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Inelastic X-ray scattering (IXS) measurements on Al have been analyzed in conjunction with ab initio,
time-dependent density functional theory (TDDFT) calculations of the electron–hole excitation spec-
trum. The dynamical structure factor evaluated with use of the many-body kernel fxc obtained within
the adiabatic extension of the local-density approximation (ALDA) is shown to be in good agreement
with the IXS energy-loss data for energies up to about 20 eV, for momentum transfers up to twice the
Fermi wave vector. For larger energy transfers the complex, frequency-dependent fxc obtained by
Devreese and collaborators via dynamical-exchange decoupling techniques is shown to lead to a de-
scription of the IXS data comparable with that of the ALDA. For low energies the ALDA works better, a
conclusion with a simple physical interpretation. The analysis of the relative merits of the models for the
many-body interactions is made using IXS cross sections that were obtained in absolute units; to this
end, a procedure was introduced which is applicable for arbitrary materials, not just for sp-bonded Al.

1 Introduction Electron–electron interactions play a central role in determining the physical proper-
ties of materials, including all transport-related phenomena. Although short-range exchange-correlation
effects have long been the subject of theoretical investigation [1–10], a full understanding of these
effects, and their interplay with the band structure of real materials, remains a significant challenge.
Inelastic X-ray scattering (IXS) measurements first addressed this area in 1967 [11]. However, it has
taken the advent of 2nd and – especially – 3rd generation synchrotron sources, and high-resolution
inelastic-scattering facilities, to open the detailed investigation [12–17] of the large wave-vector pro-
cesses responsible for the short-range many-body effects. The experimental advances witnessed at
synchrotrons have occurred concurrently with recent developments in ab initio electron density-re-
sponse methods for periodic crystals (see, e.g., the recent overviews in Refs. [18] and [19]). The
exploitation of the direct linkage between density response and inelastic X-ray scattering through the
dynamical structure factor S q;wð Þ as a function of wave vector q and frequency w represents a pro-
mising framework for the goal of a fundamental understanding of the electron correlations.
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In this article we underscore the opportunity for meaningful insight into the dynamical correlations
via a judicious interplay between time-dependent density-functional theory (TDDFT) [20] calculations
of the electron-hole excitation spectrum in periodic crystals with state-of-the-art IXS measurements of
S q;wð Þ. As a test case, we consider the case of fcc Al. We show that the so-called many-body kernel
fxc obtained within the simple ansatz which corresponds to an adiabatic extension of the local-density
approximation (ALDA) [20] provides a good overall description of exchange-correlation effects in Al
up to about 20 eV, for wave vectors up to twice the Fermi wave vector. Making use of the availability
of detailed frequency and wave vector dependent data [6], we also assess (by comparison with the
IXS data) the performance of the explicit result for fxc wð Þ obtained by Devreese and collaborators [3,
6] via a dynamical-exchange decoupling method. We find the performance of this kernel to be com-
parable with the ALDA for energies higher than 20 eV; on the other hand, for low energies the ALDA
works better, a result which agrees with intuitive expectations. The assessment of the theoretical mod-
eling of the many-body effects is made by reducing the IXS data to a dynamical structure factor,
s q;wð Þ, defined per unit volume. Our approach has the advantage that it is applicable without modifi-
cation to complex materials, such as the transition-metal oxides, which are beyond the free-electron
approximation on which earlier approaches to the determination of absolute IXS cross sections relied
in an essential way.

2 Theory
2.1 Time dependent density-functional theory; the linear response regime We begin by sketching
the theoretical framework underlying our investigation of S q;wð Þ, namely time-dependent density-
functional theory (TDDFT) [20]. A general formulation for the problem of the time evolution of an
interacting many-electron system in the presence of an external potential ve x; tð Þ has been given by
Runge and Gross [21]. These authors obtained a generalization of the Hohenberg–Kohn theorem of
density-functional theory (DFT) [22] to the time-dependent domain by establishing the invertibility of
the mapping ve x; tð Þ ! n x; tð Þ, where n x; tð Þ is the time-dependent density for the actual, interacting
system. From this result, and invoking non-interacting v-representability [20–23], it readily follows
that n x; tð Þ may be obtained by solving the time-propagation problem for a reference single-particle
system [21], i.e., the density can be calculated as

n x; tð Þ ¼
Xoccupied
n

jn x; tð Þj j2 ; ð1Þ

in terms of the solutions jn x; tð Þ of the time-dependent Kohn–Sham equation,

i�h
@

@t
jn x; tð Þ ¼ � �h2

2m
r2 þ vs n½ � x; tð Þ

� �
jn x; tð Þ ; ð2Þ

where the single-particle potential vs n½ � x; tð Þ (a functional of the time-dependent electron density)
contains, in addition to the external and Hartree potentials, the exchange-correlation potential
vxc n½ � x; tð Þ. Of course, as in the case of ground-state DFT, the formal simplicity of Eq. (2) results
from the conceptual abstraction by which all the complications of the many-body problem have been
condensed into the definition of vxc n½ � ðx; tÞ. The development of realistic models for this exchange-
correlation potential is thus of primary importance.

The TDDFT formalism is well suited for the study of the linear response of a many-electron sys-
tem to a weak external potential dve x; tð Þ due to, for example, the hard X-rays used in our experimen-
tal investigations. The one-to-one mapping between ve x; tð Þ and n x; tð Þ implies a rigorous definition of
the density-response function for the interacting system,

c xt; x0t0ð Þ ¼ dn x; tð Þ
dve x0; t0ð Þ

����
v0 n0½ �

; ð3Þ

where the functional derivative is to be evaluated at the ground-state density n0 for the external poten-
tial v0 xð Þ (due to the nuclei). Note that c is a functional of n0. We also note that Eq. (3) defines, in
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principle, the same density-response function encountered in more conventional many-body ap-
proaches [24].

Now the above mapping also holds in the absence of interactions; we can then introduce a single-
particle, or Kohn–Sham, density-response function c sð Þ xt; x0t0ð Þ via an equation of the form of Eq. (3),
but involving a derivative with respect to vs n½ � x0; t0ð Þ (the derivative is to be evaluated at vs n0½ �).
Making additional use of one-to-one mapping considerations (in this case, between dvs and dve), and
utilizing the chain rule for functional differentiation, we are led to an integral equation for the den-
sity-response function [25],

c ¼ cðsÞ þ cðsÞ vþ fxcð Þ c ; ð4Þ

where v is the bare Coulomb interaction, and the dynamical exchange-correlation kernel fxc is defined
by the equation

fxc n0½ � xt; x0t0ð Þ ¼ dvxc n½ � xtð Þ
dn x0t0ð Þ ; ð5Þ

where the functional derivative is to be evaluated at the ground-state density.
The spectral representation of cðsÞ in terms of the eigenfunctions and eigenvalues of the Kohn–

Sham ground-state is of the usual form. For a periodic crystal it is convenient to work with the Four-
ier transform of cðsÞ, given by the equation

c
ðsÞ
G;G0 q;wð Þ ¼ 1

V

PBZ
k

P
j; j0

fk; j � fkþq; j0

Ek;j � Ekþq; j0 þ �h wþ ihð Þ hk; j e�iðqþGÞ�x̂x jkþ q; j0i
��

�hkþ q; j0j ei qþG0ð Þ�x̂x jk; ji ; ð6Þ

where q lies within the first Brillouin zone (BZ), G is a vector of the reciprocal lattice, j is a band
index, and V is the normalization volume. We evaluate Eq. (6) on the basis of Kohn-Sham states and
eigenvalues obtained within the local-density approximation (LDA). In the present Fourier representa-
tion, Eq. (4) is turned into a matrix equation that we solve numerically.

The TDDFT framework embodied by Eqs. (4–6) constitutes an exact linear-response method for
periodic solids, in which the many-body effects enter via the ground-state exchange-correlation poten-
tial vxc n0½ � and the many-body kernel fxc n0½ �. All explicit effects of dynamical correlations ––which, by
definition, are beyond vxc n0½ � and, thus, the single-particle response c

ðsÞ
G;G0 q;wð Þ –– are included in the

many-body kernel fxc. To put it graphically: Many-body effects such as self-energy shifts and life-
times, and vertex corrections, which, in diagrammatic approaches, are built into the proper polariza-
tion function [14–26] are, in the TDDFT approach, incorporated into fxc [27].

From the perspective of this article we emphasize that, when combined with measured IXS cross
sections, the TDDFT linear-response scheme has, by virtue of the ‘‘partitioning” of the roles of vxc
and fxc in the many-body problem, the potential for elucidating the dual effects of the band struc-
ture and the dynamical many-body correlations – a theme which is very topical in many areas of
contemporary condensed-matter physics. This is possible, for example, whenever an LDA descrip-
tion of the band structure is representative of the result expected from the exact vxc. In that case,
the Kohn–Sham response cðsÞ can be considered to be ‘‘sufficiently close” to its exact value; thus,
eventual deviations between theory and the measured cross sections are attributable to the role of
the dynamical correlations built into fxc. The case of Al discussed below represents a realization of
this scenario.

2.2 The dynamical structure factor We recall the result for the double differential scattering cross-
section within the (first) Born approximation:

d2s
dW dw

¼ ds
dW

� �
0

S q;wð Þ ; ð7Þ
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where, in the case of inelastic X-ray scattering (IXS), we have that

ds
dW

� �
0

¼ r20 ei � ef
� �2 wf

wi

� �
; ð8Þ

where r0 ¼ e2=mc2 is the ‘‘classical electron radius,” and the remaining variables refer to the polariza-
tion vector and frequency of the incident (‘‘i”) and scattered (‘‘f ”) photons.

For a periodic crystal, the fluctuation-dissipation theorem translates into the (exact) result that (for
T ¼ 0 K)

S q;wð Þ ¼ �2�hV Im cG;G q� G;wð Þ ; ð9Þ

where V is, as in Eq. (6), the volume of the macrocrystal on whose sides we apply periodic boundary
conditions. Clearly, S q;wð Þ is an extensive quantity. Now, in practice the thermodynamic limit is only
realized for sufficiently large volumes; in that case, any residual (numerical) dependence of
Im cG;G q� G;wð Þ on V is gone, and the only such dependence in Eq. (9) is via the overall factor of
the volume V; this can be checked via calculations for denser and denser wave-vector meshes –
which define a new V in each case.

We can then (i.e., for sufficiently dense k-meshes) define a dynamical structure factor per unit
volume, s q;wð Þ, by pulling the factor V from the above result, i.e.,

s q;wð Þ ¼ 1
V

S q;wð Þ ¼ �2�h Im cGG0 q� G;wð Þ ; ð10Þ

and define a scattering cross section per unit volume,

1
V

d2s
dW dw

¼ ds
dW

� �
0

s q;wð Þ : ð11Þ

We stress that in Eqs. (10) and (11) there are no arbitrary multiplicative constants. The left hand
side represents a quantity experimentally measurable in absolute units – e.g., via the procedure we
outline below – independently of the atomic structure of the material, or of any assumption about the
nature of the electrons (valence, semi-core, etc.) that may participate in the excitation process. This
point is crucial for a meaningful assessment of the relative roles of band structure and dynamical
correlations. Although it is common practice to present dynamical structure factors obtained via IXS
and inelastic neutron scattering in terms of structural units such as atoms or primitive unit cells, the
explicit determination of s q;wð Þ in the ‘‘natural” units of Eq. (10) (e.g., eV�1 �A

�3
, as in Figs. (2–4)),

rather than structural units specific to a particular material, produces data with no ambiguity – even
for complex materials in which free-electron-gas descriptions (and a related ‘‘tagging” of the electrons
that participate in the dynamical response) are out of the question.

3 Experiment Inelastic X-ray scattering measurements on Al have been made on the X-21 beamline
at the National Synchrotron Light Source (NSLS) with an energy resolution 0.75 eV using a four-
crystal monochromator and on the UNI-CAT beamline at the Advanced Photon Source (APS) with an
energy resolution of 1.1 eV provided by the two-crystal high heat load monochromator as illustrated
in Fig. 1. The X-21 wiggler beamline produced a 10 keV incident X-ray beam with a power of
�1010 Hz onto an area of 0:75� 1 mm2. The sagittal focusing Si (111) monochromator on the UNI-
CAT undulator beamline provided a �0:1� 0:25 mm2 beam at 7.5 keV with �2� 1012 Hz on the
sample. The scattered beam energy analyses were performed by spherically bent, �40 mm diameter
Ge and Si analyzers located in back-reflection geometry 1 m from the sample at the APS and NSLS,
respectively. Low noise avalanche photodiode X-ray detectors located 1 m from the analyzer at scatter-
ing angles of >176�.

The measurements were performed on h001i and h013i oriented aluminum single crystals oriented
in the symmetric Bragg geometry as depicted in Fig. 1. Relative s q;wð Þ measurements made on the
X-21 beamline at the NSLS for wave vectors of 1.0, 1.5, 1.7, and 2.0 kF along the [013] direction and
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at 1kF along the [001] direction were reduced to absolute units by scaling the 1kF [001] NSLS mea-
surements to match the absolute s q;wð Þ measurements made at the APS at a wave vector 1kF in the
[001] direction of Al.

The APS data were reduced to absolute units using the first moment f sum-rule relationship given by

ð1

0

sðq; �hwÞ �hwð Þ dð�hwÞ ¼ pn G ¼ 0ð Þ hcð Þ2

mc2
q
2p

� �2 eV

�A
3

� 	
; ð12Þ

where n G ¼ 0ð Þ ¼ N=V is the average electron density (here N is the number of electrons contribut-
ing to this sum rule).

For measurements that do not extend past the Al L-edge (72 eV), only the three valence electrons
contribute to the sum rule. In principle, this represents a straightforward technique for calibration of
the efficiency of the geometry and energy analysis system; however, it is complicated by the fact that
crystal local-field effects extend the cutoff energy of the inelastic scattering to energies significantly
beyond the �35 eV jellium cutoff and beyond the 72 eV semi-core onset energy (i.e. L-edge), as seen
in the measurements in Fig. 2; these measurements were performed on the UNI-CAT ID-33 beamline
at the Advanced Photon Source. We have used pseudopotential based s q;wð Þ calculations to estimate
the ratio of the contribution to the f sum-rule for eneregies greater than and less than 65 eV for Al at
1kF . It was found that 95% of the first moment is fulfilled by 65 eV. As described previously [15, 28],
the first principles calculations were made using Troulier–Martins non-local, norm-conserving, pseu-
dopeotentials with a cutoff of 12 Ryd. The data for all wave-vectors and all orientations measured at

the X-21 beamline at NSLS were reduced to absolute
units by scaling X-21 measurements at 1kF in the [001]
direction to the intensity profile in Fig. 2 between �10–
35 eV. This avoided the requirement of measuring the
low intensity tails of the loss spectrum with the lower
beam powers available at the NSLS.
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Fig. 1 Schematic view of the inelastic scattering
geometry used for measurements on the NSLS
X-21 beam line (four-bounce monochromator) and
on the APS ID-33 UNI-CAT beamline (2-bounce
monochromator). A Si (555) analyzer was used for
the NSLS measurements and a Ge (444) analyzer
was used at the APS.
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Transition metals and insulators do not provide the possibility of direct f sum-rule scaling such
as described for Al. However, since the scaling of energy loss spectrum measurements in units of
eV�1 �A

�3
depends only on the effective volume of material sampled by the X-ray beam, it is

possible to transfer the calibration factor for absolute s q;wð Þ measurements made on an Al crystal
to s q;wð Þ measurements on an arbitrary sample, X, simply by accounting for the difference in the
sample volumes probed. For thick samples and symmetric Bragg geometry, the volume ratio is
given by the ratio of the linear absorption coefficients, mðXÞ=mðAlÞ. That is, scaling relative
Iðq;wÞ=I0 measurements (I0 is the incident beam power) on Al at 1kF by a factor, C, to the profile
in Fig. 2, yields absolute sAlðq;wÞ ¼ CIAlðq;wÞ=I0 for Al. Then, relative IXðq;wÞ=I0 measurements
performed on material X in symmetric Bragg geometry can be reduced to absolute sXðq;wÞ mea-
surements through

sXðq;wÞ ¼
VAl

VX
C

IXðq;wÞ
I0

¼ mX
mAl

C
IXðq;wÞ

I0
ð13Þ

and similar considerations apply for transmission or non-symmetric scattering geometries. Although
independent tests of the calibration have not been made, we believe this technique provides an abso-
lute scaling with an accuracy of �5–10%. The main limitation to the accuracy is proper specification
of the background scattering under the inelastic loss spectrum for the standard Al sample. Although
the uncertainties in this background are small, errors in this value are magnified by the first moment
over the wide energy range.

4 Results Inelastic X-ray scattering measurements of s q;wð Þ made on aluminum at the X-21 beam-
line at the NSLS are plotted in absolute units of eV�1 �A

�3
in Figs. 3 and 4 for wave vectors

q ¼ 1:75; 2:625; 2:975 and 3:5�A
�1

directed along the [013] direction. Measurements along the [013]
direction (rather than, say, the higher symmetry [001] direction) avoid the complication of the (002)
Bragg reflection at 1:77kF and minimize band-structure-related modulations in the loss spectrum. In
units of the Fermi wave vector (kF ¼ 1:75�A

�1
for Al) these wave vector transfers correspond to 1.0,

1.5, 1.7, and 2.0 kF , all of which are well above the 0:65kF onset of Landau damping (with reference
to the standard value for jellium). The measurements show the broadening of the loss spectrum with
increasing wave vector characteristic of nearly free electron materials, and they show the band-struc-
ture induced dip in the spectrum at �30 eV that attracted both experimental and theoretical interest
over the years [12–15].

Also plotted in Figs. 3 and 4 are s q;wð Þ spectra calculated within the TDDFT framework outlined
above [14]. In addition to the ALDA, we present results obtained in the random-phase approximation
(RPA), which corresponds to setting fxc ¼ 0 (note that the LDA band structure is embedded in the
Kohn–Sham response function). We also consider the spectra obtained with use of the explicitly fre-
quency-dependent, complex, fxc obtained by Devreese, Brosens, and Lemmens [3], and by Brosens,
Devreese, and Lemmens (BDL) [6] for an electron gas via a dynamical-exchange decoupling proce-
dure (equivalent to time-dependent Hartree–Fock), in which the Coulomb ‘‘ladders” are bare, i.e.,
unscreened.

We note that both the ALDA and BDL kernels lead to a good overall description of the energy
loss spectrum for 1:0kF. For 1:5kF, the BDL fxc tends to overestimate the energy loss somewhat for
low frequencies while the LDA fxc provides a rather good description of the spectrum below 20 eV.
Neither the BDL nor the LDA kernels provide a full account of the measurements for frequencies
above 30 eV. As shown in Fig. 4, for the larger wave vectors of 1.7 and 2kF , the ALDA continues
to provide reasonable agreement with the measured spectra. Although the use of the BDL fxc yields
an excess weight below �10 eV, for higher frequencies it seems to provide somewhat better agree-
ment with the data than the ALDA, as exemplified for 1:7kF.
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5 Discussion The results shown in Figs. 3 and 4 indicate that the ALDA provides a good overall
description of the Al energy loss spectrum in the [013] direction for q-values up to 2kF and frequen-
cies up to �20 eV. This is in contrast to our earlier report of significant discrepancies between the
ALDA and the IXS data for Al [15]. Such large discrepancies are not found in these new measure-
ments made using the more reliable spherically bent energy analyzer geometry (see Fig. 1). The pro-
blem with the early measurements has not been determined completely yet; we believe that this issue
is associated with a systematic error in calibrating the inhomogenous mosaic-spread in the pyrolitic
graphite energy analyzer used in the earlier measurements [15]. The spherically-bent energy analyzer
geometry used here and in Ref. [28] avoids such issues.

Comparing the loss-spectra obtained with the BDL and ALDA kernels, we note in general that the
BDL result tends to be in reasonably good agreement with measured data for frequencies above
�15 eV. On the other hand, the BDL kernel systematically overestimates the spectral weight for
frequencies below �15 eV for all wave vectors. Bearing in mind that the BDL kernel includes dyna-
mical exchange but does not include correlations, it does not seem surprising that better agreement is
achieved at larger frequencies for which correlations are expected to be less important.

It is useful to point out that the nearly rigid offset between s q;wð Þ obtained with ALDA and BDL
kernels for wave vectors of 1.7 and 2kF (and frequencies above �20 eV) is traceable largely to the
imaginary part of the BDL fxc. To the extent that the offset puts the BDL result in slightly better
agreement with the measured data for these higher frequencies, this result underscores the importance
in general of the inclusion of dynamic effects.
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Fig. 3 Absolute IXS measurements (circles) made on
Al for a wave vectors of 1.0 and 1:5kF on the X-21
beamline at the NSLS together with TDDFT s q;wð Þ
calculations for RPA (dotted line), LDA (thick gray
line), and BDL (thin dark line).

Fig. 4 Absolute IXS measurements (circles) made on
Al for a wave vectors of 1.7 and 2:0kF on the X-21
beamline at the NSLS together with TDDFT s q;wð Þ
calculations for RPA (dotted line), LDA (thick gray
line), and BDL (thin dark line).



Although consideration of additional fxc formulations is beyond the scope of this article, it will of
course be of interest to consider the results for s q;wð Þ obtained with use of other kernels in the
literature, such as the one obtained by Richardson and Ashcroft [4]. That kernel incorporates both
exchange and correlations in a dynamic fxc. We believe that direct comparison of ab initio TDDFT
calculations of s q;wð Þ (based on well defined fxc kernels) with absolute IXS measurements of s q;wð Þ
(over wide frequency and wave vector ranges) provides both a stringent test of fxc kernels and a
straightforward procedure for the investigation of electronic correlations in both simple and complex
materials. In case the LDA description of the static Vxc kernel is not suitable for complex materials,
IXS data would provide tests for non-trivial “models” of Vxc and fxc.

6 Conclusion The direct connection between inelastic X-ray scattering measurements and time-de-
pendent density functional theory calculations has been exploited to investigate short-range electronic
correlations in Al. A procedure capable of extending absolute IXS measurements to complex electro-
nic systems such as transition metals and transition-metal oxides has been presented. Comparison of
the frequency and wave vector dependence of ab initio calculations of s q;wð Þ for Al with IXS meas-
urements have shown that the ALDA provides a good overall account of the energy loss spectra for
wave vectors up to 2kF , contrary to the conclusions of a previous report [15]. Use of the BDL kernel
was shown to provide a good match to experiment for large frequencies, but not for low frequencies
where correlations are expected to be more important. Our work suggests that a combination of high-
precision IXS measurements with state-of-the-art TDDFT calculations for periodic crystals offers a
promising framework for benchmark-development towards the goal of fundamental treatments of dy-
namical correlations in real materials.
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