc
better binding energies and consequently larger isovector
efficients which are within 5% of the experimental value
However, the isotensor coefficients come out a bit too lar

VI. MOMENTS AND DENSITY DISTRIBUTIONS

Point proton and neutron rms radii are shown in Tables
and X. The AV18/IL2-IL4 Hamiltonians give significantly
smaller radii than the older models, presumably becaus
their greater binding. The experimentally measured cha
radii @25# for the 9Be and 10B ground states are in goo
agreement with the calculations from the new models.

Quadrupole moments are shown in Table XI, as evalua
in impulse approximation. Experimental values are fro
Refs.@6,7#. The contribution of two-body charge operators
the quadrupole moment are expected to be small, as in

TABLE X. Neutron rms radii in fm.

AV18 UIX IL2 IL3 IL4

9Li ~
3
2

2! 2.72~1! 2.76~1! 2.57~1! 2.52~1! 2.39~1!

9Li ~
1
2

2! 2.84~1! 2.80~1! 2.56~1! 2.76~1! 2.53~1!

9Be~
3
2

2! 2.63~1! 2.63~1! 2.55~1! 2.56~1! 2.52~1!

9Be~
5
2

2! 2.67~1! 2.65~1! 2.62~1! 2.65~1! 2.48~1!
10Be(01) 2.76~1! 2.56~1! 2.47~1! 2.59~1! 2.45~1!
10Be(21) 2.66~1! 2.78~1! 2.55~1! 2.60~1! 2.62~1!
10B(31) 2.40~1! 2.49~1! 2.33~1! 2.38~1! 2.27~1!
10B(11) 2.45~1! 2.48~1! 2.49~1! 2.52~1! 2.42~1!
10B(21) 2.46~1! 2.38~1! 2.59~1! 2.29~1!
10B(41) 2.42~1! 2.30~0! 2.41~1! 2.15~0!
TABLE XI. Quadrupole moments in fm2.

AV88 UIX IL2 IL3 IL4 Expt.

9Li ~
3
2

2! 23.1(1) 22.9(1) 22.7(1) 22.7(1) 22.5(1) 22.7(1)

9Be~
3
2

2! 5.0~3! 7.4~2! 8.5~3! 5.7~2! 6.8~3! 5.9~1!

9Be~
5
2

2! 22.3(2) 22.6(2) 22.9(2) 24.8(2) 24.1(2)

9C ~
5
2

2! 23.7(3) 25.5(3) 25.1(3) 24.4(3) 25.3(3)
10Be(21) 210.1(3) 28.0(4) 25.0(4) 29.6(4) 7.2~2!
10B(31) 8.7~2! 12.0~2! 9.5~2! 9.4~2! 8.8~2! 8.5~1!
10B(11) 1.2~1! 3.2~2! 3.1~1! 3.2~1! 2.1~1!
10B(21) 21.9(2) 20.6(2) 21.8(3) 21.8(2)
10B(41) 3.9~3! 3.8~2! 5.4~4! 3.8~2!
0-12
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TABLE XII. Magnetic moments inmN .

AV88 UIX IL2 IL3 IL4 Expt.

9Li ~
3
2

2! 2.91~1! 2.54~2! 2.47~2! 2.54~2! 2.54~2! 3.44~0!

9Li ~
1
2

2! 20.23(2) 20.19(3) 20.29(2) 20.25(3) 20.24(3)

9Be~
3
2

2! 21.35(2) 21.11(1) 21.14(2) 21.03(2) 21.17(3) 21.18(0)

9Be~
5
2

2! 20.95(1) 20.96(1) 20.88(1) 20.84(1) 20.85(1)

9C ~
3
2

2! 21.08(3) 20.71(5) 20.63(4) 20.72(4) 20.70(4) 21.39(0)
10B(31) 1.82~1! 1.80~1! 1.80~1! 1.80~0!
10B(11) 0.75~1! 0.78~1! 0.74~1! 0.77~1! 0.63~12!
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deuteron and6Li @4,26#, because both the isoscalar and
ovector charge operators are relativistic corrections of or
(v/c)2. Expectation values of the quadrupole operator te
to have a much larger variance than radii because of
cancellations from theY20 operator. Given this caveat, th
agreement with the measured quadrupole moments is rea
able.

The impulse approximation magnetic moments are sho
in Table XII; experimental values are from Refs.@6,7,27,28#.
Experience in lighter nuclei shows that there are signific
two-body current contributions to the magnetic operato
particularly the isovector part. In the trinucleons, the isos
lar portion is boosted by10.034mN or '8%, while the
isovector portion is corrected by20.778mN or '18% @29#.
However, in the isoscalar6Li case, the correction is a tiny
10.003 mN @26#. On this basis, we expect substantial im
provement in the9Li and 9C results shown in Table XII
when two-body contributions to the current operator
added, while the already good10B results will not be signifi-
cantly affected. However, the reasonable agreement betw
the IA calculations and experiment for9Be may not survive.

The nucleon densities for9Li and 9Be are shown in Fig.
6, on both a linear~left! and logarithmic~right! scale. The
densities are normalized such that the integrated value eq
the appropriate total value ofN or Z. These densities ar
rather similar to those calculated earlier for8Li and 8Be @3#

FIG. 6. Proton and neutron densities forA59 nuclei on both
linear ~left! and logarithmic~right! scales.
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with the former more peaked at the origin, and the lat
showing a broad flat interior. The protons in9Li cluster at
the origin because two out of three are confined to thea
core, while the neutrons show a substantial skin with a h
of a p-shell peak around 1 fm. The low central densities
both protons and neutrons in9Be are probably due to the
large 2a component in its8Be core. The densities for10Be
and 10B are shown in Fig. 7. They have somewhat high
central values than in9Be, but are also broader and flatt
than 9Li, presumably due to the dominant8Be core.

VII. CONCLUSIONS

We have made quantum Monte Carlo calculations for
ground states and low-lying excited states ofA59,10 nuclei,
based on realistic two- and three-nucleon potentials. The
Illinois NNN models do a good job of explaining the bindin
energies of the ten best-knownA59,10 states of different
quantum numbers, but the results for9,10He may indicate a
deficiency in the models. If we also include the 17 narro
states to which these forces were fit inA<8 nuclei @5#, we
find rms deviations from the experimental energies of
MeV for AV18/IL2, 0.8 MeV for AV18/IL3, and 1.0 MeV for
AV18/IL4. This contrasts with rms deviations of 3.2 MeV fo
AV18/UIX and 9.9 MeV for AV18 alone. Thus AV18/IL2
becomes our preferred model Hamiltonian with AV18/IL

FIG. 7. Proton and neutron densities forA510 nuclei on both
linear ~left! and logarithmic~right! scales.
0-13
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almost as good, although AV18/IL4 will be somewhat de
recated.

We conclude that a fairly consistent picture of nucle
binding can be constructed forA<10 nuclei using a single
Hamiltonian and a single computational framework. This a
plies also to the energy differences among isobaric mul
lets, which are well reproduced. Electromagnetic mome
within the limitation of the impulse approximation, are
fairly good agreement with experimental data.

Significant challenges for the future will be the compu
tion of second or higher excited states of the same quan
number, and intruder states of unnatural parity; both of th
types of states first become particle-stable in theA510 nu-
clei. We also need to evaluate electroweak transition rate
these nuclei, as has been done previously in theA56,7 sys-
tems@26,30#. The present calculations are at the limit of o
current computer resources, both in CPU time and resid
B

pe

ar

C

ar

.

.

,

.

c
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memory. However, the present codes are in principle cap
of computing nuclei like11Be and 12C; such calculations
may become feasible with the next generation of comput
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