
'

&

$

%

Application of Kronecker Products in
Fusion Applications

Ed D’Azevedo (dazevedoef@ornl.gov)
Mark Carter (cartermd@ornl.gov)

Fred Jaeger (jaegeref@ornl.gov)

Oak Ridge National Laboratory

1



'

&

$

%

Overview

• Main Idea: Kronecker Product is a neat tool.

• Refresher on properties of Kronecker Product.

• Kronecker Product is used in variable separable interpolation
on rectangular grids.

• Kronecker Product is used in fusion codes.

2



'

&

$

%

Kronecker Product

• Let matrices A be mA× nA and B be mB × nB be indexed as
A(ia, ja) and B(ib, jb). Let C = A⊗B (or kron(A,B) in
MATLAB notation), then matrix C is size
(mA ∗mB)× (nA ∗ nB).

• If matrix A is 3× 3, then

C =









a11B a12B a13B

a21B a22B a23B

a31B a32B a33B









.

• Matrix C can be interpreted as a 4-index array
C([ib, ia], [jb, ja]) = A(ia, ja) ∗B(ib, jb), where the composite
index [ib, ia] = ib+ (ia− 1) ∗mB is the index in Fortran
column-wise order.

3



'

&

$

%

Matrix Multiply

• Efficient (O(2n3)) matrix multiply without expensive
construction of C = A⊗B that require O(n4) storage and
work,

Y ([ib, ia]) = C([ib, ia], [jb, ja]) ∗X([jb, ja])

= A(ia, ja) ∗B(ib, jb) ∗X([jb, ja])

= (B(ib, jb) ∗X([jb, ja])) ∗A(ia, ja)

Y = B ∗X ∗At O(2n3) work.

4



'

&

$

%

Nice Properties

• Fast matrix multiply as (A⊗B) ∗ vec(X) = B ∗X ∗At.

• Other properties:

(A⊗B) ∗ (E ⊗ F ) = (A ∗ E)⊗ (B ∗ F ) (1)

(A+B)⊗ E = A⊗ E +B ⊗ E (2)

(A⊗B)⊗ E = A⊗ (B ⊗ E) (3)

(A⊗B)t = (At ⊗Bt) (4)

• Fast Solver based on (A⊗B)−1 = (A−1 ⊗B−1).

• Fast Solver for A1 ⊗B1 +A1 ⊗B2 via generalized eigen
decomposition of (A1, A2) and (B1, B2) to find matrices UA,VA
(and UB , VB) such that D1 = UAA1VA and D2 = UAA2VA are
both diagonal matrices.

5



'

&

$

%

Resources about Kronecker Products

• The Ubiquitous Kronecker Product by C. Van Loan, Journal of
Computational and Applied Mathematics, 123(2000),
pp. 85-100.

• Approximation with Kronecker Products by C. Van Loan and N.
Pitsianis in Linear Algebra for Large Scale and Real Time
Applications, M. S. Moonen and G. H. Golub, eds., Kluwer
Publications, 1993, pp. 293-314. (See also
http://www.cs.duke.edu/˜nikos/KP/home.html ).

• Computational Frameworks for the Fast Fourier Transform by
C. Van Loan, SIAM, 1992.

6



'

&

$

%

1D Interpolation

• Approximate function f(x) ≈
∑n

j=1 cjφj(x).

• Basis function φj(x) may be Chebyshev polynomials,
B-splines, wavelets or Fourier basis eαx

√
−1.

• Interpolation condition of tabulated values is used to find cj ’s,
f(xi) =

∑n

j=1 cjφj(xi).

• Coefficient cj ’s are obtained by solving the linear system
[f(xi)] = Tx ∗ [cj ].

• Note Tx may be sparse if {φj(x)} have compact support

Tx =











φ1(x1) · · · φn(x1)
...

. . .
...

φ1(xn) · · · φn(xn)











.

7



'

&

$

%

1D Interpolation

• Evaluation at new set of points [f(x̃i)] is computed as matrix
multiply, [f(x̃i)] = Tx̃ ∗ [cj ],

Tx̃ =











φ1(x̃1) · · · φn(x̃1)
...

. . .
...

φ1(x̃m) · · · φn(x̃m)











.

8



'

&

$

%

2D Interpolation

• Tabulated values f(xi, yj) on a rectangular grid (variable
separable) is approximated as f(x, y) ≈

∑

k,` ck`φk(x)φ`(y).

• Interpolation conditions lead to

vec(F ) = (Ty ⊗ Tx) vec(C)

vec(C) =
(

T−1
y ⊗ T−1

x

)

vec(F )

C = T−1
x FT−t

y ,

where F = [f(xi, yj)] C = [ck`].

• Evaluation at new points (x̃i, ỹj) is computed as
[

F̃ij

]

= (Tỹ ⊗ Tx̃) [ck`] = Tx̃CTỹ
t .

9



'

&

$

%

Higher Dimensions

• Interpolate tabulated values of 4-index function on rectangular
(tensor product) grid,

f(w, x, y, z) ≈
∑

ijk`

cijk`φi(w)φj(x)φk(y)φ`(z) .

• Coefficients computed efficiently as

vec(F ) = (Tz ⊗ Ty ⊗ Tx ⊗ Tw) vec(C)

vec(C) =
(

T−1
z ⊗ T−1

y ⊗ T−1
x ⊗ T−1

w

)

vec(F ) .

• Evaluation at new points is computed as

vec(F̃ ) =
(

Tz̃ ⊗ Tỹ ⊗ Tx̃ ⊗ Tw̃

)

vec(C) .

10



'

&

$

%

Applications of Kronecker Products

• DKES transport code uses variable separable representation
f(r, θ, φ) in Tokamak geometry and lead to a linear system
compactly represented as sum of 4 or more Kronecker
products. Each product corresponds to a part of the differential
operator. Fast matrix multiply by level 3 BLAS is available for
iterative method. Question: Is there a fast solver for

A1 ⊗B1 + · · ·+Ak ⊗Bk where k ≥ 3 ?

11



'

&

$

%

Applications of Kronecker Products

• 10X improvement in matrix construction in RANT3D Antenna
code.

• 10X faster calculation of ”WDOT” power absorption in plasma
computed as ut ∗A ∗ v where entries of matrix A are costly to
compute. Full matrix A is interpolated from a smaller
submatrix using Chebyshev polynomials and Kronecker
product formulation.

• Transformation ((NU)FFT in 3D) between spectral and real
representation in AORSA3D lead to 5X reduction in number of
equations and about 100X speedup in dense linear solver in
AORSA3D.

12



'

&

$

%

RANT3D

• Radio Frequency (RF) Antenna code solves Maxwell’s
equations in Cartesian geometry using spectral basis is used in
the design of antenna for heating and current drive in
tokamaks. Each cavity uses variable separable representation.

∇ (∇·E)−

(

∇2 +
ω2

c2

)

E = iωµ0J . (5)

• The constraints that enforce continuity of tangential electric
and magnetic fields lead to repeated evaluations of the form

Y (m,n) =
∑

p,q

B(m, p)X(p, q)A(q, n) total O(n4) work

Y = (B ∗X) ∗A O(2n3) work

vec(Y ) =
(

At ⊗B
)

∗ vec(X) .

13



'

&

$

%

RANT3D

• On a model for NSTX (National Spherical Torus Experiment)
with 37 recesses, the Kronecker product formulation reduced
the time for impedance matrix assembly from about 682 sec to
about 55 sec on a 1.3Ghz Power 4.

• We shall explore the use of Kronecker products as
preconditioner.

14



'

&

$

%

AORSA2D

• The All-ORders Spectral Analysis code in 2D (AORSA2D) uses
a spectral representation to model the response of plasma to
radio frequency (RF) waves in a tokamak geometry by solving
the inhomogeneous wave equation or Helmholtz equation,

−∇×∇× E +
ω2

c2

(

E +
i

ωε0
Jp

)

= −iωµ0Jant .

• The RF electric field E and plasma current Jp are expanded in
Fourier harmonics of the radial dimension as

E(x, y) =
∑

n,m

Enmei(knx+kmy) =
∑

n,m

Enmei
~kn·r ,

Jp(x) =
∑

n,m

σ(x, y, kn, km) · Enmei(knx+kmy) .

15



'

&

$

%

WDOT Power Computation

• One costly computation is the calculation of the local energy
absorption at every grid point in the plasma, after E(x, y) is
available,

Ẇ =
∂W (~kn, ~km)

∂t

= 1
2Re

∑

n,m

ei(
~kn−~km)·~r

∞
∑

`=−∞

E∗
m ·W` · En

= 1
2Re

∑

n,m

e−i
~km·~rE∗

m ·

(

∞
∑

`=−∞

W`

)

· Enei
~kn·~r ,

where W (x, y,~kn, ~km) involve costly function evaluations.

16



'

&

$

%

WDOT

• The evaluation of ”WDOT” can be viewed as computing the
product utF̃ v at each grid point. We interpolate F̃ from a small
submatrix F .

utF̃ v = ut(Tỹ ⊗ Tx̃)Cv, where C = (T−1
y ⊗ T−1

x )F

= utTx̃CTỹ
tv = utTx̃ T

−1
x FT−t

y Tỹ
tv

=
(

utTx̃T
−1
x

)

F
(

T−t
y Tỹ

tv
)

= ũtF ṽ , where ũ =
(

T−t
x Tx̃

t
)

u, ṽ =
(

T−t
y Tỹ

t
)

v.

• The cost of precomputing Vx = T−t
x Tx̃

t and Vy = T−t
y Tỹ

t can
be amortized across many grid points. Note we require only
matrix-vector operations with Vx, Vy , and coefficient matrix C
is not constructed.

17



'

&

$

%

WDOT

• On a 96× 96 mode problem and 32 local modes, this reduced
the time for computing WDOT from about 78 min to about 7

min by evaluating only a 9× 9 submatrix of 32× 32 with less
than 3% difference in results.

18



'

&

$

%

AORSA3D

• A 34× 34× 64 mode problem requires the solution of a large
dense complex linear system with 220,000 equations. This
requires about 788GBytes and 358min on 1936 power3
processors at NERSC.

• By transforming the system from Fourier representation back
to physical space, we can eliminate grid points outside of
plasma to solve a smaller 40,000 system.

• The row transformations are computed using ZGEMM in
Kronecker products. The formulation can easily accommodate
non-uniform grid spacing. Actual computation time for
transformation is small compared to data redistribution.

• The reduced system requires about 26GBytes and about 100X
speedup in linear solver and 27X overall speedup.

19



'

&

$

%

Questions

• Is there a fast solver for

A1 ⊗B1 + · · ·+Ak ⊗Bk, where k ≥ 3?

• What iterative method (GMRES?) is suitable for unsymmetric
(complex) system with large imaginary eigen components?

• Nearest Kronecker Product (NKP): Given matrix C, find A and
B such that min ‖C −A⊗B‖ by computing SVD of C̃. We
want C([ib, ia], [jb, ja]) ≈ A(ia, ja)B(ib, jb). Let C̃ be a
rearrangement (not permutation) of C,
C̃([ia, ja], [ib, jb]) = C([ib, ia], [jb, ja])

• Generalized NKP: Given a high order ”tensor” or tabulated
function C(x1, . . . , xk) find a good approximation by product
of simpler low order tensors (similar to higher order SVD).

20


