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Abstract

Blending (or mixing) of macromolecules is widely used to tailor the properties of polymeric materials and
small-angle neutron scattering (SANS) has provided detailed information at the molecular level on the ability of
different polymer species to mix or segregate at various thermodynamic conditions. For two decades, SANS data
have been analyzed via the de Gennes “random phase approximation” (RPA) [P.-G. de Gennes, Scaling Concepts
in Polymer Physics, second ed., Cornell University Press, Ithaca, London, 1979], which is based on the assumption
that the dimensions of polymer chains remain unchanged on mixing for all concentrations and temperatures. Here
we investigate the effect of temperature and concentration on the dimensions of macromolecules in blends using
SANS and high-concentration labeling methods and construct a generic phase diagram, which specifies the range of
validity of the RPA. Using scaling arguments, we demonstrate a parallel between the structure—property relationships
in blends and solutions of polymers in small molecule solvents and reveal the impact of the chain length of the
polymeric solvent on the phase behavior of polymer blends. The results offer new insights into the universality of
the thermodynamic properties and structure of macromolecules in polymeric, liquid and supercritical solvents.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction
The scattering function from a single-phase incompressible polymer blend of components A and B was
calculated by de Gennes based on the random phase approximation{RPA)
Q) = SSA(Q) + S5(Q) — 2 (1)

whereS(Q) is the total scattering structure factor which embodies information on the total (both intra-
and intermolecular) correlations between polymer segments and is related to the correlation length of
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the concentration fluctuations; S;;(Q) the single-chain structure factor which contains information

on the intramolecular correlations, and thus on the dimensions (e.g. the radius of gyRgtiohthe
polymer components) the scattering vector; angthe Flory interaction parameter which reflects the
nature of the local segment—segment interactions. The EBA(Q) is based on the assumption that

the dimensions of polymer chains remain unchanged on mixing and retain the unperturbed radius of
gyrationRy(®) (as in amorphous state or in a polymer solution até@hgoint) at arbitrary temperatures

and concentrations. However, recent theoretical and computer simulation f8sidlthave suggested
that Ry may shrink or expand in various regions of the temperature—concentration phase diagram and
there are several indications in the experimental literature to support this hyp¢8€€$ In this paper

we systematically explore the interrelation betwégrand the correlation lengthin polymer blends

using small-angle neutron scattering (SANS) and demonstrate the existencesolities in the phase
diagrams of polymer blends, in addition to binodals and spinodals traditionally discussed in the literature.
The occurrence of th@ lines is used to delineate the range of validity of the RPA as well as to explore
universal aspects of the polymer behavior in polymeric and small molézstdvents.

2. Experimental

The coherent neutron scattering cross secti¢@), from an incompressible mixture of identical
deuterated and protonated polymers (component A) in a polymeric solvent (component B) is given by
[11]

1(Q,x) = K"Ssa(Q) + I(Q, x). )

whereS; A(Q) is the single-chain structure factor, which contains information on the radius of gyration
Rg.a Of the component Al;(Q, X) the total intensity of scattering, which contains information on the
correlation lengtt§ of the concentration fluctuationsthe mole fraction of deuterated chains relative to
all chains of the component A, ar@ = 471~ sing, is the scattering vector, wheré B the scattering
angle and. is the wavelength. The prefact&r ~ (b, — bg)?x(1 — x) is a function of scattering lengths

of the deuteratedd) and protonateda) monomers of component A.

For isotopic mixtures of poly(dimethyl siloxane) (PDM®)(= 6.33 x 10~*?cm, b, = 0.086 x
10-*2¢cm) and poly(ethyl methyl siloxane) (PEMS);(= 0.003 x 10~'2cm) studied in this work,
there is no isotopic ratio, & x < 1, which eliminates;(Q, x) completely, however one can minimize
it contribution by choosing smak (e.g.x = 0.1). Therefore, we measure the intensity of scattering
1(Q, x = 0.1) from ternary mixtures(Q.1)PDMS-d+ (0.9)PDMS-h)-PEMS at the critical concentration
of PDMS defined af’] ¢c a = Né/z/(N,i/ZJrNé/z) as well as the intensity of scatterih¢gQ, x = 1, AT)
from a binary blend PDMS-dx(= 1)-PEMS at the samg@c a. The single-chain scattering function
S A(Q) is than obtained by weighed subtraction of the total scattering at the same temperature distance
from the critical temperature of each blend {42]

K*Ssp = I(Q, x = 0.1, AT) — A*[(Q, x = 1, AT"). 3)

The prefactorA* is small (-0.0125 forx = 0.1) and thus the single-chain scattering is predominant
far away from the critical temperature (largel’ = T — Tc), however, the effect of the correction
for total scattering can become finite in the vicinity of (AT = 0) due to the divergencd 2,13]
L(0) ~ (AT ~1?4 The radius of gyratiorRy(AT) of PDMS-d is determined by fitting(Q) to the
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Debye function

2
So=—(—1+e?), y=0%R. (4)
y
Similarly, the correlation length is obtained from(Q, x = 1) using the Ornstein—Zernike equation
1(0)
I =—. 5
(Q) 17 0% (5)

SANS experiments were carried out on the SANS facility at the Oak Ridge National Laboratory, USA,
and KWSL1 instrument at the IFF Forschungszentrum, Jilich, Germany. The range of scattering vectors
was 0005 < Q < 0.03A-1. The temperature of the samples was controlled to better+tad and
+0.02 K in Oak Ridge and Julich experiments, respectively. The critical temperatures of phase demixing
of each sample were identified as a sharp maximum in the integral neutron count rate as a furiction of
The data were corrected and placed on an absolute scale using standard procedures described elsewhe
[14]. The structure factdBs o was obtained fronkq. (3)and used to calculat&; of PDMS-d at different
temperatures. The correlation leng(fi) was obtained fronkq. (5)

PDMS-h, PDMS-d #yw = 19,500 and 4900) and PEM34(y = 23,200) were synthesized and
characterized at the Max Planck Institut fiir Polymer Forschung, Germany (courtesy of M. Stamm). PS-d
(Mw = 246,000) and PVMEM,y = 196,000) were obtained from Polymer Laboratories (UK) and BASF
Ludwigshafen (Germany), respectively. PSM{ = 2620) and PPMSM, = 2530 and 37,000) were
obtained from PSS-Mainz (Germany). The polydispersity index of all polymerafygs\iy < 1.07 with
the only exception: PVMEMy /My < 2.5. PDMS-PEMS and PS—PPMS blends were homogenized
in situ in quartz cells by mechanical stirring Bt> Tc. PS-d—-PVME was prepared by dissolving the
components in a common solvent toluene, evaporating the solvent at room temperature, and continuous
drying under vacuum.

3. Resultsand discussion

The temperature variation & and& in PDMS—-PEMS blends is shown Fig. 1, where theRy of
PDMS-d remains constant at all temperatures and the averageR@ehi37+ 3 and 262 A agree with
the corresponding unperturbed dimensions for PDM$ 4 O.27M\}\f2 ~ 34 A for My, = 19,500 and
19 A for My = 4900)[15]. To our knowledge, this is the first experimental determination oRjef
one of the components of partially miscible polymer blends that confirms the validity of the RPA over a
wide range of temperaturé@scluding the critical region of phase demixinQur observations correlate
well with high-concentration labeling measurementd&gin miscible (x < 0) blends of polyethylene
oxide and polymethyl methacrylate (PMMA) which reported unpertufRgdf PMMA chains in the
concentration range.B < ¢puma < 0.74[16]. At the same time, our results strongly contradict light
scattering experimenf{47], which revealed-200% variation of the chain dimensions above the critical
temperaturelc of phase demixing in the blend PDMS-# & 0.456)-PEMS. In contrast to thig,
the correlation lengthHig. 1) varies strongly with temperature, diverging Bis= Tc (§ > Rg), and
leveling off (¢/Ry ~ 1.65= 0.05) for T > Tc. The observed variation ¢{(T)/Ry in PDMS-d-PEMS
blends Fig. 1) is similar to that found in polymer solutions in poor organic solvéh®, which remain
microscopically phase separatédx Rg) at all temperatures. Similarly, PDMS-d and PEMS do not mix
on the molecular level and thus PEMS behaves as a poor polymeric solvent for PDMS-d.
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Fig. 1. The radius of gyration and the correlation length of PDM34g, (= 19,500) and PDMS-dM\, = 4900) (inset) in
((0.1)PDMS-d+ (0.9) PDMS-h)-PVME M,y = 23,000) blend at the critical concentration of PDMS= ¢c = 0.51 and

¢ = ¢c = 0.31, respectively. The figure demonstrates the constanBy afid thus validity of the RPA in concentrated polymer
blends.

Polymer solutions in poor (no®) solvents are believed to be incapable of reachingkmondition
at which the attractive intramolecular interactions are annulled by excluded effects. However, for the
©®-solvents, this condition can be reached at the Florg temperature at which two competing charac-
teristic lengths§ andRy) are related viag(®) = Rg(@)/\/ﬁ for non-overlapping chaind2,13,18,19]
Here we extend this relation to polymer blends, which possess an additional characteristic length cor-
responding to the radius of gyration of the polymeric solvent. Expanding the Debye fungtip8s
(Eg. (1) in the limit 9 = 0 we obtain for the blend of non-interacting polymers at@&&mperature
X(T'=©) =0)

Rg k(@)
: . 6
V3 ©

where RZ (©) = (14 k)N (R3 A(0) + kR 5(©)) andk = (¢aNava)/(¢sNgvg) is a factor which
accounts for the cumulative asymmetry between the volume fragtignolymerization degred|, the
monomer volume of the polymers. We note that in the strong asymmetry lilnig 0,k = o0), as well

as in the ideal symmetry limit(= 1, Rga = Ry p) the relations(®) = Rq(®)/+/3 for the® polymer
solutions (singleRy) is recovered. Furthermore, using the mean field scalingélaw &qy |7~ =09,
whereg is the “mean field amplitude” with typical values 5/30 A for polymer solutions and blends and

T = |T — Tc|/T is the reduced temperature, we obtain the relation betWegthe amplitudé s and the
© temperature:

- Smf 2 -
@:Tc{lqc[sk(@” ' "

£ (0) =
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Fig. 2. The interaction parameter as a function of temperature for the PS#{ = 593,000, = 0.4837)-PVME
(Mw = 1,100,000) (the data frof21]). The inset shows the correlation lendttas a function of the reduced temperature
. The ® temperature of the blend is reached at #56°C, wheny = 0 and ort = £.(©) = 160A.

where “—" and “+” correspond to UCST and lower critical solution temperature (LCST) blends, respec-
tively.

We verify the validity ofEq. (7) by using the SANS data &(T) andx(T) for LCST blends PS-d-PVME
available in the literaturg20,21] As demonstrated ifrig. 2, for the blend PS-dMw = 593,000,
¢ = 0.4837)-PVME 4y = 1,100,000) the criterigz = 0 and£.(®) = 160A lead to the same
lower ® temperature®, = 156+ 1°C, which confirms the equivalence of both methods for determin-
ing the ® temperature. For the blend PS#\( = 246,000)-PVME ¢y = 201,000) at the critical
concentrationppsq = 0.19 studied in this work, we obtain froraqg. (7) ®. = 142°C, which is
consistent with®_ values available in the literature as shownrFig. 3. Similarly, the inset inFig. 3
shows the uppe® temperaturesdy) for the UCST blend PS-d—PPMS calculated Eq. (7) using
the parameterspbsq = 0.16, Tc = 143°C, &mi = 14A), (ppsa = 0.31, Tc = 622°C, &y =
10.4A), (ppsq = 0.48, Tc = —39.4°C, & = 6.7 A), obtained in this work as well as in our pre-
vious studieg22,23] We note that both®, and ®y are independent dfl, but vary with the con-
centration of PS-d due to the perturbation of the segment—-segment interactions caused by deuteration
[24]. The effect of isotopic substitution is opposite in sign for UCST and LCST blends, respectively,
with the former becoming less, and the latter more miscible as a functigagf. The magnitude of
the effect is also significantly different for entropy-driven (LCST) and enthalpy-driven (UCST) phase
demixing.

We believe the data presentediy. 3to be the first demonstration of the existence oféheand®,
lines, which separate poay  0) and good solvent( < 0) domains in the phase diagrams of the LCST
and UCST polymer blends. In the good solvent domd@ir:(®,, T > &) excluded volume effects tend
to expandRy beyond the unperturbed dimensions. This effect is facilitated in strongly asymmetric blends
(k = 0 ork = o0), where individual chains of the dilute component are subject to minimal screening
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Fig. 3.0, for the LCST blends PS-d—PVME obtained using the conditiea 0 (%), [20] and (®), [21] as well as the condition
& = £(0) (@) for the same blends¥() and (A) are®, obtained for the dilute blends [40,30], respectively. The inset shows
Oy for the UCST blends PS-d-PPMS.

effects and expand due to a favorable interaction with the good polymeric s¢®&0f Conversely,

in the poor solvent domairf(> ®,, T < ©y), the dominating attractive intramolecular interactions
between the segments facilitate contraction of the dilute (minority) comp¢8krt the same time,

the majority species experience predominantly the environment of the same component and thus exhibi
the unperturbed dimensions as in polymer melt at Both ® andT « © [3-7]. The deviation oRy

from unperturbed dimensioig(®) in strongly asymmetric blends restricts the applicability of the RPA

to the regions shown schematically in the conceptual phase diagram of the UCST and LCST polymer
blends Fig. 4), which summarizes the available experimental observations as well as results of computer
simulations.

It has long been appreciated that polymer blends, polymers solutions and binary mixtures of small
molecule liquids (ordinary solutions) behave universally in the vicinity of the critical temperature where
the diverging fluctuationst(= oo) conceal the specific details of structure and intermolecular forces
[22,25,26] Current theories predi¢27] that various systems may cross over from universal critical to
non-universal mean field behavior in a different way depending on the availability of a specific supramolec-
ular structure with the characteristic length scaje Thefirst typeof crossover (smalp) is controlled
by the intermolecular forces and is observed, e.g. in ordinary solutions, yhearerresponds to the
molecular sizesd) andé > &p even atl” > Tc. Thesecond typef crossover (largé€p) is defined by the
competition between the characteristic length scal@sdép and is observed, e.g. in polymer solutions
in the ® solvents wheres > £&=Rq (T ~ Tc) buté < Ry (T > Tc) [12,13,18,19] The demonstration
of the® points Fig. 3) and the fact that polymer blends and solutions have the same characteristic length
scaleRy «(®) (Eq. (6) suggests that the crossover in thesolvents and blends should be controlled by
the ratio&/Ry «(©).
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Fig. 4. Generic phase diagram of the UCST and L@&5folymer blends (one component deuterated). The vertical dotted lines
correspond to the overlap concentratipe= ¢* of the dilute polymer component. The RPA is valid in blue domains and breaks
down in the strong asymmetry limit (dark blue and reddish domains) due to the swelling or shrinking of the polymer coils of the
minority component.

We define the Ginzburg number for tli& polymer blends astg; = |T — Tx| /T, whereTy is the
crossover temperature at which the conditfofix) = Ry (®) is met! The asymptotic scaling law for
the correlation length in the critical regidn= & ||~“=%%¥ in combination withRy(©) ~ N° gives

Er 0% n=—0.794
wslmi] o ?

where the average polymerization degre@8 (N) = (¢a/Ns + ¢s/Na) . Fig. 5shows the Ginzburg
numbers for th& polymer blends PS-d—PPMS and PS-d-PVME calculated &sjn(@)with &.; obtained
in this study as well as determined previoud,23] As is seen irFig. 5, the indexn = —0.73+ 0.07
agrees within experimental error with= —0.79 inEq. (8) The suggested scaling relation tgj; brings

1 Strictly speaking, the crossover temperatiigds uniquely defined only in the limit = 0, k = oo (polymer solutions) or
in the limitk = 1 (ideally symmetric polymer blends). For the intermediate valudgioé crossover temperature develops into
thecrossover intervaly; < Tx < Tx. corresponding to the conditidn(®) = Rg,l(@)/ﬂ <E<EHO) = Rg,Z(@)/\/g- The
width of the crossover interval T = |Tx; — Tx2| depends on the mismatch between the radii of gyration (or polymerization
degree) of the components. Thus, in general the condjtifiy) = Ry (©) identifies the center of a broad crossover regime
separating temperature ranges where mean field or critical fluctuation behavior is oj28fved
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Fig. 5. Variation of the Ginzburg number vs. the average polymerization degreedngblymer blends:¥Y) PS-d-PPMS, @)
PS-d—PVME. Solid line correspondsito= —0.73 & 0.07. The vertical dashed linéX) = 8, tg; ~ 1) separates the ranges
of (N) where the crossover of type 1 (ordinary solutions with~ 1072) and type 2 @ polymer blends withrg; described by
Eq. (8) are observed. The inset demonstratesghdor the ® blends PS-d—PPMS and PS-d—PVME is independeriNpn

the Ginzburg numbers of both UCST and LC&blends on a single scale and describes the variation of
Tsi over more than three orders of magnitudéN.? The observed downturn atsi((N)) for (N) < 40

is a consequence of the inevitable transition from the crossover of type 2, which is characteristic of the
© blends with largg€p=Ry (N = o0) to the crossover of type 1, typical for ordinary solutions with
smallép=a (N = 1) and[27] tgi ~ 10~2. The “mid point” of the transition may be estimated from the
conditiontgi = 1 (i.e.£, = &mt) Which gives(N) ~ 8.

4. Conclusions

Our results show that polymer blends reproduce all main features of the temperature—concentration
phase diagrarfil] of polymers in small molecule organic solvents, along with their structural and ther-
modynamic behavior in the vicinity of the critical adtemperatures. Recently we have demonstrated
that the® condition may also be induced in mixtures of polymers with supercritical fluids by varying
temperature and or pressii28]. Using the scaling temperature variahie,= (T — T¢) /(® — T¢), which
accounts for the temperature distance from bothA@ttemperature andic, we represent the correlation
length of the concentration fluctuations in the scaling form

§=§(0)(Tx)™ C)

with the exponent* = 0.5 inthe mean field domaiff(= @, t* = 1) andv* = 0.63 in the critical region
(T = Tc, v = 1), andé, defined byEqg. (6) As is seen irFig. 6, the correlation length&/&,(®) (see
Eq. (6) of various® systems: both LCST and UCST polymer blends, polymer solutions, and mixtures of

2 In one of the previous studig¢®3] an attempt was made to determine inaeby fitting the datarg;(N) obtained for blends
PS-d-PPMS and PDMS-PEMS. It is no wonder that the auf@8tame up with an unphysical valmg=—2) as they were
fitting zg; obtained for th&) blend PS-d—PPMS and the “poor solvent” type blend PDMS—-PEMS, the Ginzburg number in which
is governed by different physical reasons.
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Fig. 6. Master curve for the correlation length in various systems, which exhit# teenperatures in their phase diagrand) (
Polymer blends: W) PS-d My = 2620)-PPMS ¥\, = 2530) (this work), ¥) PS-d (37,000)-PPMS (253(®)2], (A) PS-d
(Myw = 402,000)-PVME #, = 210,000)[21]. Polymer solutions:@®) PS (M, = 22,000)-methylcyclohexanefdl], (®)
PDMS (M = 47,000)-bromobenzenefd2]. Supercritical mixture$29]: (x) PDMS (M, = 79,000)—supercritical carbon
dioxide, ) PDMS My, = 22,000)—supercritical carbon dioxif{29].

polymers with supercritical fluids collapse on a master curve in the wide range of the molecular weight
2500-400,0000 temperature 65—-484 and the critical temperature40 to 160°C. We believe this to

be the remarkable demonstration of the universality of the structure and thermodynamic properties of
polymer molecules in th® polymeric, liquid and supercritical solver&2].

The occurrence of the lower and upp@rpoints as well as their significant variation with the con-
centration of a deuterated component in polymer blends may provide new insight and interpretation
of some of the puzzling phenomena, such as variation of the interaction pargmetdr My, and
composition. The® state concept in polymer blends may also be constructive for rationalizing other
important issues, e.g. th-dependence of the Ginzburg number in polymer blends and the way they
may cross over from the mean field to fluctuation regimes. We hope that this work will stimulate further
experimental and theoretical efforts, in order to quantify universal and specific aspects of the polymer
behavior in the regions of the phase diagram corresponding to the@oand good polymeric solvents
[33].

List of symbols

by scattering length of deuterated monomer
bn scattering length of protonated monomer
1{(Q) total scattering intensity

k asymmetry factork = (¢paNava)/(¢psNgvg)
Mw  weight average molecular weight
polymerization degree

scattering vector

radius of gyration

Debye structure factor

single-chain structure factor

total structure factor
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AT  temperature deviation from the critical temperatux&, = |T — T¢|
Te critical temperature of phase demixing

Tx crossover temperature

v monomer volume

mole fraction of deuterated polymer

x

Greek letters

0 scattering angle

O Flory or theta temperature

A wave length

v critical index of the correlation length

& correlation length of the concentration fluctuations
&p supramolecular characteristic length

T reduced temperature,= |T — Tc|/T

TGi Ginzburg number

T* de Gennes’ reduced temperature = (T — Tc)/(® — Tc)
¢dc critical concentration

X Flory—Huggins interaction parameter
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