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SUMMARY

In this report, we present the status of our computational modeling study
of ternary system of Molybdenum, Silicon and Boron over a wide range of
temperature. We have used Monte Carlo simulation technique to predict
the mechanical and thermal properties of these materials. The required to-
tal energy of the sample is computed by using a tight-binding (TB) method
that allows us to significantly increase the size of the computational data
base without reducing the accuracy of the calculations. The Slater-Koster
hopping parameters are directly computed from results of full-potential lin-
ear muffin-tin orbital (FP-LMTO) calculations through a modified McMahan
and Klepeis’s approach[1, 2]. The site energies, crystal-field corrections and
repulsive potential are fitted in various physical models. The combination
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of the methods mentioned above creates an effective approach to the com-
putation of the physical properties of the transition-metal compounds and
it can be extended to alloys with more than two components. At present,
we have obtained excellent agreement with experiment for Mo and Mo Sili-
cides, especially Mo3Si. The third component of the ternary system, Boron,
is currently under our current investigation.

1 Introduction

Founded by the classic work of Slater and Koster half a century ago[3], the
tight-binding method (TB) has experienced a renewed popularity in recent
literatures. Although the early TB methods were introduced mainly as an
interpolation scheme, their modern decendents have been used to compute
electronic structures to achieve roughly the same order of accuracy as the
more sophisticated self-consistent first-principles electronic methods. The
success of TB is not only due to its apparent advantage of theoretical simpilic-
ity and numerical efficiency, but also because it is a method that uses the
direct real-space (as opposed to k-space) approach, and thus it has a wide
range of applications in problems that lack perfect crystalline symmetries
(e.g., defects, impurities, surfaces and interfaces).

Despite the overwhelming success in modeling of single elements[4], re-
cent progress of TB method has not yield fruitful results on intermetallic
alloy compounds. Papaconstantopoulos et.al. has tabulated TB parameters
for a few alloy systems[5], however, we have not heard any success in using
these parameters in molecular dynamics or Monte Carlo simulations at the
time being. The scarece of TB parameters for compound materials is due to
the following difficulties: First, the traditional means to obtain parameters is
to fit the TB energy bands to those obtained either from first principles theo-
retic calculations or from the experiments. The numerical fitting procedure,
which performs the standard nonlinear minimization on the merit function,
works well only when the number of independent parameters is relatively
small. But a typical binary compound material requires over 300 indepen-
dent parameters. To fit so many parameters simultaneously is prohibitively
tedious, and the merit function can easily be trapped into local minimums,
resulting in unphysical TB parameters that produce TB bands bearing little
resemblance to the original ones. In addition, for simulations of thermo-
dynamic properties (such as entropy, free energy and chemical potentials)
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of different solids and liquids, it is highly demanding that the parameters
be transferable. However, parameters obtained through fitting lack physical
meanings, therefore, their validity are usually limited to the same crystal
structure as they are originally fitted for.

In this report, we present an implementation of TB method that over-
comes most of the difficulties described in the above. In this scheme, we
followed the method of McMahan and Klepeis[1, 2] to extract all hopping
TB parameters directly from the Hamiltonian and overlap matrices com-
puted by first-principles full-potential linear muffin-tin orbital (FP-LMTO)
method[6, 7], avoiding the difficulties of fitting procedure. Additional calibra-
tion of energy is performed to improve the transferability of the parameters.
The idea of obtaining TB parameters directly from first-principles calculation
dates back to Andersen et. al.[8], and has been continued by other groups[9].
The first serious application of this method on intermetallic materials was
done by Djajaputra[7] for Ni Aluminides. Our work can be viewed as an ex-
tension to his work in further extracting two-center SK parameters, as well
as incorporating other energy parameters, such as on-site and repulsive po-
tential, to form a representation for the total energy and subsequently using
them in Monte Carlo (MC) simulation. Our on-site parameters were obtained
through numerical fittings, which is quite different from McMahan’s original
scheme. We feel this way preserves the physical meanings of these parame-
ters, making them easier to transfer to other structures. Since the fitting is
done for one angular momentum at a time, there is not too much of numer-
ical burden. Finally, we augmented the TB band energy with an additional
repulsive potential part. We used an embedded atom method (EAM) scheme
and superposition of contracted atomic density approximation to faciliate the
fitting of repulsive energy parameters.

We choose the ternary system of Mo, Si and B as our example materials,
because they are currently being developed for high temperature (> 1000oC)
structural applications[10]. In the processing of these materials, it is critical
to be able to predict phase development under varying thermodynamic con-
ditions, with variations in composition. The technique we metioned above
will allow us to treat a unit cell of very large size, i.e., with a very large num-
ber of independently behaving atoms. This will allow us conveniently and
accurately to predict effects of variation in stoichiometry and of additives.
In the present report we first deal with modeling of Mo and Si, with special
interest in the modeling of Mo3Si (cubic A15, see Fig.1). The parameters
used in Mo3Si are demonstrated to be transferable to other Mo Silicides. The

3



Mo

Si

Figure 1: The cubic A15 structure for Mo3Si: The Mo atoms (black circles)
form lines bi-secting the cubic surfaces, and Si atoms (white circles) occupy
the bcc lattice.

inclusion of the third component, Boron, are left for our future work.
In the following sections, we shall first present a detailed description of

the method in Sec.2, then the tests of accuracy and transferability in Sec.3,
followed by Monte Carlo simulation results in Sec.4, and the future plan in
Sec.5.

2 Methodology

As usual, we separate the total energy into TB band energy part and a short
range repulsive potential part.

Etot = Eband + Erep. (1)

The above separation of total energy involves some arbitrariness. In some TB
total energy schemes (notably Papaconstantopoulos et.al.[13]), the repulsive
potential is entirely absorbed by the band energy as a chemical potential
shift. While this treatment simplifies the problem by reducing the number
of parameters to be fitted, it ultmately obscures the physical meaning of TB
parameters. For example, the TB energy is no longer purely attractive in
this model, and the parameters will have to be able to represent both short
range repulsion and long range attraction. Considering these shortcomings,
we shall keep both terms in our formulation. The arbitrariness of the energy
separation will be partially remedied later in the procedure of caliberation of
the band energy.
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2.1 The Band Energy

In the so called non-orthogonal TB model, one computes the Hamiltonian
and overlap matrices H and S, and solves the generalized eigen problem:

(H − εiS)ψi = 0. (2)

The band energy is obtained by summing the energy eigenvalues up to the
chemical potential weighted by Fermi function

Eband =
∑

εi<εF

εif(εi). (3)

Slater and Koster used the two center approximation to express the
Hamiltonian and overlap matrix elements as linear combination of a set of
parameters known as SK parameters[3]. For example, a hopping (R 6= 0)
Hamiltonian matrix element may be written as (here we used the McMa-
han’s convention[1])

〈0lm|H|Rl′m′〉 =
∑

µ

gµ(lm, l′m′, R̂)tll′µ(R), (4)

where gµs are the linear coefficients that depend on the geometric alignment
of the involving atomic orbitals, and tll′µs are the SK parameters that depend
only on interatomic distance R.

The inverse problem, namely to determine SK parameters out from given
Hamiltonian and overlap matrices, has been considered by McMahan and
Klepeis[1, 2]. They found an orthogonality relations among the gµs to invert
Eq.(4):

tll′µ(R) = (2 − δµσ)−1
∑

m,m′

gµ(lm, l
′m′, R̂)〈0lm|H|Rl′m′〉. (5)

Thus, the procedure of obtaining SK hopping parameters is made straight-
forward: We first computed the k-space Hamiltonian and overlap matrices
for the material using our accurate FP-LMTO[6] method. The matrices were
then anti-Fourier transformed into the real space. The above steps have been
nicely discribed in detail by Djajaputra[7]. Following Eq.(5), the hopping TB
parameters for this particular structure are then obtained.

The above procedure differs from traditional fitting efforts in that all
parameters for this structure is uniquely determined. It is emphasized in
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the original paper that the set of parameters so obtained may not be the
most accurate parameters, but is the best possible within the two center
approximation, therefore, good transferability is hinted. For intermetallic
compounds such as the one we are interested in, the number of parameters is
too large to be fitted simultaneously via traditional means. Therefore, this
procedure is preferable in its efficiency. In addition, since we are interested in
an overall accurate total energy, we can sacrafice the accuracy of individual
terms for better transferability.

The hopping parameters t(R) obtained at one volume have values at
discrete set of R points corresponding to the interatomic distances for that
specific structure. More values at additional R points may be obtained by
varying the volume in the FP-LMTO calculation. Note, however, that the SK
TB parametrization assumes that the underlying basis orbitals remain fixed
as the lattice volume or structure is changed. This is not always possible since
by nature the FP-LMTO calculation finds the optimal set of orbitals that
minimize the density functional. In the original paper of McMahan et. al.[1],
a unitary rotation was performed on both Hamiltonian and overlap matrices
to ensure a perfectly transferable overlap. Issues of non-transferability was
relegated to the Hamiltonian. In our practice, however, we found that if
the volume is not varied too much (by less than ±17%) and if we restrict
the muffin-tin radius to be fixed at all volume calculations, the same overlap
functions s(R) share a pretty much the same shape (see Fig.2). Therefore,
no unitary rotation is needed. This is partly because we have used only one-
kappa for each orbital considered, and that most characteristic information
of the orbitals is contained in the muffin-tin region, which is fixed in size. The
changing interstitial area, being a small fraction of the total volume, often
sees smooth density and potential and becomes less important in affecting
the Hamiltonian and overlap matrices. It should be noted that in a typical
FP-LMTO calculation, the muffin-tin radius is a variational parameter and
should be varied to find the minimum energy. Here, we emphasize on the
transferability of the parameters; we leave any deviation from the accurate
band energy to be absorbed by the repulsive potential.

Unlike the case of overlap functions, noticeable differences exist among
the same Hamiltonian parameters t(R) obtained at different volumes (see
Fig.3). It seems that the Hamiltonian parameters depend on the shell number
as well as distance. Similar phenominon can be seen in the ddσ plot in
Ref.1, as well as being reported in other TB implementations[14], where
the scheme of environment-dependent TB parameters that accounts for the
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Figure 2: The same overlap hopping parameters s(R) obtained at different
volumes.

shell dependence was elaborated. In our case, we found that the problem
is caused by the arbitrariness involved in the separation of total energy into
valence eigenvalue sum and remaining part in our FP-LMTO formulation.
Therefore, it is very important to caliberate the energy reference point for
the Hamiltonians before comparing them at different volumes. We chose the
energy reference to be the energy level for the inner most core electron (such
as e1s) because it is most unlikely to be affected by the bonding environment.
After calibration t(R) → t(R) − e1ss(R), the new Hamiltonian parameters
are plotted in Fig.3, where the improvement over Fig.2 is prominent.

We fit the overlap and caliberated Hamiltonian parameters into the fol-
lowing simple functional form:

t(R) = (a0 + a1R)e−a2R. (6)

Results are tabulated in Table 1. The rms percentage scatter about them is
5% or less considering 15 points at R < 10 Bohr (1Bohr=0.529Å). Compared
to the scatter of 20% and 32% for tldσ and tddσ reported in Ref.1, our (slightly
altered) procedure gives a significant improvement of transferability.

We now turn to the on-site (R = 0) parameters. In contrast to the case of
hopping parameters, Hamiltonian matrix of a single structure is not adequate
to determine all crystal-field parameters except for their certain fixed sums.
Ref.1 studied these sums as effective site energies and effective crystal-fields.
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Figure 3: The same Hamiltonian hopping parameters s(R) obtained at dif-
ferent volumes, before energy calibration.
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Figure 4: The same Hamiltonian hopping parameters s(R) obtained at dif-
ferent volumes, after energy calibration.
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Table 1: σ SK hopping parameters obtained for Mo3Si. (π and δ SK parame-
ters are available upon request.) All energies are in Rydberg (1Ryd.=13.6eV)
and all lengths are in Bohr (1Bohr=0.529Å).

type a0 a1 a2 type a0 a1 a2

tssσ Mo-Mo 9.132 1.972 0.463 sssσ Mo-Mo 2.191 -0.092 0.314
tspσ Mo-Mo -5.540 0.230 0.315 sspσ Mo-Mo -1.370 0.053 0.338
tsdσ Mo-Mo 3.205 -0.145 0.318 ssdσ Mo-Mo 0.595 -0.029 0.304
tssσ Mo-Si 5.871 2.738 0.483 sssσ Mo-Si 2.272 -0.081 0.336
tspσ Mo-Si -9.233 0.390 0.309 sspσ Mo-Si -1.821 0.075 0.314
tsdσ Mo-Si 5.705 -0.226 0.338 ssdσ Mo-Si 0.978 -0.044 0.318
tppσ Mo-Mo -1.546 -0.747 0.489 sppσ Mo-Mo -1.233 0.000 0.441
tpdσ Mo-Mo 2.158 -0.093 0.348 spdσ Mo-Mo 0.969 -0.000 0.484
tpsσ Mo-Si 5.175 -0.214 0.315 spsσ Mo-Si 1.487 -0.028 0.381
tppσ Mo-Si -4.607 0.197 0.309 sppσ Mo-Si -1.484 0.022 0.394
tpdσ Mo-Si 4.195 -0.087 0.401 spdσ Mo-Si 1.392 0.000 0.470
tddσ Mo-Mo 2.219 -0.114 0.383 sddσ Mo-Mo 0.726 -0.000 0.508
tdsσ Mo-Si 3.092 -0.129 0.329 sdsσ Mo-Si 0.721 -0.028 0.349
tdpσ Mo-Si -1.476 -0.964 0.515 sdpσ Mo-Si -0.704 0.031 0.340
tddσ Mo-Si 5.182 -0.000 0.495 sddσ Mo-Si 0.942 -0.033 0.440
tssσ Si-Si 10.750 -0.341 0.340 sssσ Si-Si 2.521 -0.000 0.397
tspσ Si-Si -6.612 -1.429 0.454 sspσ Si-Si -2.338 0.000 0.400
tsdσ Si-Si 5.586 -0.158 0.362 ssdσ Si-Si 1.510 -0.000 0.430
tppσ Si-Si -8.580 0.294 0.331 sppσ Si-Si -2.209 -0.000 0.404
tpdσ Si-Si 6.163 -0.116 0.387 spdσ Si-Si 1.697 -0.000 0.446
tddσ Si-Si 6.198 -0.000 0.462 sddσ Si-Si 1.839 -0.000 0.507

9



These effective parameters are still directly computable thus possessing the
virtue of being free from numerical fitting. However, being pure mathemati-
cal convenience, they lack the physical interpretation, therefore are structure
and volume dependent, i.e., non-transferable. For our purpose, we use alter-
native way of numerical fitting to find transferable on-site parameters.

To faciliate the fitting, we made a simplifying assumption that the crystal-
fields are just a bunch of delta functions situated at neighboring atomic sites.
This is equivalent to applying the averaged potentials of a neighboring site
to the smooth tails of the orbitals from the host site. Under this assumption,
the integration of potential acting on the wavefunctions can be easily carried
out, and the on-site matrix element now becomes:

elm = e0l +
∑

R6=0

h|ψlm(R)|2, (7)

where, the summation is over all neighboring atomic sites; e0
l is the on-

site energy, and h is the coefficient of the delta function or the averaged
potential. Both are to be fitted to the diagonal Hamiltonian matrix elements
(in real space). In addition, we parametrized the asymptotic behavior of
the wavefunction squares in the following form so that orbitals differ only in
magnetic number share a common radial part:

|ψl,m(R)|2 = (b0 + b1R)e−b2R|Y l
m(R̂)|2. (8)

These assumptions enable us to significantly reduce the number of parameters
that are needed in fitting while still retaining the physics of the directionality
of covalent bonds. The fitting can be done one at a time for each angular
momentum, and the results are tabulated in Table2. Note that parameter h
appearing in Eq.(7) is absorbed into the bs.

A few remarks are in order: First, in practice we used the set of real
combinations of Y l

ms that have the cubic symmetry. The two groups of Mo
d-orbitals resulting from cubic crystal field splitting are fitted individually
as though they possess different angular momenta. For Si, such treatment
is found to be unnecessary. Second, it should be noted that the calibration
of energy reference point mentioned earlier is of equal importance here. To
see this, we point out that according to Eq.(7), the volume dependence of
elm should become flat when volume (or interatomic distance) is large. How-
ever, without calibration, there is an additional dependence of elm on the
volume due to the shifting energy reference, which does not vanish at large
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Table 2: SK on-site parameters obtained for Mo3Si. All energies are in
Rydberg (1Ryd.=13.6eV) and all lengths are in Bohr.
l type e0

l b0 b1 b2
s Mo 6.270 2.729 -0.926 0.802
p Mo 3.649 -2.563 0.000 0.808
dyz Mo 6.016 -37.999 4.664 0.745
dx2−y2 Mo 6.080 -24.359 0.000 0.927
s Si 5.693 0.761 -0.340 0.675
p Si 6.117 -3.362 0.320 0.523
d Si 7.305 -2.463 0.000 0.370

volume, thus making fitting to the form Eq.(7) difficult. Finally, comparing
the exponential factor a2 in Table1 and the corresponding b2 in Table2, we
see approximately b2 ≈ 2a2, which hints that our fitted results for the orbital
tail square is consistent with the directly computed overlap SK parameters,
partially justify our simplifying assumptions.

2.2 The Repulsive Potential

The band energy accounts for the electronic interactions and is purely at-
tractive. To explain the bonding behavior, we need a repulsive potential
that includes the ion-ion repulsion and a correction for overcounting of the
electron-electron interaction. In addition, we have sacraficed some accuracy
for transferability in the modeling of band energy. The inclusion of the re-
pulsive potential will remedy this deficiency.

We implemented the repulsive potential using an EAM scheme, where
the repulsive energy is a sum of embedding energies that depend on the local
electron densities at all atomic sites:

Erep =
∑

R

f(ρ(R)). (9)

The functional form of the embedding function f is unknown, and is to be
determined by fitting. The electron density at site R is assumed to be a
linear superposition of contracted atomic densities orginated from all other
sites:

ρ(R) =
∑

R′ 6=R

ρ0(α|R′ − R|). (10)
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Figure 5: Spherically averged electron density for Mo (solid line) and Si
(dashed line).

In Eq.(10) the atomic density ρ0 can be obtained accurately by applying first
principles methods on an isolated atom. Fig.5 shows the spherically averaged
electron density for Mo and Si. The linear superposition of atomic densities
may deviate from the real density, however, due to the variational nature
of the density functional theory, the change of energy is of second order for
a first order change of density. α is a scaling factor for distance which is
set to be 1.2 in our calculation. The use of contracted density is motivated
by the fact that in the crystal enviroment the atomic density is distorted
by nearby atoms via electronic screening. It also reflects the requirement
that the repulsion should be shorter ranged than the attraction for a stable
bonding.

Once ρ(R) are computed, we fitted the embedding function f in Eq.(10)
to a fourth order polynomial:

f(x) = c0 + c1x+ c2x
2 + c3x

3 + c4x
4. (11)

The left hand side of Eq.(10) is taken to be the difference between the total
energy obtained with FP-LMTO (using four-kappa linked basis for each an-
gular momentum) and TB band energy computed using our SK parameters
obtained earlier, calculated at various volumes. In the FP-LMTO calcula-
tion, the 4p semicore electrons of Mo are treated as valence electrons in a
separate energy window (to be distinguished from 5p electrons).
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3 Tests of Parameters

In this section, we test our parameters for their accuracy and transferability.

3.1 Accuracy Tests

Since our main interest is to use these parameters in MC simulation, we
emphasize on the accuracy of overall total energy, not the individual con-
tributing parts. The testing procedure is to see how well our TB total energy
scheme can reproduce the results from accurate FP-LMTO calculations. For
this purpose, we used distorted structures that are not limited to the original
database when paramters are fitted or extracted. (Our original database only
consists of uniform expansion or contraction of the volume). The distortions
we considered fall into the following two categories.

The elastic distortions are those to obtain mechanic elastic constants.
They are intimately related to the accoustic excitations of the crystal. For
cubic struture, there are three independent elastic modula: c11, c12 and c44,
corresponding roughly to longitudenal, transverse and sheer modes. The
following three types of distortions are disigned to extract these modula[15]:
Type I: expanding in x and y direction by γ while compressing in z direction
by (1 + γ)−2 − 1, so that the volume is conserved; Type II: expanding all
directions by γ, i.e., the uniform expansion; Type III: changing the angle
between x and y axis by γ, and expanding in z direction by an amount that
conserves the volume. Fig.6 shows the comparison of our TB total energy
results and FP-LMTO results under these types of distortions.

The other class of distortions, which is more related to optical vibration
modes of the lattice, is to arbitrarily displace atoms out of their equilibrium
positions. To retain symmetry so as to faciliate FP-LMTO calculation, we
chose the following displacement: moving the nearest neighbor pair of Mo
atoms towards or apart by γ. This test is currently in progress.

3.2 Transferability Tests

The transferability, that parameters prepared for one structure or stoichiom-
etry are applicable to a other structures and stoichiometries, is an essential
property that is desirable for MC as well as other applications.

The transferability of the hopping SK parameters for Mo3Si over a range
of volumes and distortions for the cubic A15 structure has been discussed
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energy results (solid line) under elastic distortions. (The figure actually shows
only type I and II distortion tests. The type III test is currently in progress.
We expect to have updated figure soon.
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Figure 7: The comparison of two sets of parameters for Mo-Mo. The squares
are obtained for A15 Mo3Si, and the triangles are obtained for bcc Mo.

in the accuracy tests. Here we focus on transferability over the variation of
structure and stoichiometry. For this purpose, we independently developed
another set of parameters for Mo in α-Mo (bcc.). In preparing the second
set, we have carefully set parameters such as muffin-tin radius to be the same
value as the first set. The calibration is done in a similar way to make the two
sets comparable. The results are plotted in Fig.7. The agreement of the two
sets is excellent, indicating very good transferability for our Mo paramters.

The same transferability test for Si in Mo3Si and cubic diamond Si does
not yield the same excellent agreement. See Fig.8. Even for overlap pa-
rameters, the discrepancy goes up to about 40% (for tddσ). We note that
the nearest Si-Si distance is about 4.2Å in Mo3Si, but is only about 2.3Å in
diamond cubic Si; the change is about 46%. In contrast, the nearest Mo-
Mo distance is 4.6Å in Mo3Si and 4.2Å in α-Mo, only about 10% change.
We thus conclude that good transferability is limited to change in nearest
neighbor distance not more than 10%.

The transferability of on-site and EAM paramters are currently under our
investigation.
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4 Monte Carlo Simulation

Our accuracy and transferability tests build up our confidence in using these
parameters in MC simulation. As an example, we test to predict CTEs for
Mo3Si at various temperatures and compare them with experiment. Calcu-
lating CTEs using MC simulation presents a numerical challenge, because
the energy is near its minimum when lattice constants are sampled. This
implies that the lattice constant can fluctuate wildly without suffer of too
much energy penalty. Therefore, more data needs to be sampled before result
is converging.

The system simulated consists of 216 atoms (3×3×3 supercells). For each
MC step, we either randomly displace an randomly chozen atom or change
the lattice constant. The chance of these two operations are half and half.
We started 13 systems at temperatures ranging from 1200K through 2000K,
incremented by 100K, from the same initial configuration of perfect crystal
structure. Lattice constants were sampled at every 20 MC steps after the
system achieved thermal equilibrium (around 10,000 MC steps). 500 samples
were then averaged and their temperature dependence was plotted in Fig.9.
We see that for the specified temperature range, the material displays a fairly
good linear thermal expansion. The CTEs can be easily read off from the
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Figure 9: The averaged lattice constants at 13 temperature points. Data
obtained from MC simulation

figure.
To relate our theoretical work with experimental results, we have also

simulated Mo53Si system using the same set of parameters. Fig.10 shows
the sampled average lattice constants at 8 different temperature points The
data were compared with the TMA experimental results, which is conducted
on a Mo39Si system. Both results have been offset for comparison, and the
agreement is impressive. Since the parameters used in this calculation were
originally prepared for Mo3Si, it is another demonstration of good transfer-
ability. Note that the experiment curve has a few sharp peaks at temperature
around 900-1300oK. The ‘abnormal’ behavior within this temperature range
is believed to be associated with a phase transition, which is manifested in
Fig.11, where DTA data shows a transition between an energy-absorbing
state and an energy releasing state.

5 Future Work

We modified McMahan’s scheme of obtaining TB parameters directly from
FP-LMTO calculations, and developed a set of TB parameters for Mo Sili-
cides systems. Our parameters are accurate enough to compute various static
properties such as elastic constants, and reasonably transferable if the near
neighbor distance is varied by not more than 10%. We used these parameters
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Figure 10: Pluses: lattice constants of Mo53Si obtained by MC; solid curve:
(rescaled) linear sizes of Mo39Si obtained by experiment.

Figure 11: DTA data for the same material.
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in MC simulation to compute the CTEs of Mo3Si and Mo53Si. The result of
the latter material is in good agreement with our experiment findings. To
our knowledge, this work is the first TB molecular dynamics or MC modeling
of intermetallic compound materials.

Our future work list will include transferablility tests for the on-site TB
parameters as well as the repulsive EAM energies. The parameters of Boron
(B-B, B-Mo and B-Si) will be developed in a similar manner. Ultimately,
we want our parameters to be applicable in multi-phase, multi-component
computations, such as in the Grand Canonical Monte Carlo simulations to
predict the phase diagrams.
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