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Properties of some exotic five-particle systems
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The stability of a number of exotic systems consisting ofN55 unit charge particles is investigated using the
stochastic variational method. Several interesting exotic molecules are found to be stable. The properties of the
most intriguing systems consisting of two electrons and two positrons~e.g.,e1PsH or Li1Ps2) are investigated
in great detail.
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I. INTRODUCTION

The chemical binding of systems of charged particles
known to depend crucially on the mass of the particles. T
structures of (p,e2,e2), (p,p,e2), and (e1,e1,e2) are
very different and some other combination of these partic
e.g., (p,e1,e2) are unbound. The bound states of small m
ecules formed by heavy multiply charged nuclear centers
a small number of electrons are well known. Much less
known about the possible stability/existence of syste
formed by particles of unit charge~e.g., e2,e1,m2,p,d,t,
etc.! although the stability of three- and four-particle syste
for different mass ratios of the constituents has been inve
gated@1–3#.

The simplest examples of these exotic systems are
positronium ion (e1,e2,e2) ~predicted by Wheeler@4#, ex-
perimentally observed by Mills@5#!, the Ps2 molecule
(e1,e1,e2,e2) ~predicted by Hylleraas and Ore@6#, not ob-
served yet in nature!, or the PsH system~predicted in Ref.
@6# and indirectly observed in Ref.@7#!. These systems hav
been extensively studied by various theoretical method
the last few years@8#.

Most recently, thee1PsH system formed by attaching
positron to PsH has been shown to be electronically sta
@9#. The existence of these small systems raises the que
as to whether~similarly to molecules! larger stable system
containing positrons can also be formed. One can
whether a system ofm electronsn positrons@for example, an
(3e2,3e1) system# is bound or whether a positron, a pos
tronium, a Ps2 ion or a Ps2 molecule can attach itself to a
atom or molecule.

Other examples of Coulombic systems where the bind
mechanism is very different from that of atoms or molecu
are the positronic atoms~atoms forming a bound state with
positron, e.g., Lie1; or positronium LiPs! and the excitonic
complexes~systems of electrons and holes in semicond
tors!. The positronic atoms have been subject of intens
theoretical studies in the last few years@10–18#. These atoms
have not been experimentally observed yet, although p
sible experimental protocols have been discussed@19#. How-
ever, there is experimental evidence for the existence of
citonic complexes@20–23#.

The prediction of the stability of Coulombic few-bod
systems requires very sophisticated calculations. The d
1050-2947/2001/64~3!/032501~10!/$20.00 64 0325
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culty can largely be attributed to the fact that the correlatio
between like and opposite charges are quite different du
the attractive and repulsive interaction. Another factor wh
plays a crucial role in the binding mechanism is the Pa
principle. For systems with identical particles the antisy
metry requirement seriously restricts phase space acces
to the the particles by not allowing the energetically mo
favorable configurations. The small binding energies of th
loosely bound systems require very accurate calculations

The present study is based on the stochastic variatio
method@24,25#. Correlated Gaussian functions are used
the basis because their matrix elements are readily avail
for N-particle systems. This variational approach gives
fairly accurate variational upper bound for the energies of
few-particle systems studied here.

In Sec. II the stochastic variational method is introduc
and the basis functions used in the different calculations
described. A number of different five-particle systems a
investigated in the Sec. III. The last section summarizes
results and discusses possibilities for further research.

II. THE STOCHASTIC VARIATIONAL METHOD

All calculations reported in this work used the stochas
variational method~SVM! or a variant of this method. In the
SVM, the wave function is approximated by a linear com
nation of correlated Gaussians

C5(
i 51

K

cif~Ai ,x!, ~1!

f~A,x!5A$e2(1/2)x†AxxSMS
%, ~2!

where x5(x1 , . . . ,xN21) is a set of relative coordinates
xSMS

is the spin function, andA is a matrix of nonlinear
variational parameters with

x†Ax5 (
i , j 51

(N21)

Ai j xi•xj . ~3!

andA is an antisymmetrizer. The wave function is antisym
metrized for each group of identical particles. If a five pa
ticle system, for example, consists of two pairs of identi
©2001 The American Physical Society01-1
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particles and a third kind of particle~e.g., ap1p1e2e2m1

system!, then the wave function is antisymmetrized for t
indentical pairs~for the two protons and for the two elec
trons!. Sometimes we want to elucidate the role of the Pa
principle in the binding mechanism by introducing a fic
tious particle ‘‘x’’ which has the same mass and charge as
electron, for example, but is a ‘‘distinguishable form of it
In such case there is no antisymmetrization betweenx and
the electrons. The energy difference between the two c
~i.e., when the particlex is distinguishable and when it i
identical! shows the effect of the antisymmetrization.

The above ansatz leads to a generalized eigenvalue p
lem. The upper bound of the ground state energy and
linear coefficients are obtained by matrix diagonalizatio
The correlated Gaussians offer computational advanta
fast analytical evaluation of the matrix elements and go
approximation to various wave functions. They also ha
well-known drawbacks such as their slow convergen
~compared to exponential functions! and the fact that they do
not satisfy the cusp condition.

The Hamiltonian of this Coulombic system is written a

H52(
i 51

N
\2

2mi
¹ i

21(
i , j

N
qiqj

ur i2r j u
. ~4!

The particles are assumed to have unit charges, that isuqi u
51. We use atomic units so the energy is measured in H
tree H (5mee

4/\2) and the length is measured in units
the Bohr radius (a5\2/mee

2) (me is the mass of the elec
tron!.

The accuracy of these variational calculations strongly
pends on the optimization of the nonlinear parameters.
number of parameters to be optimized is usually very la
even for a relatively small system. Conventional determin
tic optimization methods require many repeated diagonal
tions and recalculation of matrix elements and may not fi
the global energy minimum due to the presence of lo
minima.

Our procedure is a stochastic parameter search w
does not get trapped in local minima. To avoid rediagon
ization of large nonsparse matrices, only one basis func
is changed at a time. That also restricts the number of n
linear parameters optimized at the same time to those
f(Ai ,x). The quadratic form in the exponent of the corr
lated Gaussian can be written in an equivalent form

x†Ax5(
k, l

N

akl~r k2r l !
2, ~5!

where r i are the positions of the particles anda i j can be
expressed byAi j and vice versa. The advantage of this no
tion is that it explicitly connects the nonlinear parametersa i j
to the pair correlation between particlei and j. The r k2r l
relative distances do not form a linearly independent se
coordinates and therefore one can choose some of thea i j to
be negative~provided thatA remains positive definite an
hence the wave function square integrable!. We did not find
any obvious advantage in allowing negative values ofa i j
and restricted the calculations for positivea i j .
03250
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The stochastic variational method systematically i
proves the correlation functions between the particles
testing different randoma i j sets and choosing the one whic
gives the lowest energy. In the first stage a basis is c
structed by adding one randomly selected new basis stat
the basis. In the next stage these basis states are cycli
reoptimized by replacing the previous parameters by a n
better random set. This process is repeated until the en
and wave function are deemed to be sufficiently accurate

The method has been tested on a number of many-b
problems of different areas of physics and it has been pro
to be highly accurate and reliable@25#. A comprehensive
description can be found in Ref.@25#.

This variational trial function works very well for variou
systems. In some systems such as in molecules, the pa
densities are very tightly localized at large distances. Gau
ian trial functions are not sufficiently flexible to describ
these systems compactly. The functionse(21/2)a i j (r i2r j )

2
peak

at r i5r j and a huge basis is needed to approximate v
tightly localized density distributions of the nuclear cente
dramatically slowing down the convergence of the wa
function. To avoid that problem the following trial functio
may be used, viz

f~A,x!5A$uvu2ke2(1/2)x†AxxSMS
%, ~6!

with

v5 (
i 51

N21

uixi . ~7!

This function is a special case of the ‘‘global vector rep
sentation’’@26# for zero angular momentum. The linear com
bination coefficientsui and the power ofv are new varia-
tional parameters. The ability of the SVM to obtain ve
accurate binding energies can be seen from Table I wh
SVM energies are compared with state of the art calculati
for a number of few body systems. The difficulties of usi
simple correlated Gaussians in nonadiabatic molecular ca
lations has been noted elsewhere and remedies similar to
adopted here have been proposed@27#. The above formula-
tion works well for two-center molecules such as H2 or LiH,
but it is considerable less efficient for three-center syst
such as H3

1 . We have included the nonadiabatic energy
H3

1 obtained by this basis in Table I. To our best knowled
there is no other nonadiabatic calculation reported in the
erature. The convergence for that system is very slow

TABLE I. Energy of Coulombic few-body systems~in atomic
units!. The mass of the proton is assumed to be infinite in PsH
it is taken as 1836.1527me in H2.

System SVM Basis size Other method

PsH 20.789196553 1200 20.7891967147@29#

H2 21.164023731 100 21.164025023@27#

Ps2 20.516003778 1200 20.516001@30#

H3
1 21.3185 500
1-2
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PROPERTIES OF SOME EXOTIC FIVE-PARTICLE SYSTEMS PHYSICAL REVIEW A64 032501
our result may not be very accurate. The mass ratio in
case is 1/1836 and the Born-Oppenheimer approach is
tainly the method of choice for such systems. The correla
Gaussians provide very accurate solution up to about 1
mass ratio and the systems considered in this work are w
this limit.

For systems with more than 5 or 6 particles, the SV
becomes very time consuming and it becomes desirabl
approximate the Hamiltonian by assuming a inert core
larger atoms. For example, the Li1Ps2 system consists o
four electrons, two positrons, and the nucleus. While a fu
ab initio calculation was able to establish the electronic s
bility of this system@9#, the time consuming nature of th
calculation prevented the continuation of the calculation
get an accurate estimate of the binding energy. The fixed
variant of the SVM was introduced to permit calculations
complex atomic systems by treating the core and vale
electrons differently@14,15#. The tightly bound core electron
orbitals are obtained from a Hartree-Fock calculation and
only used to compute the effective potential for the valen
electrons.

III. RESULTS OF CALCULATIONS

In this section we denote a heavy charged particle of
bitrary mass by the symbolM 1 or M 2. Light particles are
denoted bym1 or m2. When the particle corresponds to
known particle~e.g., protons, electrons, muons, and their
tiparticles! the symbol for the particle is used.

A. „m¿,m¿,m¿,mÀ,mÀ
…

The first set of calculations investigated the system c
sisting of five equal mass particles. No evidence of bind
could be found for systems consisting of four positive~nega-
tive! charges and one negative~positive! charge.

For the system consisting of three positive charges
two negative charges the ability to bind depended on whe
the systems consisted of bosons or fermions. For a sys
consisting of three positively charged fermions and t
negatively charged fermions, no evidence of binding w
seen. The constraints imposed by the Pauli principle ac
prevent the system from binding. For example, the fi
particle system consisting of three electrons and two p
trons does not have a bound state.

However, if the third positive particle is distinguishab
from the other two, then the system can form a bound st
We refer to such a system as ‘‘bosonic’’ since all the partic
are effectively distinguishable once the spin projections
taken into consideration. An example of a five-particle s
tem of distinguishable particles is the (e2,e2,e1,e1,x) sys-
tem, wherex is a fictitious particle which has the same ma
as the electron but is distinguishable from both the elect
and the positron. The energies of a number of equal m
boson and fermion system~with mass equal tome) are listed
in Table II. The Ps2 ion and Ps2 are well known examples o
such systems.

In Table II the energies of the bosonic and fermionic s
tems are equal up toN54. In the bosonic case the particle
03250
is
er-
d
0
in

to
r

y
-

o
re

e

re
e

r-

-

-
g

d
er
m

s
to
-
i-

e.
s
e
-

s
n
ss

-

are considered to be spinless and the spatial part of the w
function is asymmetric in the coordinates of the identic
particles. In the fermionic case we have considered parti
with half spin. The lowest energy state turns out to be
state where the spin of the pairs of identical particles
coupled to zero. In this state the spin part of the wave fu
tion is antisymmetric and the space part has to be symme
Therefore both the bosonic and fermionic system have s
metric spatial part and their ground state energies are eq

The bound systems consisting of five distinguishable p
ticles of equal mass may not seem to be of any pract
importance because there are no such system in the
world. This stability, however, often survives when mass
of the constituents are changed. For example, when the
tinguishable particle in the (e2,e2,e1,e1,x) system is a
proton the system still is stable. This system~which is dis-
cussed later! is an example of a physical system predicted
the presented calculations that can be formed~although it
would obviously be a very difficult experiment to prove i
existence!.

B. „M¿,M¿,M¿,mÀ,mÀ
…

The most well-known stable Coulombic five particle sy
tem is the H3

1 molecule. The three protons form an equila
eral triangle and share the two electrons, the system is st
for s5m/M'0. The previous section has shown that t
equal mass (m1,m1,m1,m2,m2)(s51) system with three
identical particles is not bound. In an earlier study@28# an
attempt was made to find the mass ratio where the stabilit
lost. It has been found that the system is bound provided
the positively charged particles are at least five times hea
than the negative one (0,s5m/M,0.2). Beyond this mass
ratio, the system dissociates into a (M 1,M 1,m2,m2) sys-
tem plus M 1. Another possible dissociation channel
(M 1,M 1,m2) plus (M 1,m2). The energy of this channe
312 is always higher than that of the 411.

This shows that the H3
1 molecule would remain stable

even if the protons were be much lighter. A system of th
holes and two electrons in semiconductors might be a r
istic example of this case. The system consisting of th
protons and two negatively charged muons, i.
(p1,p1,p1,m2,m2) can be mentioned as an exotic examp
where s,0.2 ~see Table III!. The mass ratio between th
muon and the proton is abouts50.11 which is much larger
than that in the hydrogen atom (s50.0005). The energy o
the proton-muon atom is292.92 a.u. and the averag

TABLE II. Energies ofN-particle systems of unit charges an
equal masses. The total charge is 0 and 1 forN even and odd,
respectively. Atomic units are used.

N Fermion Boson

2 20.250000 20.250000
3 20.26200 20.26200
4 20.516004 20.516004
5 no bound state 20.556489
1-3
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TABLE III. Energies and other properties of selected exotic five particle systems~in atomic units!. The notationr ab
2 stands for the

expectation value of the square distance between particle ‘‘a’’ and ‘‘ b.’’ The energies of the relevant thresholds are also included.mp

51836.1527me , md53670.4827me , mt55496.92158me , mm25206.76826me), h5^T&/^2V&.

Category System Threshold Category System Threshold
B (p1,p1,p1,m2,m2) (p1,p1,m2,m2)

E 2203.10453 2199.63069
h 0.999984 0.999998

r p1p1
2 4.2831024 1.4731024

r m2m2
2 2.9331024 2.3531024

r p1m2
2 3.3231024 1.3531024

C (p1,p1,e2,e2,m1) (p1,p1,e2,e2)

E 21.296583 21.164023
h 0.999741 0.999989

r p1p1
2 3.86 2.26

r e2e2
2 5.63 5.92

r p1m1
2 4.15

r e2m1
2 4.48

r p1e2
2 3.77 3.22

D (p1,m1,m1,e2,e2) (p1,m1,e2,e2)

E 21.271788 21.149679
h 0.999833 0.999614

r m1m1
2 4.62

r e2e2
2 5.73 6.04

r p1m1
2 4.05 2.36

r e2m1
2 3.95 3.28

r p1e2
2 3.76 3.89

D (p1,e1,e1,e2,e2) (p,e1,e2,e2)

E 20.8099127 20.788865
h 1.0000029 0.999991

r p1e1
2 31.917 16.2709

r p1e2
2 7.493 7.8242

r e2e2
2 15.166 15.8941

r e1e1
2 65.682

r e1e2
2 33.808 15.5927

D (d1,e1,e1,e2,e2) (d,e1,e2,e2)
03250
E 20.81007844 20.7890280
h 1.0000017 0.9999915

r p1e1
2 31.906 16.2621

r p1e2
2 7.487 7.8183

r e2e2
2 15.157 15.8839

r e1e1
2 65.674

r e1e2
2 33.800 15.5881

E (p1,p1,e2,e2,m2) (p1,p1,m2,e2)

E 2102.750286 2102.723336
h 0.99999887 1.000000012

r p1m2
2 1.8131024 1.8131024

r e2e2
2 23.4847

r p1e2
2 11.0676 3.0011

r p1p1
2 2.8931024 2.8931024

r e2m2
2 11.0676 3.0011

E (d1,t1,m2,e2,e2) (d1,t1,m2,e2)

E 2111.889612 2111.864106
h 1.0000135 1.00000034

r t1m2
2 1.2631024 1.2631024

r d1m2
2 1.3731024 1.3731024

r t1e2
2 9.8831 2.9965

r d1e2
2 9.8831 2.9965

r e2m2
2 9.8831 2.9965

r e2e2
2 21.1378

r t1d1
2 1.9331024 1.9331024

G (p1,p1,p2,e2,e2) (p1,p1,p2,e2)

E 2481.605173 2481.580324
h 1.0000016 1.00000029

r p1p1
2 2.7631025 2.7631025

r e2e2
2 21.382

r p1e2
2 9.9285 2.995

r p1p2
2 1.4331025 1.4331025

r p2e2
2 9.9285 2.995
is

sti-
square distance between the proton and muonr p1m2
2 is 8.6

31025 atomic unit. The molecule formed by two proton
muon atoms is deeply bound just like the hydrogen molecu
@any (M 1,M 81,m2,m2) system is bound irrespective of the
M /M 8 ratio if m,M ,M 8#. The binding energy divided by
the reduced mass of the proton-muon atom is 0.07
(p1,p1,m2,m2) and 0.02 in (p1,p1,p1,m2,m2). The cor-
responding ratios of H2 and H3

1 are 0.16 and 0.18, that is the
(p1,p1,p1m2,m2) much more loosely bound than the H3

1 .
That is also clear by comparing the average square distan
-
le

in

ces

between the protons in Table III. In (p1,p1,p1m2,m2) the
protons are further away from each other so the system
more loosely bound and by increasings it will dissociate.
The energy of the (p1,p1,m2) ion is 2102.22 a.u., cor-
roborating the fact that the energy of the 312 dissociation
channel is higher than that of the 411.

C. „p¿,p¿,eÀ,eÀ,mx¿…

In this example the properties of the system are inve
gated as mass of one of heavy particle in H3

1 is changed.
1-4



n

a
H
s
s

r
h
th
o
-
e

ul

y

e
is

o

of

the
e of
ost

ted

a.u.
ant

ely
ron

a.u.
e

on
n-
-
ery

l be

d
s in
e

ng

e he

PROPERTIES OF SOME EXOTIC FIVE-PARTICLE SYSTEMS PHYSICAL REVIEW A64 032501
Figure 1 shows how the total energy varies withs
5me/mx . The total energy rapidly decreases toward the
energy of the H2 threshold. The system becomes unbou
aroundmx /me52.5. This result shows that a H2 molecule
can bind a positively charged particle provided that it is
least 2.5 times heavier than an electron. So while the2
cannot bind a positron it forms a bound system with a po
tive muonm1 ~see Table III!. The properties of this system i
fairly similar to that of H3

1 . In H3
1 the three protons form an

equilateral triangle, here the two protons and the muon fo
an isosceles triangle where the two protons are somew
closer to each other than to the muon. Correspondingly,
electrons are slightly closer to the protons that to the mu
By decreasing mass of thex1 the distance between the pro
tons andx1 increases and the electrons remain localiz
around the protons. Eventually beyondmx1 /me252.5 the
system dissociates into H2 plus x1.

The investigation of the general (M 1,M 1,m2,m2,m81)
case would be too tedious but one can expect similar res
The system is bound form8'M but the stability is lost
somewhere when the mass ofm8 approaches tom.

D. „M¿,mx¿,mx¿,eÀ,eÀ
…

Starting again from H3
1 changing the mass of two heav

particles at the same time~or alternatively, by adding two
positive charges to H2), yet an other stable system th
(M 1,mx1,mx1,e2,e2) can be created. This system can d
sociate into 411 @(M 1,mx1,e2,e2)1mx1 and
(mx1,mx1,e2,e2)1M 1] and 312 @(M 1,mx1,e2)
1(mx1,e2) and (M 1,e2)1(mx1,mx1,e2)] subsystems.
Figure 2 shows the binding energies as a function
me /mx,1. Fixing the mass of the heavy particle~M! to be
equal to the mass of the protonM 151836.1527me and as-
suming thatme,mx the 411 threshold is the lowest~rel-
evant!. Examples for bound systems (p1,m1,m1,e2,e2)
~Table III! or (p1,e1,e1,e2,e2). This latter system will be

FIG. 1. Energy of (p1,p1,e2,e2,mx1) as a function of
me /mx . The dots shows the mass ratios where the energies w
calculated. The horizontal line marks the H2 threshold. Atomic units
are used.
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investigated in detail later. Table III shows that the energy
(p1,m1,m1,e2,e2), just like that of (p1,p1,m1,e2,e2) is
the previous example, is close to that of H3

1 . The proton and
the muon are likely to form an isosceles triangle but now
like particles are further away from each other so the bas
the triangle is longer than the sides in this case. The m
important difference is that by changing theme /mx ratio
between 0 and 1 this system remains bound.

E. „M¿,M¿,eÀ,eÀ,mxÀ…

Another Coulombic five-body system which has attrac
attention is the H2

2 ion. This ion is not bound, but the H-H2

potential energy curve has an attractive part beyond 3.5
This leads to speculation about the possibility of reson
states of this system. The fact that the H2

2 is not bound is a
consequence of the Pauli principle. Adding a negativ
charged particlex2 which has the same mass as the elect
~but is distinguishable from it! to the hydrogen molecule
gives a bound system. Its binding energy is about 0.096
The x2 particle can cling to the H2 molecule because th
Pauli principle does not constrain its motion.

Figure 3 shows the dependence of the binding energy
the mass ratiome /mx . The threshold in this case is the e
ergy of the (M 1,M 1,e2,mx2) four-body system. The calcu
lation is not trivial because the energy and structure v
strongly depends on themx /M mass ratio. Formx /M'0 we
practically have a hydrogen molecule. In the case ofmx /M
'1, the (M 1,M 1,mx2) system forms a Ps1-ion-like sys-
tem. Due to the heavy masses the size of this system wil
very small compared to that of Ps1 and this small
(M 1,M 1,mx2) system will act as a positive charge an
binds the electron. The distances between the particle
(M 1,M 1,mx2) will be very small compared to the distanc
between the center of mass of (M 1,M 1,mx2) and the elec-
tron. This system can bind one more electron formi
(M 1,M 1,mx2,e2,e2), which is akin to H2. One can take

re
FIG. 2. Energy of (M 1,mx1,mx1,e2,e2) as a function of

me /mx ~solid line!. The dashed line shows the energy of t
(M 1,mx1,e2,e2) threshold. Atomic units are used.
1-5
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m2 in place ofx2. The (p1,p1,m2) system is bound, and
as the present calculation shows the (p1,p1,e1,m2) and the
(p1,p1,e2,e2,m2) systems are also bound. These syste
remain bound even if the masses of the heavy particles
slightly differ, that is the (M1

1 ,M2
1 ,e2,e2,mx2) system also

bound roughly for 1/3,M1 /M2,1.
The accurate calculation of the stability domain for fo

different masses would be very difficult. This last examp
shows that a (t,d,m2) molecule can bind one or two elec
trons~Table III!. The average distances in Table III show th
both the (p1,p1,m2,e2,e2) and the (t1,d1,m2,e2,e2)
system can be considered as a@(p1,p1,m2),e2,e2# and a
@(t1,d1,m2),e2,e2# three body system. The (p1,p1,m2)
and ions form a tiny center and act as a positive charge.
us take the example of (p1,p1,m2). Its energy is
2102.2202 a.u. The square distance between the two pr
is 2.8931024 a.u. the square distance between the pro
and muon is 1.8131024. By adding one or two electron
these distances do not change so the (p1,p1,m2) subsystem
remains unchanged. The binding energies of
(p1,p1,m2,e2) and the (p1,p1,m2,e2,e2) systems are
0.50 a.u. and 0.027 a.u. just like that of the H atom a
H2 ion.

F. „M¿,MÀ,m¿,mÀ,mx¿…

The next system considered is (M 1,M 2,m1,m2,mx1).
The four-body system (M 1,M 2,m1,m2) is akin to the
hydrogen-antihydrogen system and it is known to be
bound if the mass ratiom/M is smaller than 0.45. If the mas
ratio m/M is small, the two heavy particle of opposi
charges form a small neutral particle and the ion formed
the m1, m2, and mx1 particle will not be able to form a
bound five-body system with it.

G. „M¿,M¿,MÀ,mÀ,mÀ
…

This system can be characterized by a single mass
s5m/M . If m,M then the dissociation threshold is th
energy of the (M 1,M 1,M 2,m2) system. The energy o
(M 1,M 1,M 2,m2) as a function of sigma is shown in Fig
4. The (M 1,M 1,M 2,m2,m2) system is bound with respec
to this threshold~see Fig. 5!. The (p1,p1,p2,e2,e2) sys-
tem would be an example for this case~see Table III!. This
example shows that a hydrogen molecule is capable to
an antiproton forming a system similar to H2. If m.M then
the relevant dissociation threshold is given by the energy
(M 1,M 1,m2,m2). The (M 1,M 1,M 2,m2,m2) system is
bound in the 1,m/M,2 interval ~see Fig. 6!.

There is a very interesting difference between these
cases. In the first cases is between 0 and 1. For smalls
values the three heavyM particles form a small positive
chargec1 and that composite particle binds the two ligth
charges forming (c1,m2,m2). The size of the composite
particle is small and it behaves as a single structureless p
tive charge. The mechanism and the system is very simila
H2. In the second case 1/s varies between 0 and 1. Here
the limiting case where 1/s50 one has two heavym2 par-
ticles and a composite positive chargeC1 formed by
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(M 1,M 1,M 2). This composite particle, however, cannot
viewed as structureless in the presence of the heavierm2

particles. Energetically it is more favorable to form
(M 1,m2)1(M 1,m2) molecule than a (C1,m2,m2) sys-
tem so the binding is lost somewhere between 1/s51 and
1/s50.

H. „e¿,e¿,eÀ,eÀ,mx¿…

The previous examples started from systems with t
heavy positive and two light negative charges. The other
of the mass spectrum where one has two light positive
two light negative charges was also investigated. In this c
the two negative particles were electrons and the two p
tive particles were positrons. The sign of the charge ofmx is
not important in this case. For the calculations reported
this section the extra charged particlemx1 is assumed to be
distinguishable from the electron and the positron.

The five-body binding energy versus theme /mx ratio is
shown in Fig. 7. When the system has a mass ratio satisf
mx.me , the lowest energy threshold is the energy of t
(mx1,e2,e2,e1)1e1 dissociation channel. This system
bound for all mass ratios such thatmx.me and the binding
energy of the five-particle system is seen to increase w
increasingmx .

When the mass of the distinguishable particle is ligh
than that of the electron, i.e.,mx,me , the threshold energy
is the energy of Ps21mx1. The binding energy decrease
steadily asmx is decreased. The system is no longer capa
of forming a five-particle bound state whenmx50.563me .
The structure of the (e1,e1,e2,e2,mx1) system increas-
ingly resembles the structure of a system best describe
mx1Ps2 as themx→0.56me dissociation limit is approached

These systems are electronically stable but annihila
between electron-positron pairs is possible. The most lik
annihilation process is the 2g process which results in twog
rays being emitted. The matrix element for this process
proportional to the probability of finding an electron and
positron at the same position in a spin singlet state@see Eq.
~21! in Ref. @15##. The annihilation rate for the 2g decay
summed over all possible final states@31–33# is

G54pca4a0
2Ne^CuÔsd~re2r p!uC&. ~8!

The symbols in front of the integral sign represent the us
quantities in atomic physics,c is the speed of light,a is the
fine structure constant. The operatorÔs is a projection op-
erator that selects spin-0 combinations of the electron
the positron. There and r p vectors are the positions of a
electron and a positron.

I. The e¿PsH system.

The e1PsH system (p,e2,e2,e1,e1) corresponds to a
model with mx5mp and it is clear from Fig. 7 that this
system is bound. The system is stable against dissocia
into the H1Ps1, p1Ps2, or the PsH1e1 channels. The
lowest threshold is the energy of the PsH1e1 channel
~20.789197 a.u.! ande1PsH is bound by 0.021050 Hartre
1-6
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with respect to this threshold. Thee1PsH system has bee
investigated more carefully since it represents the simp
stable coulombic system that can be formed with two po
trons ~apart from Ps2 and the antimatter analogues of PsH!.

Some of the properties ofe1PsH are listed in Table IV. It
is intriguing to compare the relative distances between
particles in PsH ande1PsH. The electron-nucleus o
electron-electron relative distances are almost the same in
two systems and indicates that the electron charge distr
tion is not altered by the addition of the second positron. T
would suggest that the second positron is likely to be fou
at comparatively large distances from the nucleus since
additional positron located outside the electronic cha
cloud could not have much effect on the electron cha
distributions. This is confirmed by the fact that the avera
nucleus-positron distance ofe1PsH is larger than that o
PsH. Furthermore, the annihilation rate ofe1PsH,
2.743109 s21 is only 10% larger than the PsH annihilatio
rate. This is also consistent with a model consisting of
additional positron orbiting the PsH subsystem at a relativ
large distance from the nucleus.

J. The Li¿Ps2 and Na¿Ps2 systems

The stability of the (e1,e1,e2,e2,mx1) system for such
a wide variety ofmx suggests that other singly charged o
jects could also bind two electrons and two positrons. T
lithium cation, Li1 can substitute formx and it has been
previously shown that this system can form an electronic
stable complex@9,13#. This system is denoted as Li1Ps2
since this seems to give the best intuitive description of
structure@13#.

Although the Li1Ps2 system consists of seven particles
triply charged nucleus, four electrons and two positrons,
all practical purposes the system is best described as a
particle system. Two of the electrons are tightly bound to
Li31 nucleus~with binding energies of about 100 eV! and

FIG. 3. Binding energy of (p1,p1,e2,e2,mx2) as a function of
me /mx . Atomic units are used.
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therefore to a good approximation the Li1 core can be re-
garded as a single entity.

Calculations for the Li1Ps2 system have been performe
within the fixed core SVM. Although a fullyab initio seven
particle calculation has been carried out upon the Li1Ps2
system, the calculation was extremely tedious and the w
function was far from converged@9,13#. The fixed core SVM
model with only five active particles was able to generat
model energy that was much closer to convergence.
present results represent a continuation of the calculation
ported in Ref.@13# and the details of the model Hamiltonia
were unchanged. The basis dimension has been enlarged
further optimization of the energy was carried out. The
sults of this improved calculation are presented in Table
The binding energy only changed by 2% and other expe

FIG. 4. Energy of (M 1,M 1,M 2,m2) as a function ofm/M for
m,M . Atomic units are used. The figure corresponds tom5me ,
the energy unit should be multiplied bym/me for other choice ofm.

FIG. 5. Binding energy of (M 1,M 1,M 2,m2,m2) as a function
of m/M for m,M . Atomic units are used andm5me is assumed.
See the caption of Fig. 4 as well.
1-7
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tion values were similarly unaffected. The present res
should be regarded as superseding earlier values.

The interparticle expectation values listed in Table IV ju
tify the usage of Li1Ps2 to denote this system. All of the
expectation values are within 5% of the expectation value
the Ps2 ground state.

The lithium atom is not the only alkali atom that can bin
two positrons and an additional electrons. The next obvi
candidate is sodium and it has previously been shown
the system best described as Na1Ps2 is electronically stable
@13# with a binding energy of about 0.0057 Hartree. Wh
this binding energy was sufficiently large to clearly indica
binding, the wave function was far from converged. On
again, the results reported in Table IV for Na1Ps2 represent a
continuation of the calculations reported in Ref.@13#. Al-
though the binding energy of Na1Ps2 has increased by al
most 10% to 0.0063 Hartree, most of the expectation va
have hardly changed from the values reported in Ref.@13#.
The interparticle radial expectation values listed in Table
agree with those of Ps2 to within 2% and confirm that the
best intuitive description is as a Ps2 molecule bound to the
Na1 core.

The electronic and positronic structure of Li1Ps2 and
Na1Ps2 and the existence of what appears to be a Ps2 sub-
system can explained in terms of energetics and the struc
of the (e1,e1,e2,e2,mx1) system. When the mass ofmx1

is changed, one effectively changes the binding energy of
(mx1,e2) subsystem. Systems with smallmx1 are character-
ized by a well defined Ps2 subsystem since the mass sca
interaction potential between themx1 and thee2 is not
strong enough to disrupt the Ps2 subsystem. In Table IV
results are presented formx150.7me . The (0.7me1,e2)
subsystem has a binding energy of 0.20588 Hartree. S
the binding energy of the (0.7me1,e2) subsystem is roughly
similar to the binding energies of the (Li1,e2) ~0.198 Har-
tree! and (Na1,e2) ~0.188 Hartree! alkali atoms it can be

FIG. 6. Energy of (M 1,M 1,M 2,m2,m2) as a function of
m/M for m.M ~solid line!. The dashed line shows the energy
the (M 1,M 1,m2,m2) threshold. Atomic units are used an
m5me is assumed. See the caption of Fig. 4 as well.
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regarded as an analogue of an alkali atom. An earlier w
on the simpler (mx1,e2,e1) system was able to explain pos
itron binding to group I and IB atoms by using the energy
the (mx1,e2) subsystem as the characteristic variable@34#.
The structure of the (0.7me1,e1,e1,e2,e2) system shows
obvious similarities to Na1Ps2 and Li1Ps2 and the binding
energy and annihilation rate of the (0.7me1,e1,e1,e2,e2)
system are close to that of Li1Ps2. Also the interparticle
expectation values generally lie within 5% of Li1Ps2 and
Na1Ps2.

However, whenmx1 increases, the Ps2 cluster undergoes
obvious distortions. The (1.0me1,e1,e1,e2,e2) system has
an annihilation rate that is 25% smaller than that of Ps2. In
addition,^r e2e2& has gotten smaller as the the electrons ha
started to approachmx1. There has been an increase
^r e1e1& and^r e1e2& for the larger value ofmx1. In the lim-
iting case,mx15`, the system collapses to a positron orb
ing PsH.

The crucial mass ratio of (e1,e1,e2,e2,mx1) occurs
whenmx50.563me . This corresponds to an energy for th
(mx1,e2) subsystem of 0.1795 Hartree. Since the heav
alkali atoms~K, Rb, Cs! all have binding energies smalle
than this, one is lead to the conclusion that Ps2 binding to the
heavier alkali ions cannot be guaranteed.

K. Miscellaneous systems

Systems of unit charge particles have been considere
far. One can extend this study for atoms or molecules c
sisting multiple charged heavy centers. Other examples
five-body Coulomb systems consist of the lithium hydri
cation, LiH1 and positronic lithiume1Li @10#. The stability
of these systems with the two different mass extremes~i.e.,
e1 to p) suggests stability for all possible masses in b
tween; therefore the systemm1Li is probably stable.

FIG. 7. Energy of (mx1,m1,m1,m2,m2) ~solid line!. The hori-
zontal line shows the energy of the Ps2 atom, the dashed line is th
energy of the (mx1,m1,m2,m2) threshold. Atomic units are use
andm5me is assumed.
1-8
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TABLE IV. Properties of the family of systems consisting of (e1,e1,e2,e2) and another positive singly
charged object (x1). The basis size is denoted byK. All quantities are given in atomic units. Properties
PsH and Ps2 are shown for the sake of comparison. The masses of the proton, and Li and Na nucl
assumed to be infinite.

Property e1PsH` Li1Ps2 Na1Ps2 mx5me mx50.7me PsH` Ps2

K 850 660 780 600 400 1000 1000
^V&/^T& 1.999980 1.999938 1.999999 1.999999
E 20.810247 20.529408 20.522319 20.556489 20.528733 20.789197 20.516004
« 0.021050 0.013404 0.006315 0.040485 0.012129
^r x1e2& 2.281 6.458 7.772 4.987 7.344 2.312
^r x1e1& 4.944 7.397 8.486 6.598 8.371 3.662
^r e2e2& 3.507 5.871 5.977 5.482 5.767 3.575 6.033
^r e1e1& 7.382 6.261 6.158 6.599 6.295 6.033
^r e1e2& 4.966 4.706 4.648 4.965 4.765 3.480 4.487
G 2.744 3.881 4.044 3.247 3.717 2.470 4.470
ie
te
e

ef

b
a

pl
s
is
t b

es
q
te
th
a
y

he
s
rg

dia
le
e
-
riz
re
m
cl

c
bo

d
tw

ne

res-

ging

ro-
ven

y

ns
sly.

ns
.
es

he
ed to
tem
re-

x-

-

nt

.
e
5-
n-
IV. SUMMARY

Several intriguing few-particle systems have been stud
in this paper. Some of these calculations may help to
other techniques, since the calculation of the binding en
gies of these exotic systems is a stringent test of the
ciency and accuracy of any few-body approach.

There are a large variety of systems that can be formed
five unit charge particles. To calculate the stability domain
a function of the masses of particles would be quite com
cated task. We have tried to highlight a few different pos
bilities in this paper. The first, rather trivial observation
that the total charge of a bound five particle system mus
61, that is, we did not find any bound system with (1,2,
2,2,2) charges. Another simple rule is that if the particl
are distinguishable and their masses are equal or nearly e
then they form a bound system. The main forces to de
mine the stability domains are the Pauli principle and
mass ratios. The Pauli principle severely restricts the av
able configuration space so for example a five particle s
tem formed by (m1,m1,m1,m2,m2)-like indistinguishable
particles is unbound and the stability domain of t
(M 1,M 1,M 1,m2,m2)-type systems is very limited. Thi
latter system is only stable if the mass difference is so la
that the three slowly moving positive charges can be a
batically treated, that is they are practically distinguishab

Another group of stable combinations can be defin
when three charges, e.g., (1,1,2), form a charged compos
ite particle, and the two remaining particles does not pola
or disturb this subsystem. In this case we have a quasi th
particle system and the stability of this system follows fro
the stability of the corresponding well studied three-parti
systems. Examples are the (p1,p1,p2), (p1,p1,m2), or
(t1,d1,m2) plus two lighter particle~e.g., electron! sys-
tems. These systems are all behave as the H2 ion and al-
though we treated them as five particle systems one
equivalently and accurately solve these cases as three-
problems. The region where the (1,1,2) system can be
considered as a structureless single charge very much
pends on the mass ratios of the constituents and the
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‘‘valence’’ particle in the five-body system. For example, o
cannot simplify the five-body system to a H2

1 or Ps1

5(e1,e1,e2)-like three-body system because the (1,1,
2) subsystem will not behave as a point charge in the p
ence of heavier particles.

A group of stable systems can be generated by chan
the mass of some of the constituent of the H3

1 ion. This
system remains stable, for example, if the mass of two p
tons is continuously decreased till their mass is equal or e
a little lighter then the electron mass. So just like the H2 and
Ps2, the H3

1 and (p1e1,e1,e2,e2) can also be connected b
a changing the mass of two positive charges.

The present results for the systems with two positro
represent an improvement on those calculated previou
The fact that the~e1,e1,e2,e2,mx1) system is not stable
for mx,0.563me has implications for the binding of Ps2 to
the alkali cations. The ability of the heavier alkali catio
~i.e., K1, Rb1, and Cs1) to bind Ps2 is by no means certain

There is a very strong interest in excitonic complex
~systems of electrons and holes! in semiconductors. The
main motivation of this research is that light emitted by t
electron-hole recombinations in these systems can be us
make better lasers, photodiodes, etc. Some of the sys
studied in this paper may have direct relevance to that
search. The predicted bound state of (PsHe1) and
(M 1,mx1,mx1,e2,e2) , for example, suggests that a bie
citon ~bound state of two electrons and two holes! can form
a bound state with a donor~a single fixed positive charge
present in some semiconductors!. Similar example is a sys
tem of two electrons and three holes (e,e,h,h,h) or possible
a (e,e,h,h,h8) system where one of the hole is differe
from the other two.
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