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Abstract

We perform full-potential first-principles total energy calculations for several simple and transition metals along three

distinct phase transformation paths, i.e. the tetragonal, trigonal and hexagonal paths. Our results show that higher-energy

phases, such as the bcc structure for Al, Cu and Ti and the fcc structure for Nb, Mo, Ta and W, are always unstable with respect

to one or more of transformation modes. Some local minima along the total energy profiles are found to correspond to the

structures not dictated by the symmetry. We discuss the most interesting problem why a higher-energy phase may be stabilized

in a pseudomorphic film.
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1. Introduction

Heteroepitaxial films have attracted much interest

because of their applications in optical and electronic

devices. A pseudomorphic film may be strained strongly

because, in the coherent case, it has to match the lattice of

the substrate. Therefore, some higher-energy phases, which

are not normally encountered in bulk form, may be observed

in heteroepitaxial films. Indeed, experiments have indicated

that the bcc Cu phase exists in the pseudomorphic Cu films

grown on the {001} surfaces of Pd, Pt, Ag, and Fe [1–7] and

in multilayers of Cu with Nb [8–10]. (The structure of the

pseudomorphic Cu films on the Pd{001} and Pt{001}

substrates is also considered to be the deformed fcc [11,12])

The fcc Co phase has been reported in thin Co films on the

Cu{001} and Cu{111} substrates [13]. Hcp Al and fcc Ti

have been also observed in Ti/Al multilayered thin films

[14]. Theoretically, Marcus and Jona [15] found a criterion

for identifying the phase structure in pseudomorphic films

based on the stability analysis using ab initio electronic

structure total energy calculations. However, the nature of

the existence of higher-energy phases in pseudomorphic

films is not yet completely understood [16].

To predict structural properties of solids, ab initio (first-

principles) electronic structure calculations within the

framework of density-functional theory (DFT) [17,18]

employing the local-density approximation (LDA) or the

generalized gradient approximation (GGA) have been

performed widely [5,12,16,19–27]. In such studies, the

atomic numbers of the constituent atoms and some

structural information are the only input data. In contrast

to the empirical methods, where adjustable parameters are

usually fitted to the properties of the ground state, ab initio

calculations can be applied reliably also to the atomic

configurations far from the ground state.

In the present paper, we study systematically the total

energy profiles of simple and transition metals along three

distinct transformation paths using a high-precision full-

potential linearized augmented plane wave (FLAPW)

method [28]. These transformation paths connect some

higher-symmetry structures as special cases (Section 2), and

are characterized by a single parameter p. The higher-

symmetry structures occurring along a transformation path
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correspond to extreme points. We find that the higher-

energy phases, such as bcc structure for Al, Cu and Ti and

fcc structure for Nb, Mo, Ta and W, often correspond to a

maximum of the total energy and, therefore, are unstable

with respect to certain transformation modes. For the metals

studied, a bct structure corresponding to a local minimum of

the total energy profile along the tetragonal path, which is

not dictated by the symmetry, is observed. Similarly, there

exists an orthorhombic structure corresponding to a local

energy minimum along the hexagonal path. We suggest that

the stability of higher-energy phases in pseudomorphic films

is due to the bulk stability of the substrate material, rather

than surface and/or interface effects as usually believed.

2. Theoretical approach and calculation details

2.1. The calculation method

In the FLAPW method, the basis functions inside the

spheres centered at atomic sites are linear combinations of

radial wavefunctions and their energy derivatives, and in the

interstitial region they are represented by a plane wave

expansion. Thus no shape approximations are made to the

charge density and potential. We employ the WIEN97 code

developed by Blaha et al. [28]. The exchange–correlation

potential is treated within the LDA; we use the Perdew and

Wang 92 scheme [29] reparameterizing the Ceperly–Alder

data [30]. We use a cut-off of RmtKmax ¼ 8 for plane waves

(for the definition see Ref. [28]) and of 225 Ry for star

functions describing the wave functions, the charge density

and potential in the interstitial region. The muffin-tin radii in

our calculations are set to 2.20 au (Al), 2.00 au (Cu), 2.46 au

(Ti), 2.15 au (Fe), 2.30 au (Nb), 2.35 au (Mo), 2.20 au (Ta),

and 2.37 au (W). The total energy calculations for the

tetragonal and trigonal transformation paths are performed

with 4500 k-points in the full Brillouin zone (BZ); for the

hexagonal transformation path, 1125 k-points are used

because a supercell including four atoms (i.e. four times

more than that for the other two transformation paths) is

employed.

2.2. Phase transformation paths

We study the total energy profiles along the tetragonal,

trigonal and hexagonal transformation paths. These trans-

formation paths have been described and studied in many

previous papers [5,24–27,31–36]. Our tetragonal and

trigonal paths are the same as previous ones [5,24–27,

32–36]. However, our hexagonal path in which the

intermediate structures between the bcc and hcp structures

are interpolated linearly [32] is different from that used by

Craievich et al. [25] and by Wentzcovitch and Cohen [31].

All transformation paths employed in this work may be

described by a single parameter, p. Here we give only a short

characterization of these paths; a detailed description is

given in Ref. [32].

The tetragonal transformation path, also called the

Bain deformation path, is generally considered to be the

simplest continuous path between the bcc and fcc lattices

in elemental solids. Starting from the bcc lattice and

selecting the [001] direction as the c-axis, this path

corresponds to the continuous change of the c/a ratio,

where a is the lattice parameter in the [100] and [010]

directions. The volume per atom is usually constant

along the path. The parameter p is equal to the c/a ratio

and, in the case of an elemental solid p ¼ l for the bcc

lattice and p ¼
ffiffi

2
p

for the fcc lattice, represented as a

body-centered tetragonal (bct) lattice with lattice par-

ameters c and a. As a result of this transformation, the

(100) plane in the bcc lattice becomes the (110) plane of

the fcc lattice.

Starting from the bcc lattice, the trigonal path

corresponds to the uniaxial deformation along the [111]

axis while keeping the atomic volume fixed. In the case

of an elemental solid this path connects three cubic

structures, namely the bcc, simple cubic (sc) and fcc

structures, and the parameter p of the path is defined to

be again the c/a ratio where c is the length of a line

segment in the lattice along the [111] direction and a is

the length of a line segment measured along any

perpendicular direction. Again, we set p ¼ 1 for the

bcc structure; then p ¼ 2 for sc and p ¼ 4 for fcc

structures. The ð1�10Þ plane remains the plane of the same

type in all three structures during this transformation.

The hexagonal transformation path connects, in the case

of elemental solids, the bcc and hcp lattices and it differs

qualitatively from the other two paths since it does not

correspond to a homogeneous deformation. Instead, it is a

combination of a homogeneous deformation that preserves

the atomic volume, with a shuffling of alternate close-

packed atomic planes in opposite directions. We interpolate

linearly between the bcc and hcp structures in the directions

½�110� and [001] and the shuffling is linearly coupled to the

magnitude of straining in these directions. Therefore, we

can use only a single parameter to describe this transform-

ation path. Let us note that our path avoids the high-energy

configurations that are encountered if only a shuffling or

only a lattice deformation is applied, and is close to the

minimum-energy path at constant volume. In our notation,

p ¼ 1 corresponds to the bcc lattice and p ¼
ffiffi

2
p

to the hcp

lattice with ideal c/a ratio equal to
ffiffiffiffi

8=3
p

: All other structures

encountered along this path are orthorhombic. During the

transformation the (110) plane of the bcc lattice becomes the

(0001) plane of the hcp lattice. The bcc lattice is contracted

along the [001] direction that converts into the ½10�10�

direction in the hexagonal lattice, and extended along the

½�110� direction which converts into ½�12�10� hcp direction.

The exact relations characterizing this path are given in

Ref. [32].
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3. Results and discussion

3.1. Tetragonal path

The total energy profiles along the tetragonal defor-

mation path at experimental atomic volumes are shown in

Fig. 1. In the region between the bcc and fcc structures, they

are quite similar to those presented in Ref. [24]. However,

we show the total energy profiles for a much wider interval

of deformations and encounter three energy extrema along

this path. Two of them, shown also in Ref. [24], correspond

to the bcc ( p ¼ 1) and fcc ðp ¼
ffiffi

2
p

Þ structures and are

dictated by the higher symmetry of these structures (all other

structures along this path are tetragonal). The third

extremum is located in the range of p .
ffiffi

2
p

for Nb, Mo.

Ta and W and of p , 1 for Al and Cu. It is imposed by the

energy increase when some atoms in the crystal move very

close to each other under the deformation. For Cu, a very

shallow minimum is located around p ¼ 0:92; which is also

found in some previous works [12,16,33]. The bcc phase in

Al and Cu and the fcc phase in Nb, Mo, Ta and W are

unstable with respect to tetragonal deformation. The bct

phase corresponding to the local minimum which is not

dictated by the symmetry may be unstable. This has been

discussed for the bct Cu phase in a recent paper [16]. Those

authors found an energy decrease path which can bring the

bct Cu phase to a lower energy body-centered orthorhombic

phase.

We also investigated the minimum energy profiles along

the tetragonal transformation path, where we relax the

atomic volume to find the minimum total energy for each p

(i.e. the c/a ratio) along the path. In Fig. 2, we present the

contour plot and the total energy profile along the minimum-

energy path in Cu. The LDA calculations underestimate the

equilibrium atomic volume for fcc Cu. Actually, we obtain a

lattice constant of 3.52 Å for fcc Cu instead of an

experimental value of 3.61 Å. Fig. 2b indicates that, for

Cu, the total energy profile along the minimum-energy path

is very similar to the constant-volume profile shown in

Fig. 1, except that the energy difference between the bcc and

fcc structures in the minimum-energy path is about 11 meV/

atom greater than in the case of the constant (experimental)

Fig. 1. Total energy per atom as a function of p along the tetragonal transformation path at the experimental atomic volume. Here E0 is the total

energy of the ground-state structure.
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volume. Fig. 2 shows that the total energy as a function of

volume and tetragonal deformation exhibits two minima

(the ground-state fcc structure and the bct structure at

p ¼ 0:92) and a saddle point at p ¼ 1 corresponding to the

unstable bcc structure.

Our test calculations demonstrate that also in other metals

studied here the total energy profiles along the minimum-

energy path do not differ too much from those at (constant)

experimental volume, similarly as in the case of Cu.

3.2. Trigonal path

In Fig. 3, we present the total energy profiles of

studied metals along the trigonal transformation path. We

can see that there are five extrema along the deformation

path for Nb, Mo, and W, and three extrema for Al, Cu

and Ta. As it is discussed above (Section 2), there exist

three higher-symmetry structures along this path, i.e. bcc

ðp ¼ 1Þ; sc ðp ¼ 2Þ and fcc ðp ¼ 4Þ; and the energy

extrema at these points are dictated by symmetry. In all

cases, the sc structure corresponds to an energy

maximum. For Nb, Mo and W, there exist two additional

minima around the fcc structure. These local minima not

corresponding to higher-symmetry structures have also

been reported in previous works [26,33,34]. They are a

direct consequence of the local maximum of total energy

at the fcc and sc structures. In contrast to that, fcc Ta is

stable against the trigonal deformation. This difference

between fcc Ta and fcc Nb, Mo, and W is associated

with the d-electron occupation and their density of states

(DOS) at the Fermi energy. Actually, we find that the fcc

Ta structure becomes unstable under pressures (for

example V ¼ 0.8 Veq), similar to those for Nb, Mo and

W with the experimental atomic volumes. This is

because pressures increase the electron occupation in

the d band, and thus also change the DOS at the Fermi

energy.

Again, if we allow the atomic volume to relax for each p

(i.e. the c/a ratio) along the trigonal path, we find that the

minimum energy profile has a similar feature as a constant-

volume one. In Fig. 4, we present the contour plot and the

minimum energy profile of Nb. We can see again that this

profile is very similar to that given in Fig. 3, providing the

same physical conclusions. Fcc and sc Nb correspond to a

saddle point in Fig. 4a and are locally unstable with respect

to trigonal deformation.

3.3. Hexagonal path

The results for Al, Ti, Nb, Mo, Ta and W along the

hexagonal path are displayed in Fig. 5. Here we present the

energy profile of Ti instead of Cu because Ti has a ground

state of hcp. We see three energy extrema along this path.

Two of them are dictated by the higher-symmetry structures

(bcc at p ¼ 1 and hcp at p ¼
ffiffi

2
p

). Although hcp Al does not

correspond to the ground state, it has a lower energy than the

bcc phase and represents the lowest energy state along the

path. We can see that all higher-energy phases (bcc Al and

Ti, fcc Nb, Mo, Ta and W) are unstable. The third extremum

(not dictated by symmetry) appears along the path similarly

as in the case of the tetragonal path. Our results show that

the orthorhombic Cu and Ti corresponding to the local

minimum at p , 1 in the hexagonal path have a lower

energy than the bct Cu and Ti corresponding to the local

minimum in the tetragonal path (Fig. 1). Fig. 6 shows the

total energy results for Ti along the tetragonal and

hexagonal paths. Also Cu in the orthorhombic structure

has a lower energy than the bct structure; this is consistent

with the finding by Jona and Marcus [16]. The orthorhombic

structure of Ti corresponding to the local minimum in the

hexagonal path is different from that one found by Vohra

and Spencer in their high-pressure experiments [37] because

in our case the orthorhombic structure is a distorted bcc

structure, rather than a distorted hcp structure. In contrast,

Fig. 2. (a) Total energy of Cu as a function of p and volume along the tetragonal transformation path. V0 is the experimental atomic volume. The

thick solid line indicates the minimum-energy path. (b) The total energy profile along the minimum-energy path shown by the thick solid line in (a).
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Fig. 4. (a) Total energy of Nb as a function of p and volume along the trigonal transformation path. V0 is the experimental atomic volume. The thick

solid line indicates the minimum energy path. (b) The total energy profile along the minimum-energy path shown by the thick solid line in (a).

Fig. 3. Total energy per atom as a function of p along the trigonal transformation path at the experimental atomic volume. Here E0 represents the

total energy of the ground-state structure.
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we find that for Al, Nb, Mo, Ta and W the bct structure has a

lower energy than the orthorhombic structure.

Let us note here that the energy profiles along the

tetragonal and hexagonal path are very similar as the bcc

structure is transformed into a close-packed structure (fcc

or hcp) in both cases. The total energy difference between

the hcp and fcc structures is quite small in all cases

studied.

3.4. Elastic properties of higher-energy phases

Wills et al. [38] pointed out that the values of shear

tetragonal modulus C0 ¼ (C11 2 C12)/2 for 5d cubic metals

is roughly proportional to the absolute value of structural

energy difference Ebcc 2 Efcc. Subsequently, Craievich et al.

[24] presented total energy profiles along the tetragonal

(Bain’s) deformation paths for all cubic 3d, 4d and 5d

metals; from their fig. 1 (as well as from our Fig. 1) one can

clearly see the above mentioned relation. It turns out that for

all cubic 3d, 4d and 5d transition metals, if the ground state

has the bcc structure, then the fcc structure is dynamically

(mechanically) unstable with respect to tetragonal defor-

mation (i.e. C0 , 0), and if the ground state exhibits the fcc

structure, then the bcc structure is dynamically unstable with

respect to tetragonal deformation.

Fig. 5. Total energy per atom as a function of p along the hexagonal transformation path at the experimental atomic volume. Here E0 is the total

energy of the ground-state structure (except for Al where it represents the lowest energy along the path).

Fig. 6. Total energy as a function of p along the tetragonal and

hexagonal transformation paths for Ti at the experimental atomic

volume. E0 is the total energy of hcp Ti.
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In addition, as pointed out by Grimvall [39], large and

positive values of C0 for either the bcc or fcc structure

strongly correlate with the large and negative C0 for the

other structure. This relation is documented in Ref. [39] for

cubic 5d metals and may be also seen in our data below.

Grimvall [39] also discusses the behavior of trigonal shear

modulus C44 in that series.

In Table 1, we present the values of elastic constants C0

and C44 for all metals studied in this paper, i.e. for Al, Ti,

Nb, Mo, Cu, Ta and W. We can see that all unstable

structures of cubic metals exhibit C0 , 0 and, in addition to

that, fcc Nb, Mo and W are dynamically unstable with

respect to trigonal deformation (C44 , 0). As stated by

Grimvall [39], C44 , 0 implies a more severe instability

than C0 , 0 as the lattice is unstable under more

deformation modes. This may be a reason why fcc Nb,

Mo and W were not observed yet, whereas, for example, bcc

Cu (with C0 , 0 and C44 . 0, Table 1) may be stabilized by

external constrains at grain boundaries [33,48] or as a thin

film on some substrates [1–8], as discussed below. In case

of Ti, the fcc structure is quite close to the hcp ground state

structure (Efcc 2 Ehcp ¼ 51 meV/atom) and is stable with

respect to tetragonal and trigonal deformation (C0 . 0,

C44 . 0; Fig. 6). On the other hand, bcc Ti is dynamically

unstable with respect to tetragonal deformation.

Grimvall [39,40] concludes that when either the bcc or

fcc structure is dynamically unstable, there are large

discrepancies between the semiempirical enthalpy differ-

ences Hbcc 2 Hfcc obtained from the CALPHAD method

and ab initio results. However, as we can see from the above

discussion, this is the case of most transition metals. In the

ab initio calculation, the dynamical instability is suppressed

as we assume a rigid lattice (which, in reality, might be

stabilized by some external constraints), and the energy and

enthalpy of such a structure have a well defined physical

meaning. However, in our opinion, it is still not clear how

such values may be compared with those obtained from

semiempirical CALPHAD method.

3.5. Stability of higher-energy phases in pseudomorphic

films

As mentioned in Section 1, some higher-energy phases

can be stabilized experimentally in pseudomorphic films.

Sometimes the films have a nearly ideal cubic structure. For

example, Cu{001} films on Fe{001}/Ag{001} were found

to have a nearly perfect bcc structure [7] and a slightly

distorted bcc Cu structure was observed in Cu/Nb multi-

layered films [8]. However, as shown in this work and in

Refs. [24,26], free-standing higher-energy phases are

unstable. Previous studies [24,42,43] argued that the entropy

contribution to the free energy are responsible for the

stability of (free-standing) higher-energy phases at high

temperatures. However, the existence of higher-energy

phases in pseudomorphic films cannot be explained by

this mechanism because the phases are usually observed at

low temperatures, such as at room temperature. Now the

problem is how we can understand the stability of higher-

energy phases occurring in pseudomorphic films.

Heteroepitaxial growth is extremely complicated

because both thermodynamics and kinetics play a role

here [44–46]. Heteroepitaxial films or multilayers also are

not usually in their equilibrium state. However, for some

cases, such as bcc Cu precipitates in a bcc Fe matrix [47] and

the bcc Cu phase in certain Cu grain boundaries [48],

thermodynamics may play a key role. In the following we

will discuss the stability of higher-energy phases in

pseudomorphic films from the point of view of thermodyn-

amics. Assuming a bcc Cu film on the Fe{001} substrate, we

can see that the bcc Cu which is dynamically (mechanically)

unstable with respect to tetragonal deformation (C0 , 0) can

be stabilized by the substrate epitaxial constraint. Let us

note that C44 of the bcc Cu exhibits a positive value of

Table 1

Elastic constants C0 and C44 for the elements studied in this paper are determined from the curves in Figs. 1 and 3. The experimental values

(exp.) are compiled from Ref. [41]

Element structure at 0 K bcc C 0 (GPa) bcc C44 (GPa) fcc C 0 (GPa) fcc C44 (GPa)

Al fcc Calc. 216 46 25 39

Exp. 26 31

Ti hcp Calc. 215 39 20 50

Cu fcc Calc. 26 112 27 82

Exp. 23 76

Nb bcc Calc. 53 24 2152 257

Exp. 56 29

Mo bcc Calc. 132 120 288 27

Exp. 157 109

Ta bcc Calc. 61 73 2102 19

Exp. 52 85

W bcc Calc. 173 152 2142 260

Exp. 163 163
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112 GPa ([33], Table 1). We will show below how the

substrate prevents the instability corresponding to sliding of

bcc Cu {110} atomic planes (this instability is due to the

negative C0 of bcc Cu).

Let us suppose that we have a supercell with n Cu

atoms and n Fe atoms, which is used to simulate a bcc Cu

film on the bcc Fe {001} substrate (Usually in a supercell

model a certain thickness of the substrate material is used

to simulate the substrate. Since the substrate is usually

assumed sufficiently thick or infinite we may take the

substrate thicker than the film. In the present example we

assume that the substrate has a same thickness of the film).

The total energy of such a supercell (per atom) can be

roughly described as (ECu þ EFe)/2, where ECu and EFe are

the total energies (per atom) of bcc Cu (having an

experimental atomic volume of bcc Fe) and of bcc Fe,

respectively. The approximated total energies for the

supercell, as well the total energies of bcc Cu and bcc

Fe, are presented in Fig. 7. The difference between a real

supercell calculation and (ECu þ EFe)/2 is the surface

energy plus the interface energy. For Fe we take its

ferromagnetic (FM) state because FM bcc Fe is stable with

respect to the tetragonal distortion, whereas its nonmag-

netic state is unstable along this path [49]. We also employ

the LDA exchange-correlation functional for ferromagnetic

Fe in our calculations. Although it is well known that LDA

can predict a wrong ground state of Fe [50], the present

stability analysis is not affected by employing the LDA

exchange–correlation functional because both LDA and

GGA give a similar dependence of total energy on the

deformation in the neighborhood of the bcc phase along the

tetragonal path [49].

From Fig. 7 it is very clear that the complex system of the

film and the substrate, modeled by a supercell, is stable and

has a positive value of C0. In this example we do not invoke

any contributions from the surface and interface. Actually,

experiments [8] have also shown that the bcc Cu phase can

be stabilized in the Cu/Nb multilayered system. This

indicates that the film free surface is not necessary in

order to stabilize the bcc Cu phase. Therefore, we argue that

the stability of higher-energy phases in pseudomorphic films

is due to the bulk stability of the substrate material.

However, by this argument we do not mean that a film

(including a unstable higher-energy phase) can always be

stabilized by any stable substrate, and that surface and

interface effects can be underestimated. Actually, in order to

stabilize a film including a unstable higher-energy phase, a

coherent film has to be formed, which is determined by the

geometric factors and properties of both substrate and film

materials, such as the free enthalpies of the substrate

surface, the film surface and the interface between the film

and the substrate.

The constraint mechanism is compatible with the

experimental observation [8] that for thicker films the

higher-energy phase transforms back to the ground state.

For a thick film, the layers far away from the interface tend

to have equilibrium bulk lattice constants of the film

material at its ground state. We can consider this as a driving

force to drive a thick film back to its ground state. This

driving force becomes stronger and stronger with increasing

film thickness. Therefore, a sufficiently thick film will have

the ground state structure.

4. Summary

We have performed full-potential first-principles elec-

tronic structure calculations for some simple and transition

metals along the tetragonal, trigonal and hexagonal

transformation paths. We find that there are some energy

extrema in the total energy profiles which are not dictated by

the symmetry. However, a higher-symmetry structure

encountered along the transformation paths always corre-

sponds to an extremum of the total energy. The higher-

energy phases, such as bcc Al, Cu and Ti and fcc Nb, Mo, Ta

and W, are found to be unstable. In contrast, some higher-

energy phases are observed experimentally in pseudo-

morphic films. We also have explained the stability of these

higher-energy phases in pseudomorphic films in terms of the

epitaxial constraint of the substrate.
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[49] M. Friák, M. Šob, V. Vitek, Ab initio calculation of phase

boundaries in iron along the bcc–fcc transformation path and

magnetism of iron overlayers, Phys. Rev. B 63 (2001) 052405-

1–052405-4.

[50] C.S. Wang, B.M. Klein, H. Krakauer, Theory of magnetic and

structural ordering in iron, Phys. Rev. Lett. 54 (1985)

1852–1855.

L.G. Wang et al. / Journal of Physics and Chemistry of Solids 64 (2003) 863–872872


	Instability of higher-energy phases in simple and transition metals
	Introduction
	Theoretical approach and calculation details
	The calculation method
	Phase transformation paths

	Results and discussion
	Tetragonal path
	Trigonal path
	Hexagonal path
	Elastic properties of higher-energy phases
	Stability of higher-energy phases in pseudomorphic films

	Summary
	Acknowledgements
	References


