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Abstract

Blending (or mixing) of macromolecules is widely used to tailor the properties of polymeric materials and
small-angle neutron scattering (SANS) has provided detailed information at the molecular level on the ability of
different polymer species to mix or segregate at various thermodynamic conditions. For two decades, SANS data
have been analyzed via the de Gennes “random phase approximation” (RPA) [P.-G. de Gennes, Scaling Concepts
in Polymer Physics, second ed., Cornell University Press, Ithaca, London, 1979], which is based on the assumption
that the dimensions of polymer chains remain unchanged on mixing for all concentrations and temperatures. Here
we investigate the effect of temperature and concentration on the dimensions of macromolecules in blends using
SANS and high-concentration labeling methods and construct a generic phase diagram, which specifies the range of
validity of the RPA. Using scaling arguments, we demonstrate a parallel between the structure–property relationships
in blends and solutions of polymers in small molecule solvents and reveal the impact of the chain length of the
polymeric solvent on the phase behavior of polymer blends. The results offer new insights into the universality of
the thermodynamic properties and structure of macromolecules in polymeric, liquid and supercritical solvents.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The scattering function from a single-phase incompressible polymer blend of components A and B was
calculated by de Gennes based on the random phase approximation (RPA)[1]

S−1
t (Q) = S−1

s,A(Q) + S−1
s,B(Q) − 2χ. (1)

whereSt(Q) is the total scattering structure factor which embodies information on the total (both intra-
and intermolecular) correlations between polymer segments and is related to the correlation length of

∗ Corresponding author. Tel.:+1-865-576-7746; fax:+1-865-574-6268.
E-mail address:yui@ornl.gov (Y.B. Melnichenko).

0378-3812/$ – see front matter © 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0378-3812(03)00259-0



210 Y.B. Melnichenko et al. / Fluid Phase Equilibria 212 (2003) 209–219

the concentration fluctuations,ξ; Ss,i(Q) the single-chain structure factor which contains information
on the intramolecular correlations, and thus on the dimensions (e.g. the radius of gyration,Rg) of the
polymer components;Q the scattering vector; andχ the Flory interaction parameter which reflects the
nature of the local segment–segment interactions. The RPA (Eq. (1)) is based on the assumption that
the dimensions of polymer chains remain unchanged on mixing and retain the unperturbed radius of
gyrationRg(Θ) (as in amorphous state or in a polymer solution at theΘ point) at arbitrary temperatures
and concentrations. However, recent theoretical and computer simulation results[2–7] have suggested
that Rg may shrink or expand in various regions of the temperature–concentration phase diagram and
there are several indications in the experimental literature to support this hypothesis[8–10]. In this paper
we systematically explore the interrelation betweenRg and the correlation lengthξ in polymer blends
using small-angle neutron scattering (SANS) and demonstrate the existence of theΘ lines in the phase
diagrams of polymer blends, in addition to binodals and spinodals traditionally discussed in the literature.
The occurrence of theΘ lines is used to delineate the range of validity of the RPA as well as to explore
universal aspects of the polymer behavior in polymeric and small moleculeΘ solvents.

2. Experimental

The coherent neutron scattering cross section,I(Q), from an incompressible mixture of identical
deuterated and protonated polymers (component A) in a polymeric solvent (component B) is given by
[11]

I(Q, x) = K∗Ss,A(Q) + It(Q, x). (2)

whereSs,A(Q) is the single-chain structure factor, which contains information on the radius of gyration
Rg,A of the component A;It(Q, x) the total intensity of scattering, which contains information on the
correlation lengthξ of the concentration fluctuations;x the mole fraction of deuterated chains relative to
all chains of the component A, andQ = 4πλ−1 sinθ, is the scattering vector, where 2θ is the scattering
angle andλ is the wavelength. The prefactorK∗ ∼ (bh − bd)

2x(1− x) is a function of scattering lengths
of the deuterated (bd) and protonated (bh) monomers of component A.

For isotopic mixtures of poly(dimethyl siloxane) (PDMS) (bd = 6.33 × 10−12 cm, bh = 0.086×
10−12 cm) and poly(ethyl methyl siloxane) (PEMS) (b′

h = 0.003 × 10−12 cm) studied in this work,
there is no isotopic ratio, 0< x < 1, which eliminatesIt(Q, x) completely, however one can minimize
it contribution by choosing smallx (e.g.x = 0.1). Therefore, we measure the intensity of scattering
I(Q, x = 0.1) from ternary mixtures ((0.1)PDMS-d+ (0.9)PDMS-h)–PEMS at the critical concentration
of PDMS defined as[7] φC,A = N

1/2
B /(N

1/2
A +N

1/2
B ) as well as the intensity of scatteringIt(Q, x = 1,�T )

from a binary blend PDMS-d (x = 1)–PEMS at the sameφC,A. The single-chain scattering function
Ss,A(Q) is than obtained by weighed subtraction of the total scattering at the same temperature distance
from the critical temperature of each blend via[12]

K∗Ss,A = I(Q, x = 0.1,�T) − A∗It(Q, x = 1,�T ′). (3)

The prefactorA∗ is small (∼0.0125 forx = 0.1) and thus the single-chain scattering is predominant
far away from the critical temperature (large�T = T − TC), however, the effect of the correction
for total scattering can become finite in the vicinity ofTC (�T ⇒ 0) due to the divergence[12,13]
It(0) ∼ (�T)−1.24. The radius of gyrationRg(�T) of PDMS-d is determined by fittingSs(Q) to the
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Debye function

SD = 2

y2
(y − 1 + e−y), y = Q2R2

g. (4)

Similarly, the correlation lengthξ is obtained fromIt(Q, x = 1) using the Ornstein–Zernike equation

It(Q) = I(0)

1 + Q2ξ2
. (5)

SANS experiments were carried out on the SANS facility at the Oak Ridge National Laboratory, USA,
and KWS1 instrument at the IFF Forschungszentrum, Jülich, Germany. The range of scattering vectors
was 0.005 < Q < 0.03 Å−1. The temperature of the samples was controlled to better than±0.2 and
±0.02 K in Oak Ridge and Jülich experiments, respectively. The critical temperatures of phase demixing
of each sample were identified as a sharp maximum in the integral neutron count rate as a function ofT.
The data were corrected and placed on an absolute scale using standard procedures described elsewhere
[14]. The structure factorSs,A was obtained fromEq. (3)and used to calculateRg of PDMS-d at different
temperatures. The correlation lengthξ(T) was obtained fromEq. (5).

PDMS-h, PDMS-d (MW = 19,500 and 4900) and PEMS (MW = 23,200) were synthesized and
characterized at the Max Planck Institut für Polymer Forschung, Germany (courtesy of M. Stamm). PS-d
(MW = 246,000) and PVME (MW = 196,000) were obtained from Polymer Laboratories (UK) and BASF
Ludwigshafen (Germany), respectively. PS-d (MW = 2620) and PPMS (MW = 2530 and 37,000) were
obtained from PSS-Mainz (Germany). The polydispersity index of all polymers wasMW/MN ≤ 1.07 with
the only exception: PVME,MW/MN ≤ 2.5. PDMS–PEMS and PS–PPMS blends were homogenized
in situ in quartz cells by mechanical stirring atT > TC. PS-d–PVME was prepared by dissolving the
components in a common solvent toluene, evaporating the solvent at room temperature, and continuous
drying under vacuum.

3. Results and discussion

The temperature variation ofRg andξ in PDMS–PEMS blends is shown inFig. 1, where theRg of
PDMS-d remains constant at all temperatures and the average radii,Rg = 37± 3 and 20±2 Å agree with
the corresponding unperturbed dimensions for PDMS (Rg ≈ 0.27M1/2

W ≈ 34 Å for MW = 19,500 and
19 Å for MW = 4900)[15]. To our knowledge, this is the first experimental determination of theRg of
one of the components of partially miscible polymer blends that confirms the validity of the RPA over a
wide range of temperaturesincluding the critical region of phase demixing. Our observations correlate
well with high-concentration labeling measurements ofRg in miscible (χ < 0) blends of polyethylene
oxide and polymethyl methacrylate (PMMA) which reported unperturbedRg of PMMA chains in the
concentration range 0.3 ≤ φPMMA ≤ 0.74 [16]. At the same time, our results strongly contradict light
scattering experiments[17], which revealed∼200% variation of the chain dimensions above the critical
temperatureTC of phase demixing in the blend PDMS-h (φ = 0.456)–PEMS. In contrast to theRg,
the correlation length (Fig. 1) varies strongly with temperature, diverging asT ⇒ TC (ξ � Rg), and
leveling off (ξ/Rg ∼ 1.65± 0.05) for T � TC. The observed variation ofξ(T)/Rg in PDMS-d–PEMS
blends (Fig. 1) is similar to that found in polymer solutions in poor organic solvents[18], which remain
microscopically phase separated (ξ ≥ Rg) at all temperatures. Similarly, PDMS-d and PEMS do not mix
on the molecular level and thus PEMS behaves as a poor polymeric solvent for PDMS-d.
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Fig. 1. The radius of gyration and the correlation length of PDMS-d (MW = 19,500) and PDMS-d (MW = 4900) (inset) in
((0.1)PDMS-d+ (0.9)PDMS-h)–PVME (MW = 23,000) blend at the critical concentration of PDMSφ = φC = 0.51 and
φ = φC = 0.31, respectively. The figure demonstrates the constancy ofRg and thus validity of the RPA in concentrated polymer
blends.

Polymer solutions in poor (non-Θ) solvents are believed to be incapable of reaching theΘ-condition
at which the attractive intramolecular interactions are annulled by excluded effects. However, for the
Θ-solvents, this condition can be reached at the Flory orΘ temperature at which two competing charac-
teristic lengths (ξ andRg) are related via:ξ(Θ) = Rg(Θ)/

√
3 for non-overlapping chains[12,13,18,19].

Here we extend this relation to polymer blends, which possess an additional characteristic length cor-
responding to the radius of gyration of the polymeric solvent. Expanding the Debye functionsSA, SB

(Eq. (1)) in the limit Q ⇒ 0 we obtain for the blend of non-interacting polymers at theΘ temperature
(χ(T = Θ) = 0)

ξk(Θ) = Rg,k(Θ)√
3

. (6)

whereR2
g,k(Θ) = (1 + k)−1(R2

g,A(Θ) + kR2
g,B(Θ)) andk = (φANAvA)/(φBNBvB) is a factor which

accounts for the cumulative asymmetry between the volume fractionφ, polymerization degreeN, the
monomer volumev of the polymers. We note that in the strong asymmetry limit (k ⇒ 0,k ⇒ ∞), as well
as in the ideal symmetry limit (k = 1, Rg,A = Rg,B) the relationξ(Θ) = Rg(Θ)/

√
3 for theΘ polymer

solutions (singleRg) is recovered. Furthermore, using the mean field scaling lawξ = ξmf |τ|−(ν=0.5),
whereξmf is the “mean field amplitude” with typical values 5/30 Å for polymer solutions and blends and
τ = |T − TC|/T is the reduced temperature, we obtain the relation betweenTC, the amplitudeξmf and the
Θ temperature:

Θ = TC

{
1 ∓

[
ξmf

ξk(Θ)

]2
}−1

. (7)
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Fig. 2. The interaction parameterχ as a function of temperature for the PS-d (MW = 593,000,φ = 0.4837)–PVME
(MW = 1,100,000) (the data from[21]). The inset shows the correlation lengthξ as a function of the reduced temperature
τ. TheΘ temperature of the blend is reached at 156± 1 ◦C, whenχ = 0 and orξ = ξk(Θ) = 160 Å.

where “−” and “+” correspond to UCST and lower critical solution temperature (LCST) blends, respec-
tively.

We verify the validity ofEq. (7), by using the SANS data onξ(T) andχ(T) for LCST blends PS-d–PVME
available in the literature[20,21]. As demonstrated inFig. 2, for the blend PS-d (MW = 593,000,
φ = 0.4837)–PVME (MW = 1,100,000) the criteriaχ = 0 andξk(Θ) = 160 Å lead to the same
lowerΘ temperatureΘL = 156± 1 ◦C, which confirms the equivalence of both methods for determin-
ing theΘ temperature. For the blend PS-d (MW = 246,000)–PVME (MW = 201,000) at the critical
concentrationφPS-d = 0.19 studied in this work, we obtain fromEq. (7) ΘL

∼= 142◦C, which is
consistent withΘL values available in the literature as shown inFig. 3. Similarly, the inset inFig. 3
shows the upperΘ temperatures (ΘU) for the UCST blend PS-d–PPMS calculated viaEq. (7) using
the parameters (φPS-d = 0.16, TC = 143◦C, ξmf = 14 Å), (φPS-d = 0.31, TC = 62.2 ◦C, ξmf =
10.4 Å), (φPS-d = 0.48, TC = −39.4 ◦C, ξmf = 6.7 Å), obtained in this work as well as in our pre-
vious studies[22,23]. We note that bothΘL andΘU are independent ofN, but vary with the con-
centration of PS-d due to the perturbation of the segment–segment interactions caused by deuteration
[24]. The effect of isotopic substitution is opposite in sign for UCST and LCST blends, respectively,
with the former becoming less, and the latter more miscible as a function ofφPS-d. The magnitude of
the effect is also significantly different for entropy-driven (LCST) and enthalpy-driven (UCST) phase
demixing.

We believe the data presented inFig. 3to be the first demonstration of the existence of theΘU andΘL

lines, which separate poor (χ > 0) and good solvent (χ < 0) domains in the phase diagrams of the LCST
and UCST polymer blends. In the good solvent domain (T < ΘL, T > ΘU) excluded volume effects tend
to expandRg beyond the unperturbed dimensions. This effect is facilitated in strongly asymmetric blends
(k ⇒ 0 or k ⇒ ∞), where individual chains of the dilute component are subject to minimal screening
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Fig. 3.ΘL for the LCST blends PS-d–PVME obtained using the conditionχ = 0 ( ), [20] and (�), [21] as well as the condition
ξ = ξk(Θ) (�) for the same blends. (�) and (�) areΘL obtained for the dilute blends in[10,30], respectively. The inset shows
ΘU for the UCST blends PS-d–PPMS.

effects and expand due to a favorable interaction with the good polymeric solvent[9,10]. Conversely,
in the poor solvent domain (T > ΘL, T < ΘU), the dominating attractive intramolecular interactions
between the segments facilitate contraction of the dilute (minority) component[8]. At the same time,
the majority species experience predominantly the environment of the same component and thus exhibit
the unperturbed dimensions as in polymer melt at bothT � Θ andT � Θ [3–7]. The deviation ofRg

from unperturbed dimensionsRg(Θ) in strongly asymmetric blends restricts the applicability of the RPA
to the regions shown schematically in the conceptual phase diagram of the UCST and LCST polymer
blends (Fig. 4), which summarizes the available experimental observations as well as results of computer
simulations.

It has long been appreciated that polymer blends, polymers solutions and binary mixtures of small
molecule liquids (ordinary solutions) behave universally in the vicinity of the critical temperature where
the diverging fluctuations (ξ ⇒ ∞) conceal the specific details of structure and intermolecular forces
[22,25,26]. Current theories predict[27] that various systems may cross over from universal critical to
non-universal mean field behavior in a different way depending on the availability of a specific supramolec-
ular structure with the characteristic length scaleξD. Thefirst typeof crossover (smallξD) is controlled
by the intermolecular forces and is observed, e.g. in ordinary solutions, whereξD corresponds to the
molecular sizes (a) andξ ≥ ξD even atT � TC. Thesecond typeof crossover (largeξD) is defined by the
competition between the characteristic length scalesξ andξD and is observed, e.g. in polymer solutions
in theΘ solvents where,ξ � ξD≡Rg (T ∼ TC) butξ � Rg (T � TC) [12,13,18,19]. The demonstration
of theΘ points (Fig. 3) and the fact that polymer blends and solutions have the same characteristic length
scaleRg,k(Θ) (Eq. (6)) suggests that the crossover in theΘ solvents and blends should be controlled by
the ratioξ/Rg,k(Θ).
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Fig. 4. Generic phase diagram of the UCST and LCSTΘ polymer blends (one component deuterated). The vertical dotted lines
correspond to the overlap concentrationφ = φ∗ of the dilute polymer component. The RPA is valid in blue domains and breaks
down in the strong asymmetry limit (dark blue and reddish domains) due to the swelling or shrinking of the polymer coils of the
minority component.

We define the Ginzburg number for theΘ polymer blends as:τGi = |T − TX | /T , whereTX is the
crossover temperature at which the conditionξ(TX) = Rg,k(Θ) is met.1 The asymptotic scaling law for
the correlation length in the critical regionξ = ξcr |τ|−(ν=0.63) in combination withRg(Θ) ∼ N0.5 gives

τGi =
[

ξcr

Rg,k(Θ)

]1/0.63

∼ 〈N〉n=−0.794, (8)

where the average polymerization degree is[23] 〈N〉 = (φA/NB +φB/NA)
−1. Fig. 5shows the Ginzburg

numbers for theΘpolymer blends PS-d–PPMS and PS-d–PVME calculated usingEq. (8)with ξcr obtained
in this study as well as determined previously[22,23]. As is seen inFig. 5, the indexn = −0.73± 0.07
agrees within experimental error withn = −0.79 inEq. (8). The suggested scaling relation forτGi brings

1 Strictly speaking, the crossover temperatureTX is uniquely defined only in the limitk ⇒ 0, k ⇒ ∞ (polymer solutions) or
in the limit k = 1 (ideally symmetric polymer blends). For the intermediate values ofk the crossover temperature develops into
thecrossover intervalTX1 ≤ TX ≤ TX2 corresponding to the conditionξ1(Θ) = Rg,1(Θ)/

√
3 ≤ ξ ≤ ξ2(Θ) = Rg,2(Θ)/

√
3. The

width of the crossover interval�T = |TX1 − TX2| depends on the mismatch between the radii of gyration (or polymerization
degree) of the components. Thus, in general the conditionξ(TX) = Rg,k(Θ) identifies the center of a broad crossover regime
separating temperature ranges where mean field or critical fluctuation behavior is observed[28].
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Fig. 5. Variation of the Ginzburg number vs. the average polymerization degree in theΘ polymer blends: (�) PS-d–PPMS, (�)
PS-d–PVME. Solid line corresponds ton = −0.73± 0.07. The vertical dashed line (〈N〉 = 8, τGi ∼ 1) separates the ranges
of 〈N〉 where the crossover of type 1 (ordinary solutions withτGi ∼ 10−2) and type 2 (Θ polymer blends withτGi described by
Eq. (8)) are observed. The inset demonstrates thatξcr for theΘ blends PS-d–PPMS and PS-d–PVME is independent on〈N〉.

the Ginzburg numbers of both UCST and LCSTΘ blends on a single scale and describes the variation of
τGi over more than three orders of magnitude in〈N〉.2 The observed downturn ofτGi(〈N〉) for 〈N〉 ≤ 40
is a consequence of the inevitable transition from the crossover of type 2, which is characteristic of the
Θ blends with largeξD≡Rg,k (N ⇒ ∞) to the crossover of type 1, typical for ordinary solutions with
smallξD≡a (N ⇒ 1) and[27] τGi ∼ 10−2. The “mid point” of the transition may be estimated from the
conditionτGi = 1 (i.e.ξk ∼= ξmf) which gives〈N〉 ≈ 8.

4. Conclusions

Our results show that polymer blends reproduce all main features of the temperature–concentration
phase diagram[1] of polymers in small molecule organic solvents, along with their structural and ther-
modynamic behavior in the vicinity of the critical andΘ temperatures. Recently we have demonstrated
that theΘ condition may also be induced in mixtures of polymers with supercritical fluids by varying
temperature and or pressure[29]. Using the scaling temperature variable,τ∗ = (T −TC)/(Θ−TC), which
accounts for the temperature distance from both theΘ temperature andTC, we represent the correlation
length of the concentration fluctuations in the scaling form

ξ = ξk(Θ)(τ∗)ν∗ (9)

with the exponentν∗ = 0.5 in the mean field domain (T ⇒ Θ, τ∗ ⇒ 1) andν∗ = 0.63 in the critical region
(T ⇒ TC, τ∗ ⇒ 1), andξk defined byEq. (6). As is seen inFig. 6, the correlation lengthsξ/ξk(Θ) (see
Eq. (6)) of variousΘ systems: both LCST and UCST polymer blends, polymer solutions, and mixtures of

2 In one of the previous studies[23] an attempt was made to determine indexn by fitting the dataτGi(N) obtained for blends
PS-d–PPMS and PDMS–PEMS. It is no wonder that the authors[23] came up with an unphysical valuen (=−2) as they were
fitting τGi obtained for theQ blend PS-d–PPMS and the “poor solvent” type blend PDMS–PEMS, the Ginzburg number in which
is governed by different physical reasons.
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Polymer blends: (�) PS-d (MW = 2620)–PPMS (MW = 2530) (this work), (�) PS-d (37,000)–PPMS (2530)[22], (�) PS-d
(MW = 402,000)–PVME (MW = 210,000)[21]. Polymer solutions: (�) PS (MW = 22,000)–methylcyclohexane-d[31], (�)
PDMS (MW = 47,000)–bromobenzene-d[32]. Supercritical mixtures[29]: ( ) PDMS (MW = 79,000)–supercritical carbon
dioxide, ( ) PDMS (MW = 22,000)–supercritical carbon dioxide[29].

polymers with supercritical fluids collapse on a master curve in the wide range of the molecular weight
2500–400,000,Θ temperature 65–484◦C and the critical temperature−40 to 160◦C. We believe this to
be the remarkable demonstration of the universality of the structure and thermodynamic properties of
polymer molecules in theΘ polymeric, liquid and supercritical solvents[32].

The occurrence of the lower and upperΘ points as well as their significant variation with the con-
centration of a deuterated component in polymer blends may provide new insight and interpretation
of some of the puzzling phenomena, such as variation of the interaction parameterχ with MW and
composition. TheΘ state concept in polymer blends may also be constructive for rationalizing other
important issues, e.g. theMW-dependence of the Ginzburg number in polymer blends and the way they
may cross over from the mean field to fluctuation regimes. We hope that this work will stimulate further
experimental and theoretical efforts, in order to quantify universal and specific aspects of the polymer
behavior in the regions of the phase diagram corresponding to the poor,Θ, and good polymeric solvents
[33].

List of symbols
bd scattering length of deuterated monomer
bh scattering length of protonated monomer
It(Q) total scattering intensity
k asymmetry factor,k = (φANAνA)/(φBNBνB)
MW weight average molecular weight
N polymerization degree
Q scattering vector
Rg radius of gyration
SD Debye structure factor
Ss single-chain structure factor
St total structure factor
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�T temperature deviation from the critical temperature,�T = |T − TC|
TC critical temperature of phase demixing
TX crossover temperature
v monomer volume
x mole fraction of deuterated polymer

Greek letters
θ scattering angle
Θ Flory or theta temperature
λ wave length
ν critical index of the correlation length
ξ correlation length of the concentration fluctuations
ξD supramolecular characteristic length
τ reduced temperature,τ = |T − TC|/T
τGi Ginzburg number
τ∗ de Gennes’ reduced temperature,τ∗ = (T − TC)/(Θ − TC)

φC critical concentration
χ Flory–Huggins interaction parameter
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