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Based on the calculation of collective motion on the periodic solutions of the time-dependent Hartric-Fock mean field, we propose 
a method to recover the stat ionary many-body wave functions for collective excitations. Results are presented for the  monopole 
oscillation in the l60 nucleus. 

1 In t roduc t ion  

Functional integrals provide a fundamental framework 
to describe the microscopic behavior of a quantum sys- 
tem systematically and consistently. The stationary- 
phase approximation (SPA) to an exact functional inte- 
gral leads to the time-dependent Hartree-Fock (TDHF) 
equation It has been known for some time that in the 
SPA bound state energies of a many-body system can 
be determined from the periodic solutions of the TDHF 
equation through a Bohr-Sommerfeld quantization rule 

where r j p  is the periodic solution with a period r ,  and n 
is an integer. However, the numerical difficulty in solving 
periodic solutions held this approach in check until in re- 
cent years we developed a numerical algorithm3i4 to con- 
struct periodic orbits for the TDHF equation using effec- 
tive nucleon-nucleon interaction. The key element in the 
success is that the numerical algorithm preserves "exact" 
energy conservation in the TDHF evoltuion. Generally, 
the TDHF equation can be written as 

where 
h(n+ 1/2) = K + zu(n+1/2), 

is the single-particle hamiltonian and K is the kinetic 
energy operator. For a density pdependent Skyrme force 
with an energy functional 

E = ( d I f l I 4 )  

H = + .(p) , 
where 

it can be proved that the appropriate hamiltonian which 
preserves the total energy reads 

w(n + 
= ~ n + l  v ( P ~ + I )  - Pn v ( P n )  

Pn+l - Pn 
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Figure 1: The standard deviation in the periodic wave function, as 
a function of iteration number for a cycle of l60. T h e  excitation 
energy and the period are on the figure. 

In ref. 4, we reported an iterative procedure which 
leads to convergence to the perodic TDHF solutions. 
Fig.1 shows a typical convergence sequence for the 
monopole vibration of l60 at an excitation energy of 12.8 
MeV, where u is defines as 

where N is the number of time steps, and m is the space 
index for a total number of M mesh points. We applied 
the quantization rule to the nucleus of l6O to determine 
its monopole excitation5. 

Fig.2 shows the HF ground state density and the 
TDHF densities at the times tl and t 2 ,  which correspond 
to the maximum and minimum rms radius, respectively. 
It was the first time that the TDHF periodic orbits with 
multiple single particle wave functions were ever calcu- 
lated for a nuclear system heavier than 4 H e .  
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Figure 2: The HF ground state density of l 6 O  compared to the 
periodic TDHF density at two times: t l  at which the rms radius is 
maximum; and t 2  at which it is minimum. The cycle is chosen so 
that the quantization condition is satisfied. The contributions to 
the total density from the s-wave and the p-wave components are 
compared separately. 

2 Requantization 

It is a dream for nuclear theorists to find a micro- 
scopic foundation for nuclear collective phenomena, in 
which many nucleons act coherently. The progress we 
have made can be considered as the first step towards a 
fully quantum theory for nuclear collective motion. In 
the TDHF approximation, the many-body wave function 
is like a wave packet, which undergoes large variations 
with time. The restriction that the wave function is a 
Slater determinant brings a classical element into the pic- 
ture. If we consider that a Slater determinant represents 
a certain shape for the nucleus in a shape space, the sta- 
tionary wave function of a collective excitation carries the 
amplitudes for a whole variety of shapes. The restricted 
class of wave functions does not include such stationary 
collective states. Therefore, the TDHF approximation is 
capable of describing a special type of collective motion 
for the wave packet, but not the more general type of 
wave functions. When we apply the TDHF approxima- 
tion to the collective motion of nuclei we must recover the 
fully quantum picture contained in the time-dependent 

motion, i.e. requantization for the periodic orbits is nec- 
essary. 

Now we will report some preliminary work on a re- 
quantization procedure for TDHF periodic orbit$. In 
this approach, the TDHF periodic orbits provide us a 
family of many-body wave functions (Slater determi- 
nants), which is highly related to the collective motion 
in study. This set of Slater determinants and the HF 
ground state wave function form a basis for the generator 
coordinate method (GCM). We can calculate the matrix 
elements between the states for the exact Hamiltonian 
operator (in the form of second quantization), and they 
form an effective Hamiltonian matrix in the subspace. 
The GCM diagonalization of the effective Hamiltonian 
matrix in the subspace leads to a set of eigenstates, which 
provides a good approximation to the collective excita- 
tions. This is what we mean by the procedure of "re- 
quantization". 

For one 
type of periodic orbits, the orbit is invariant under the 
time-reversal transformation. We call this type of col- 
lective motion vibrations. For the other type of periodic 
orbits, the orbits show up in conjugate pairs, and the 
time-reversal transformation leads from one to the other. 
Rotations belong to this type of collective motion. Here, 
we only consider the collective motion of vibrations. Sim- 
ilar GCM procedure can be formulated for rotations. 

For practical purpose we chose a set of Slater deter- 
minants uniformly distributed on the periodic orbit. It 
can be proved from the TDHF equation that for vibra- 
tions, there exists a moment when the wave function is 
real (upto an overall phase factor), which corresponds to 
an' extreme in the shape space. Generally, for this type of 
periodic orbits, if a wave function is on the periodic or- 
bit, its complex conjugate (upto an overall phase factor) 
is also on the same orbit. The chosen set of wave func- 
tions consists of a real wave function and pairs of complex 
conjugate wave functions { + ( j ) } ,  j = 1, 2, ..., 2 5 +  1. 
This basis is neither orthogonal nor complete, i.e. 

( +(i) I + W  ) = Pij 

There exist two types of periodic orbits. 

where i, j = 1, 2 , . . . , 2 5 +  1. These Slater determi- 
nants span a subspace highly related to the collective 
excitation in study. The effective Hamiltonian matrix 
Herr = { H;j } is hermitian where its matrix elements 
are 

( O ( i )  IHI + ( j )  ) = Hi j .  

The diagonalization of the H e f f  matrix leads to the Hill- 
Wheeler equation 

where 



Table 1: Given in the table are the excitation energies for the 
first excited state as a function of the number (J) of pairs of wave 
functions in the GCM basis taken from the periodic orbit satisfying 
the quantization rule. 

J 

1 

Excitation Energy (MeV) 

37.6048 

~2 

4 

6 

8 

12 

16 

31.4024 

30.4302 

30.3023 

30.2944 

30.3576 

30.3493 

To be more specific, the Hill-Wheeler equation reads 

The diagonalization of the hermitian matrix leads to a 
set of eigenstates with real wave functions, which pro- 
vides a good approximation to the stationary states of 
collective excitations. The new quantization method has 
been tested on a few simple systems and appears very 
promising. 

Table 1 gives a convergence sequence of the excita- 
tion energy as a function of J for the monopole vibration 
of “0 .  It shows that it converges very quickly with in- 
creasing J .  In the meantime, the diagonalization also 
recovered a ground state with energy about half an MeV 
lower than that of the HF ground state. Once the con- 
vergence is reached we can recover the many-body wave 
function for the lowest excitation, and therefore, calcu- 
late all the properties of the excitation state. 

The main conclusion from our work is that it is pos- 
sible to extend periodic solutions of the TDHF equation 
into the nonlinear region in a systematic, reliable, and 
accurate way. Thus we have accessed all those nonlinear 
phenomena which lie beyond the RPA. The new quan- 
tization method opens up an approach leading to the 
stationary many-body wave functions for nuclear collec- 
tive excitations. Now we intend to extend these results to 
heavier nuclei and to other collective modes. The code in 
two space dimensions for nuclear collective motion with 
cylindrical symmetry is in progress, and has produced 
preliminary results for periodic orbits. We expect to see 
more interesting collective phenomena in the near future. 
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