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Abstract

The superconducting and magnetic properties of YNi2B2C single crystal have been investigated by heat capacity and

dc-magnetic methods, with magnetic field applied parallel to the c-axis, i.e., Hkð001Þ-direction. In the framework of

heat capacity and magnetization analyses, we obtain the thermodynamic critical field Hc from both heat capacity and

magnetization data. The heat capacity data deviate from predictions for both weak- and strong-coupling supercon-

ductivity, but are described relatively well in a medium-coupling analysis. The precise t3-dependence of the electronic

heat capacity Ces indicates the gap anisotropy with the presence of point nodes for YNi2B2C single crystal.

� 2003 Elsevier B.V. All rights reserved.

PACS: 74.70.Dd; 74.25.Bt; 74.25.Ha
1. Introduction

The layered intermetallic compounds [1] RNi2-

B2C (where R ¼ lanthanide) have been studied
with great attention by many research groups. The

nickel borocarbide family exhibits a variety of

interesting physical phenomena, including the co-

existence of superconductivity and magnetism

arising from magnetic moment of rare earth ele-

ments R; the transformation of the vortex (flux
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line) lattice from the simple hexagonal to square

symmetry; a fairly high superconducting transition

temperature Tc comparable with several A-15

compounds, and so on [2–8]. Early work reported
single crystal YNi2B2C, one of the quaternary in-

termetallic compounds, to be a conventional and

an isotropic superconductor [9]. The analysis yiel-

ded the value j ¼ 13–15 for the GL-parameter,

indicating a type-II superconductor [10]. However,

recent works [11–13] have showed a large aniso-

tropic gap function with point nodes. In addition,

the upper critical field Hc2 of YNi2B2C single
crystal has an unconventional behavior. Several

research groups have found an upward, positive
ed.
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curvature of Hc2 at low temperature regime [14–16].

In magnetization studies, it is sometimes difficult to

determine Hc2 precisely, due both to the presence of

paramagnetic signals in the normal and supercon-

ductive states and to an apparent deviation from

simple London theory in the low temperature
regime. This latter effect arises from non-local

electrodynamics in clean materials (with a long

electron mean free path) and is well described by a

non-local formulation of London theory [6]. The

anisotropic paramagnetic signal in the crystal

studied here apparently arises from rare earth im-

purities in the yttrium starting material at a level of

�0.1% [8]. In this present work, we report results
on the thermodynamic critical field Hc obtained by

applying thermodynamics to both magnetization

and heat capacity measurements. In addition, we

discuss the results of heat capacity and the values

of the coefficient of electronic heat capacity c ob-

tained by various ways. Furthermore, we validate

YNi2B2C single crystal has showed the presence of

point nodes based on the t3-dependence of the
electronic heat capacity Ces and has arranged rel-

atively well to a medium-coupling analysis based

on the coefficient of electronic heat capacity c.
Fig. 1. The temperature dependence of magnetic susceptibility

v for the applied field parallel to (0 0 1)-direction. The inset

shows 1=v vs. temperature T .
2. Experimental

Details of the experimental aspects have been
presented elsewhere [6,8]. Here we report the re-

sults of complementary investigations of both the

magnetization and the heat capacity in the nor-

mal and superconducting state, obtained in a

commercial Quantum Design both 7-T SQUID

magnetometer and 9-T PPMS instrument. Several

features have been studied. The normal state

magnetic properties with the field parallel to
(0 0 1)-direction are investigated. The heat capacity

in the normal state by applying a high magnetic

field, in the superconducting state with a zero

magnetic field, and in the intermediated state by

applying a magnetic field are observed at low

temperatures. From the framework of heat ca-

pacity and magnetization analyses, the coefficient

of electronic heat capacity c is estimated, and the
thermodynamic critical field Hc is deduced as

well.
3. Results and discussion

3.1. The magnetic susceptibility in normal state

The normal state magnetic susceptibility was
measured between 16 and 295 K in a magnetic field

of 10 kG parallel to the (0 0 1)-direction. Fig. 1

shows the magnetic susceptibility v vs. 1=T , while
the inset shows the 1=v vs. T relationship for the

(0 0 1)-direction of applied field. The total mag-

netic susceptibility v is attributed both to localized

and to delocalized conduction electrons. As shown

in the inset of Fig. 1, the data for T > 100 K for-
mally can be described by a Curie–Weiss expres-

sion,

vmolar ¼ NAp2l2
B=3kBðT þ hÞ ¼ NAl

2
eff=3kBðT þ hÞ

¼ C=ðT þ hÞ;

where C is Curie constant, h is Weiss temperature,

NA is Avogadro�s number, kB is Boltzmann con-

stant, lB is Bohr magneton, and leff is the effective
magnetic moment per formula unit. The high tem-

perature slope (100 K < T < 295 K) corresponds

to a value of 1.83lB for the effective magnetic

moment in an applied field parallel to (0 0 1)-



Fig. 2. Cp=T vs. T 2 for the single crystal YNi2B2C.

Fig. 3. Cp=T vs. T 2 in the temperature regime 20–30 K for

normal state under applying H ¼ 70 kG and superconducting

state with zero magnetic field.
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direction. This value is smaller than the theoretical

value of 2.83lB for the Hund�s rule ground state of

Ni2þ when the orbital moments are quenched due

to crystalline electric field (CEF) effects. The Weiss

temperature, h, is found to be about 1235 K. Al-
ternatively, in the main frame of Fig. 1, v is nearly

constant (3.2 · 10�4 cm3/mol) and seems to be at-

tributed in full to Pauli spin paramagnetism. The

Pauli paramagnetism, however, varies somewhat

with T , due to the presence of a DOS (density of

state) peak near the Fermi level as shown by Lee

et al. [17]. Therefore, the discrepancy of the effec-

tive magnetic moment may be explained by the
variation of the Pauli paramagnetism and the

Curie–Weiss impurity contribution.

The normal state paramagnetic signal from

paramagnetic Ni2þ ions is very weak, compared

with that arising from rare earth ions in RNi2B2C

compounds. In the YNi2B2C compound, however,

the paramagnetic signal due to Ni2þ ions could be

a significant factor, because the Y as well as B and
C are non-magnetic elements. In addition, the

deviations from Curie–Weiss behavior and the

large Weiss temperature may indicate that the Ni

3d bands are delocalized and contribute to the

conduction electron states. Electron band struc-

ture calculations for RNi2B2C materials [18–20]

show that the bands near the Fermi level display

predominant Ni 3d bands, with a relatively high
density of states at EF, and that the superconduc-

tivity may come from a conventional mechanism

with strong electron–phonon coupling, in contrast

to implications of the analysis of Lee et al. [17]

who obtained convincingly a medium-coupling

superconductivity based on the coefficient of elec-

tronic heat capacity c over the calculated DOS for

YNi2B2C. However, recent work has shown the
superconducting energy gap to be strongly aniso-

tropic, but always gapped [11–13], as indicated to

unconventional superconductivity.

3.2. Heat capacity in normal and superconducting

state

Now we consider the heat capacity of the
compound and compare the results with several

models. Fig. 2 plots the heat capacity Cp=T as a

function of T 2 for the single crystal YNi2B2C. All
measurements have been done in the field cooling

conditions. Specially, Fig. 3 shows the heat ca-

pacity Cp=T as function of T 2 in the temperature

regime from 2 to 30 K for the normal state (H ¼
70 kG) and superconducting states (H ¼ 0 G). In



Fig. 4. The electronic heat capacity Ces vs. temperature T in

superconducting state. The inset shows the t3-dependence
of Ces.
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zero fields, there is a jump of heat capacity at

Tc � 14:5 K. The jump disappears in high field

H ¼ 70 kG, which exceeds Hc2. In the normal state

(H ¼ 70 kG), the heat capacity Cp (in the tem-

perature range 2 K < T < 14 K) can be fit to the

relation of Cp=T ¼ cþ bT 2 (or cþ bT 2 þ dT 4),
where c is the coefficient of the electronic heat

capacity (Sommerfeld parameter) and b the lattice

heat capacity. The deviations (d) from the T 3 as-

ymptotic behavior come from the fact that the

phonon DOS for crystalline solids shows devia-

tions with respect to the Debye DOS, which is

derived for an elastic continuum. Without the

deviations term ðdT 4Þ, we obtain c � 19:1 mJ/
(molK2) and b � 0:097 mJ/(molK4); with the de-

viations term, we have c � 20:6 mJ/(molK2), b �
0:037 mJ/(molK4), and d � 0:00033 mJ/(molK6).

The result for the electronic term c is similar to

the values found by other groups [21,22]. We can

obtain the value of the Debye temperature by

b ¼ 1944Z=H3
D (where Z is the number of atoms

per formula unit); HD � 495 K without and
HD � 680 K with the deviations term. The flat-

tening of the curve of C=T vs. T 2 in Fig. 3 and the

apparent deviations have been attributed to the

presence of low-lying phonon modes [23].

We use the c values to check for consistency in

various analyses. There are number of BCS and

GLAG relationships between the normal and su-

perconductive state properties [24]:

� ðdHc2=dT ÞTc ¼ 9:55� 1024c2Tcðn2=3S=SFÞ2 ½G=K�
ðin the clean limitÞ;

kL0 ¼ 1:33� 108c1=2ðn2=3S=SFÞ�1 ½cm�
ðat T ¼ 0 KÞ;

where c is the coefficient of the normal-state elec-

tronic heat capacity, n is the conduction-electron

density, S is Fermi surface, SF is the Fermi surface
of an electron gas of density n, and kL0 is London
penetration depth at 0 K. In the collection of re-

lations, there are only four independent quantities

[24]. Experimentally, however, we have in effect

‘‘over-determined’’ the system by measuring more

quantities than this. From our magnetization re-

sults �ðdHc2=dT ÞTc � 3400 G/K, kL0 � 89:5� 10�7

cm, and Tc ¼ 14:5 K, we obtain c � 5420 erg/
(cm3K2) � 21:5 mJ/(molK2), which compares very

well with our direct evaluation. These results fairly

agree well to the fitting value of normal-state heat

capacity. From c and the jump of the zero field

heat capacity data, we get DCp=ðcTcÞ � 1:81, which
significantly exceeds the BCS weak-coupling ratio,

1.43.

To compare further the predictions of the BCS

theory with heat capacity measurement, we focus

on the electronic heat capacity Ces in the super-

conducting state. Assuming that the lattice heat

capacity in the normal Cln and superconducting

state Cls are the same, Cln ¼ Cls ¼ bT 3 (which was
obtained from measurements above and below Tc),
we obtain Ces by subtracting the lattice heat ca-

pacity in normal state (Cln; H ¼ 70 kG) from the

total heat capacity in the superconducting state

(Cp; H ¼ 0 G) below Tc; so Ces ¼ Cp � Cln. A plot

of Ces vs. T is shown at Fig. 4. These data for Ces

vs. T follow a t3 dependence to surprising accu-

racy, where t ¼ T=Tc is the reduced temperature;
this is shown in the inset of Fig. 4, a plot of Ces vs.

t3. The precise t3-dependence of the electronic heat
capacity Ces indicates the gap anisotropy with the

presence of point nodes as shown in resent works

[11–13]. A similar t3-dependence has been reported



Fig. 5. The temperature dependence of critical field Hc. The

fitting curve is given by HcðT Þ ¼ Hcð0Þ½1� ðT=TcÞ2�, according
to heat capacity results, where Hcð0Þ is about 2556 G, Tc is 14.5
K. Open squares result from heat capacity, and close squares

come from magnetization analysis.
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by Hong, et al. for their compounds [25]. In fact,

this t3 temperature dependence arises in the two

fluid model, which contains a parabolic variation

of the thermodynamic critical field Hc with tem-

perature; the model relates Hc to the coefficient of

electronic heat capacity via c ¼ H 2
0 =ð2pT 2

c Þ where
H0 ¼ Hcð0Þ. The two-fluid model gives the fol-

lowing simple relations appropriate to medium-

coupling superconductors, with electron–phonon

coupling constant k � 1 [26]:

Ces ¼ 3cTct3; where t ¼ T=Tc;

DC=cTc ¼ 2;

dðCes=T Þ=dT ¼ 6c=Tc ðat T ¼ TcÞ:
From the Ces data, we can again deduce values for

c and obtain c � 23:1 [mJ/molK2] from the first

relation using dðCesÞ=dðt3Þ � 1010 [mJ/molK];

also we get c � 18:6 [mJ/molK2] from DC � 540

[mJ/molK]; and finally c � 19:0 [mJ/molK2] from

dðCes=T Þ=dT � 7:85 [mJ/molK3]. These values for
c are relatively consistent (±�10%) with the direct

fit to the normal-state heat capacity and the value

calculated from magnetization data. The above

results seem to be consistent with the medium-

coupling analysis.

3.3. Thermodynamic critical field

For both type-I and -II superconductors, the

thermodynamic critical field Hc is defined by the

relation,

H 2
c ðT Þ=8p ¼ ½FnðT Þ � FsðT Þ�=Vmolar;

where FnðT Þ (or FsðT Þ) is molar free energy of the

normal state (or superconducting state), Vmolar is

molecular volume. In addition, the molar specific

heat is defined by Cp ¼ T ½dS=dT �. Finally, one

obtains for superconductors,

Cn � Cs ¼ T ðo=oT Þ½SnðT Þ � SsðT Þ�

¼ �ðTVmolar=8pÞðo2=oT 2Þ½HcðT Þ�2;

where Cn, Sn, and Fn are the specific heat, entropy,
and free energy of the normal state, and Cs, Ss, and
Fs refer to the superconducting state. Using ther-

modynamics, we can derive Hc from the specific

heat experiment with the following:
H 2
c ðT Þ ¼ ð8p=VmolarÞ

�
Z Tc

T
dT 0

Z Tc

T 0
dT 00f½CsðT 00Þ � CnðT 00Þ�=T 00g:

The resulting temperature dependence of Hc is

shown in Fig. 5. The solid line shows that a par-

abolic dependence HcðT Þ ¼ Hcð0Þ½1� ðT=TcÞ2� de-
scribes the data well, yielding HcðT ¼ 0Þ � 2556 G.

Near Tc, the slope of Hc is �½dHc=dT �Tc � 320 G/K.

From an empirical relation for the superconduct-
ing energy gap Dð0Þ [27],

�½ðT=Hcð0ÞÞðdHcðT Þ=dT Þ�T¼Tc
¼ Dð0Þ=kBTc;

we estimate Dð0Þ=kBTc � 1:82, giving an energy

gap Dð0Þ � 2:26 meV. Thus the data are described
reasonably well, with Dð0Þ=kBTc exceeds somewhat

the BCS value, 1.77. The t3-dependence of Ces

implies a parabolic variation of thermodynamic

critical field Hc with temperature, as we have

shown in Fig. 5. So good as the t3-dependence of

Ces, the coefficient of electronic heat capacity

c ¼ ð1=2pÞðH 2
0 =T

2
c Þ is reasonable approximation

(�19.6 [mJ/molK2], where H0=Hcð0Þ � 2556 G).
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This fairly agrees well to previous results. On the

other hand, strong-coupling theory predicts that

Dð0Þ=ðkBTcÞ ¼ 1:76½ðDCp=cTcÞ=1:43�1=2 as shown

by Leggett [28]. Taking the measured DCp=ðcTcÞ �
1:81 with c � 20 [mJ/molK2] for our crystal, the
term 1:76 ½ðDCp=cTcÞ=1:43�1=2 � 1:98, which signi-

ficantly exceeds the value Dð0Þ=kBTc � 1:82. There-
fore, strong-coupling theory does not appear

appropriate to the heat capacity results on this

YNi2B2C single crystal.

Let us consider now the magnetization in the

superconducting state, with is remarkably revers-

ible overall [6,8]. At relatively low temperatures
ð�Tc=3Þ, there are still wide reversible regions,

which allows one to apply thermodynamics with

some accuracy. Whatever is the shape of the

equilibrium magnetization curve, the area under

the curve gives the condensation energy, H 2
c =8p.

Thus one has

�
Z

MdH ¼ Fnð0Þ � Fsð0Þ ¼ H 2
c =8p:

Experimentally, the magnetization of the crystal

is not completely reversible at low fields, so we

need to approximate Meq in this region. Previ-

ously we showed that the magnetization curves

MðHÞ at low temperature region deviate mark-

edly from the simple lnðHÞ dependence of local

London theory, but are well-described by its

extension to incorporate effects on non-local
electrodynamics. Thus, we have taken the mag-

netization MðHÞ from a non-local London anal-

ysis as described previously [6]. Specially, the

contribution at low fields is estimated by extra-

polating an MðHÞ curve to lower fields until it

intersects the Meissner-slope curve. The areas

under the Meissner line and under the extrapo-

lated curve are added to a direct numerical inte-
gration of the experimental Meq at higher fields,

to obtain the total area under the magnetization

curve. The resulting values of HcðT Þ are shown in

Fig. 5. The overall shape and temperature de-

pendence are very similar for the HcðT Þ from heat

capacity and from magnetization. However, the

latter curve lies �8% lower at all temperatures.

This may be due to the approximations cited or
to some other experimental artifact.
4. Summary

In the framework of heat capacity and magne-

tization analyses, the thermodynamic critical field,

Hc, of our single crystal of YNi2B2C is described
well, with deduced value Dð0Þ=kBTc � 1:82. The

HcðT Þ accurately follows a parabolic dependence

HcðT Þ ¼ Hcð0Þ½1� ðT=TcÞ2�, with Hcð0Þ � 2556 G.

We validate qualitatively the gap anisotropy with

the presence of point nodes based on the t3-
dependence of the electronic heat capacity Ces for

our single crystal of YNi2B2C. From another as-

pect, we confirm the heat capacity data, based on
the coefficient of electronic heat capacity c esti-

mated by various ways, deviate from predictions

of both the weak- and strong-coupling theory, but

are fairly well described by medium-coupling re-

lationships, as shown from band calculation by

Lee et al. [17]. The present study does not, of

course, have microscopic evidence for a medium-

coupling mechanism. We have a reasonably self-
consistent analysis of heat capacity, magnetic

susceptibility, and magnetization experimental in-

vestigations, obtaining values for the coefficient of

electronic heat capacity c � 20 [mJ/molK2], with

medium-coupling theory being most appropriate.

Overall, the non-magnetic borocarbide supercon-

ductors have revealed much surprising physical

behavior and may yet contain future surprises.
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