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An overview is presented of the analysis code SAMMY, used for evaluation
and analysis of time-of-flight cross section data in the resolved and unresolved
resonance regions. Included are brief descriptions of the methods used for generating
the theoretical cross sections (R-Matrix theory), for simulating the effect of
experimental conditions (such as Doppler- and resolution-broadening, multiple-
scattering corrections), and for fitting to the model parameters (Bayes’ equations).
Emphasis is placed on recent developments such as the inclusion of direct capture
contributions to the cross section, the use of an implicit data covariance technique for
including all experimental uncertainties, and the development of methodologies for
propagating other uncertainties inherent in the correction processes.
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1. Introduction

Analysis of neutron-induced cross section
data in the resolved resonance region requires
properly simulating all features of the
experiments which produced that data. The
underlying cross section must be described by
aphysically realistic model. Those theoretical
cross sections must then be modified to
include such real-world effects as finite
temperature and scattering within the sample.
Finally, a fitting procedure is used to
determine which values of the parameters
permit the calculated and suitably-modified
cross sections to agree with the measured
cross sections within experimental
uncertainties.

In this report, each of the three aspects of
the analysis procedure is described briefly
within the context of the author’s analysis
code SAMMY [1]. While much of this
material has appeared in other publications,
several new features are reported here,
including  methods for describing non-
compound effects (direct capture) and
interference effects involving the radiation
channels. Particular emphasis is placed on the

the fitting procedure, in an effort to encourage
the use of sophisticated techniques which
permit more accurate treatment of
uncertainties.

A brief description is also given of the
post-processing capabilities in SAMMY,
notably, the ability to provide complete
resonance parameter and covariance
information for the evaluated nuclear data

files.

2. Theoretical Cross Sections

Multilevel multi-channel R-matrix theory
[2] is the formalism of choice for treatment of
most cross sections in the resolved-resonance
energy region. Among the approximations
permitted, for example, in the evaluated
nuclear data files, are single-level and
multilevel Breit Wigner and Reich Moore.
SAMMY includes options to use any of these
three, but the recommended choice is Reich
Moore, which is a less-extreme approximation
than either of the Breit Wigner forms.
Frohner expressed it well [3],



“Experience has shown that with this
approximation [Reich Moore] all resonance
cross section data can be described in detail,
in the windows as well as in the peaks, even
the weirdest multilevel interference patterns ...
It works equally well for light, medium-mass
and heavy nuclei, fissile and nonfissile.”

Nevertheless, there are situations in which
the Reich Moore approximation is not
adequate.

(1) R-matrix theory describes compound
effects, in which the incident particle and the
target nucleus combine to form a compound
nucleus which then decays to give the
outgoing particle and residual nucleus. Some
physical phenomena are attributed to direct
effects, which therefore cannot be described
by R-matrix theory. One example of this is
low-energy capture in *’Cl [4].

In the case of *’Cl, the treatment of direct
capture was accomplished entirely external to
the SAMMY analysis. Recently, however, the
capability to include a direct capture
component within the analysis was added to
the SAMMY code. An estimate of the direct
capture cross section is made externally and
listed in tabular form for input to SAMMY;
the code will interpolate between the listed
energies as needed. Because the absolute
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Fig. 1. Capture cross section for "F.

Crosses represent the experimental data,
dashed curve is the R-matrix contribution,
longer dashes represent the direct capture
contribution, and the solid curve gives the
sum of the two.

magnitude of the model calculation for the
direct component cannot be well known, a
constant (energy-independent) coefficient
multiplying the direct component may be
adjusted during the analysis.

Preliminary results [5] from a new "F
analysis by Leal, with direct capture model
calculation by Arbanas, are shown in Fig. 1.
In this case the initial value for the coefficient
of the direct capture component was unity;
after analysis of total and capture data, the
value for this coefficient changed to 0.547
(well within the uncertainty of the direct
capture model calculation).  This value
provides a good fit to both capture and total
cross section measurements, including thermal
values.

(2) In certain compound nuclear states,
interference effects occur between particle and
capture channels [6]; examples are “C(a,y),
“N(p,y) , *Ne(p,y), and ?Ne(n,y). In such a
situation, the capture widths cannot be treated
in an average manner (as is the case in the
Reich Moore approximation); instead, at least
one gamma width must be treated explicitly,
on the same footing with particle widths.
Ideally this situation is represented by the full
(unapproximated) R-matrix. Nevertheless, it
is possible for a Reich-Moore implementation
(such as that in SAMMY) to be made to
mimic the full R-matrix with a high degree of
accuracy. This is accomplished by setting the
Reich-Moore capture width to a very small
(but non-zero) value, and defining one
reaction channel to be the true capture
channel.

A simple example of this is shown in Fig.
2, which compares the Reich-Moore
calculation with two pseudo-full-R-matrix
calculations for a fictitious nuclide. When the
reaction channel (gamma channel) and the
incident channel (neutron channel) have the
same sign, a large interference dip is observed
in the calculation. Parameter values used for
this example are given in Table 1.
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Fig. 2. Comparison of Reich-Moore with
full R-matrix when capture channel can
interfere with neutron channel. The solid
line is Reich Moore, the dot-dash line is
fake full R-matrix # 1, and the dashed line
is fake full R-matrix # 2. [See Table 1 for
details.] Clearly Reich-Moore is
inadequate to describe large interference
effects involving the capture channel.

Table 1. R-matrix parameter values used
to create Fig. 2.

Fy Fn Freaction
Energy (eV) (eV) (eV)
(MeV)
Reich 1.0 1.0 10000
Moore I..................: ........................................................
L1 L1 11000
fake full 1 1.0 §10% {10000 | 1.0
R-matI'lX E..................E................Et...................JE. ....................
#1 P11 10 111000 § 1.1
fake full $1.0 10° (10000 { 1.0
R-matl‘ix -..a.x.-. ....................
#2 L1 110% {11000 -1

3. Simulation of Experimental Conditions

Various effects can cause a measurement
to be different from the quantity which an
experiment purports to measure. Perhaps the
best known of these is Doppler broadening,
which occurs because the sample nuclei are at
finite (non-zero) temperature. Resolution
broadening is caused by the finite size of the
neutron-producing target, of the detector

system, and of the time-intervals over which
the counts are measured. Scattering of
neutrons within the sample, prior to the
reaction of interest, is another noticeable
experimental effect. These three effects will
be briefly described in this section; readers
interested in more detail or in learning about
other effects are referred to the SAMMY
users’ guide [1].

3.1 Doppler broadening

In its simplest form, Doppler broadening
can be simulated by assuming that the nuclei
within the sample behave as if they formed a
free gas. This Doppler effect is illustrated in
Fig. 3, in which the measured cross section
appears to be much broader than the “true”
cross section, which is a tall narrow
resonance.

One common approximation to the free-
gas model (FGM) of Doppler broadening is
the high-energy Gaussian approximation
(HEGA), of historical significance prior to the
advent of modern computer systems because
it could be combined analytically with Breit-
Wigner cross sections to give reasonable first-
order approximations to the Doppler-
broadened cross section in many situations.
Today, use of this approximation is strongly
discouraged: Breit Wigner approximations are
known to be inadequate for many nuclides;
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Fig. 3. Doppler broadening. The dotted
curve represents the unbroadened resonance,
and the solid curve shows the result of
Doppler broadening at 300 K.



hence, even HEGA must be calculated
numerically. HEGA, therefore, has no
advantage over FGM.

Surprising though it seems, the FGM
provides a fairly accurate representation of
reality for most samples. Occasionally,
however, solid-state effects are observed in
measured cross sections (primarily at low
energies). SAMMY therefore now contains
an option for a crystal-lattice model (CLM) of
Doppler broadening, borrowed from
Naberejnev [7] who in turn borrowed it from
MacFarlane [8].

3.2 Resolution broadening

Unlike Doppler broadening, resolution
broadening is highly experiment- and site-
dependent. The resolution function
appropriate for use with capture data taken at
the Oak Ridge Electron Linear Accelerator
(ORELA), for example, bears little
resemblance to the resolution function
appropriate for transmission data taken at the
Gelina facility in Geel.

Among the options available in SAMMY
for resolution broadening are (1) a simple
Gaussian plus exponential tail (RSL), (2) a
realistic resolution function appropriate for
ORELA data (the Oak Ridge resolution
function, ORR), (3) a realistic function
designed for data from the Gaerttner LINAC
at Rensselaer Polytechnic Institute (RPI), (4)
a straight-line energy-average from E to E - A
(DEX, for use primarily with charged-particle
data), and (5) a user-defined resolution
function (UDR, implemented in SAMMY but
not yet completely reliable). In addition, it is
possible to use combinations of RSL plus
DEX plus one of ORR, RPI, or UDR.

Readers interested in more detail on any
of these options are referred to the SAMMY
users’ guide [1].

3.3 Multiple-scattering corrections

For analyses of capture measurements,
one important experimental effect is the
multiple-scattering correction: When a
neutron reaches the sample, it is often first
scattered by one or more of the nuclei in the
sample before it is finally captured by yet
another nucleus. At each scattering, the
neutron loses energy. What may therefore be
seen in the measurement is not only the
resonance peak, but also an additional
(smaller) peak at a higher energy; the center of
this single-scattering peak corresponds to 90-
degree scattering with the exact position
determined by kinematics alone. Double- and
higher-multiple-scattering peaks also may be
visible in the data.

Analytic calculation of the full multiple-
scattering correction is not practical, since
each additional scattering introduces an
additional six-fold embedded integration. The
single-scattering correction can be calculated
with high accuracy for specific geometries.
Double- and higher-multiple-scattering
corrections can be calculated with modest
accuracy using crude approximations to
decouple the integrations.

Figure 4 illustrates this phenomenon for
the 1.15-keV resonance in *°Fe [9]. Here the
single-scattering peak is obvious both in the
measured data and in the calculated values
(double-plus scattering is not visible in this
example). Proper treatment of the multiple-
scattering effects may be even more important
where the effect is not obvious: A resonance
may be sufficiently broad that the peak is
buried within the resonance, thus distorting its
true shape. A second resonance may located
at the position of the single-scattering peak,
thus giving a wrong impression of the
magnitude and shape of that resonance.

Greater detail on this subject, including
equations, examples, and a discussion of
implementation issues, for both single- and
double-plus scattering, can be found in [10].
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Fig. 4. The 1.15-keV *°Fe resonance in
natural iron capture data of R. Spencer et al.
Dashed curve is SAMMY calculation
without self-shielding or single-scattering
correction; solid curve includes those
corrections.

The single-scattering treatment used in
SAMMY was developed by this author with
significant input from F. G. Perey. The ideas
for the approximations incorporated into
SAMMY’s double-plus scattering treatment
were borrowed from M. Moxon [11], but
programmed independently.

4. Fitting Procedure

A fitting procedure is used to determine
which set of parameter values provide the best
fit of theoretical calculation to measured data.
The procedure employed in SAMMY is
Bayes’ method, sometimes described as
“generalized least squares.” For more details
on the use of Bayes’ method, see [12].

A derivation of Bayes’ Equations is given
in the SAMMY manual [1], and will not be
repeated here; instead we quote the results.
Let P represent the parameter values and M
the associated covariance matrix, D represent
the experimental data to be fitted and V the
associated covariance matrix, 7 represent the

theoretical value calculated at the initial
parameter values P, and G represent the partial
derivatives of the theory with respect to the
parameters (G 1s sometimes called the
sensitivity matrix). Primes indicated the
updated posterior values. In matrix form,
Bayes’ Equations can be written as

P-P=M'Y
M'=M'+w)!
Y=G' V' (D-T)
w=G'v'aG , (1)

where the last two lines define Y and W.
Setting M ™' to zero in the second line of Eq.
(1) gives the more familiar Least Squares
equations.

4.1 Implicit data covariance method

The data covariance matrix V' required for
both Bayes’ method and Least Squares is, in
practice, usually approximated by its diagonal
components. There are several reasons for
this: (1) V is very large, as it is an N-by-N
matrix where N (the number of data points)
can be thousands or even hundreds of
thousands. (2) Extra effort is required to
accurately estimate V. (3) Many analysis
codes are not equipped to work with the full
off-diagonal data covariance matrix.

While the SAMMY code is able to make
use of the full data covariance matrix, an
alternative methodology is available which is
both easier and more accurate.  This
alternative, which is denoted the “Implicit
Data Covariance (IDC) method,” makes use of
the mathematical structure of V' to simplify the
computation effort involved in the solution of
Bayes’ equations.

The data covariance matrix V'is derived as
the sum of two contributions to the data
uncertainties, statistical and systematic. The
statistical contribution comes directly from the
measurement process, and is usually described
by Poisson statistics (so that the uncertainty on
K measured counts is the square root of K).



This contribution is diagonal (that is, it does
not give correlations between two different
data points).

The systematic contribution comes from
those features of the experiment which are
common to all data points. (Fréhner denotes
these “common errors”.) The so-called data-
reduction process is this: the measured
(“raw”) data are modified (“reduced”) to be
more closely related to the quantity of
physical interest. For example, raw counts
must often be normalized (divided by a
number related to the duration of the
experiment). The data-reduction parameter
(normalization) has an uncertainty, and the
process of dividing the raw data by this
number gives rise to correlations between the
modified data points.

Let v be the statistical contribution to the
data covariance matrix. The systematic
contribution is the product of the sensitivity
matrix X (partial derivative of the reduced data
with respect to the data-reduction parameter)
times the data-reduction-parameter covariance
matrix Q times the transpose of X. In matrix
form, the data covariance matrix is

V=v+X0X", 2)

- —

where the boxes are used to indicated the
relative size of the matrices; solid outlines
indicate full off-diagonal matrices, and dashed
outlines indicate diagonal matrices. The
relative sizes are best considered to be
logarithmic: there are possibly thousands (or
hundreds of thousands) of data points, and
very few (on the order of 10) data-reduction
parameters.

The inverse of ¥ can be formally derived
as

Vi=(v+x0x")!
viioylx
(Q—1+XIV—IX)—1XIV—1

vy tlxz-txty! 3)

where Z is defined by

Z=0"+Xx"v'x . 4)

H-=-0+r0

From Eq. (3) and (4), it is clear that one
could find the inverse of V without explicitly
generating V or inverting this large matrix. In
addition, from Bayes’ Equations [Eq. (1)], it is
also clear that there is no need to explicitly
generate or store even the inverse of V.
Instead, only the quantities Y and W are
required:

Y=G'VY(D-T)
= G'v'I(D-T) (%)
-Gv'XxzZ ' X'y (D-T)
and
wW=G'V'G
=G'v'G (6)
-GvI'XZTXx'vIG



For the “box” version of these equations,
please see reference [12].

Equations (5) and (6) appear on the
surface to be much more complicated than the
original expressions in Eq. (1). However,
each element appearing in the longer
equations is either diagonal or of small
dimensions. Hence these forms are actually
easier to calculate than are the original
versions. That is, the arrays to be stored are
significantly smaller, and the computation
time is not much longer than required for the
(incorrect) diagonal-only approximation. In
addition to these expected results, tests have
also shown that the IDC method is
numerically better behaved than the full data
covariance matrix method.

These assertions are illustrated with an
example taken from SAMMY test case tr140.
The data are a limited energy range from a '*’I
measurement [13]; the full data set contains
32,660 data points. Figure 5 shows the data
along with a SAMMY fit, and Table 2
describes the various choices for including the
data covariance matrix.

Table 2. Statistics re IDC runs.
[1245 experimental data points;
9 data-reduction parameters;
655 resonances;

9 varied parameters in these runs;]

Description cpu  total  array
of run time, cpu size
Bayes time
solver  (sec)
a statistical 0.03 14 254K
errors only
b statistical + 0.03 14 254K
common,
diagonal
c explicit data 16.46 59 1800 K
cov matrix
d IDC 0.06 14 267 K
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Fig. 5. Test Case tr140: "I transmission
data (+) and SAMMY fit (solid curve) using
Implicit Data Covariance method.

Equivalent results were obtained by the
two runs which properly included the data
covariance matrix (runs ¢ and d). However, in
order to obtain those results via the explicit
data covariance method, it was necessary to
take special care to write the matrix elements
with many significant digits. (In general, too
few significant digits in a covariance matrix
will either give erroneous results or cause the
matrix to be non-positive-definite.)

4.2 Propagating uncertainties on non-
varied parameters

During the course of an analysis, it is often
expedient to treat parameters as exact even
when they are measured quantities rather than
absolutes. For example, the pulse width for
the neutron beam is known to within some
uncertainty, but might be treated as constant
for purposes of resolution broadening.
Nevertheless the uncertainty associated with
that quantity should be propagated throughout
the analysis process and thus reflected in the
final results.

A scheme for doing that will soon be
incorporated into SAMMY. Currently there
are two options for variables in the code:

(1) Treat the variable as exact; do not
vary. In this case any uncertainty associated



with this value is not propagated through the
analysis process, and therefore is not reflected
in the final resonance-parameter covariance
matrix.

(2) Treat the variable as one of the fitting
parameters in solving Bayes’ Equations. In
this case the initial uncertainty for the variable
is reflected in the final covariance matrix. In
addition, the value of this variable is refined,
and the uncertainty associated with this
variable is (probably) decreased, based on
information inherent in the experimental data
being analyzed.

A third option will be added:

(3) Generate the partial derivatives, and
propagate the uncertainties in a manner
similar to the implicit data covariance
methodology. In this case the uncertainty
associated with this variable will be included
in the final results, but no additional
information about this wvariable and its
uncertainty will be obtained from analysis of
these data.

4.3 Sequential vs. simultaneous analyses

There are many advantages to using
Bayes’ method rather than least squares, not
the least of which is the ability of Bayes’
Equations to “remember” earlier results.
Because the prior covariance matrix 1is
assumed to be finite (rather than infinite, as is
the case with least squares), the output
parameter covariance matrix from analysis of
one data set can be used as input to the
analysis of another unrelated data set. Results
from such sequential analyses of multiple data
sets are, in principle, equivalent to results
from simultaneous analysis of all data sets.

Unfortunately, the reality is somewhat
different from the principle. Sequential is
exactly equivalent to simultaneous only if the
theory is exactly linear with respect to the
parameters of that theory — a proviso that R-
matrix parameters clearly violate.

For this reason, it is the intention of this
author to restructure the SAMMY code to
provide an option for truly simultaneous
analyses of several data sets. Examination of
the expressions for ¥ and W [see Eq. (1)]
shows that they may be rewritten as

Y= Z G/ Vil (D;-T))

1

w=2X6'v'a, ,

i (7
where i represents the individual data sets. It
is therefore possible to treat each data set
separately, calculating ¥, and W, and storing
these values until calculations are completed
for all data sets. The summed quantities ¥ and
W are then formed, and Bayes’ Equations are
solved to give the new parameter values and
covariance matrix that reflect the best fit to all
data sets.

Changes to incorporate this option into
SAMMY are underway. Because this requires
significant changes both internal to the code
and to the input, it may be some time before
this option is fully functional.

Currently, simultaneous analyses can be
accomplished in a limited, awkward fashion
entailing several separate SAMMY runs; no
iteration to account for non-linearities is
possible. To date, this option has been used
primarily as a means of retroactively
producing an approximate resonance
covariance matrix for inclusion in the
evaluated nuclear data files (ENDF) [14].

5. Post-Processing

In the previous section, a technique for
retroactively producing approximate resonance
covariance matrices was mentioned. Such
retroactive calculations are necessary because
many of the current evaluations in ENDF do
not contain any covariance information for the
resonance region. Assuming input to the code
is complete, SAMMY automatically produces



the resonance-parameter covariance matrix
along with the parameter values, for both the
resolved and the unresolved resonance region.
With the insertion of simple input commands,
the analyst can request SAMMY to output the
covariance matrix into appropriate ENDF
formats.

For some nuclides such as **°U, the
complete covariance matrix is prohibitively
large and cannot be store in ENDF formats. A
proposed addition to the ENDF formats will
make it possible to store these large matrices
in approximate form, as uncertainties plus
abbreviated correlation coefficients.
Information regarding this proposal is
available from this author.

6. Summary

Three essential requirements for analysis
ofneutron-induced time-of-flight cross section
data have been discussed: formalism for
calculation of cross section, mathematical
description of experimental effects, and fitting
procedure. Post-processing options, notably
the capability of producing resonance-
parameter covariance matrices in ENDF
formats, were also discussed.

Use ofthe IDC (Implicit Data Covariance)
method was stressed as a practical and viable
alternative to the incorrect but often-used
method of ignoring off-diagonal data
covariances in the fitting procedure.
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