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ABSTRACT

A detailed twelve-month study of litterfall, live foliage biomass,
and seasonal nutrient (nitrogen, phosphorus, potassium, calcium, sodium,
and magnesium) dynamics in tree components was performed for forest
types on Walker Branch Watershed, Oak Ridge, Tennessee. Biomass and
nutrient content of foliage, reproductive parts and branches were examined
for ten dominant trees in order to assess the relative importance of
1itterfall in returning nutrients to the forest floor in four different
forest types. Litterfall, measured in pine, pine-oak-hickory, oak-
hickory, and mesophytic hardwood forests, was separated into three com-
ponents (leaves, reproductive parts, and branches). Seasonal compari-
sons of those forest types were made for biomass and nutrient inputs
for each component and for total litterfall. Each forest type was
characterized by total annual input to the forest floor of biomass and
individual nutrients for each component as well as total litterfall.
Canonical analysis was performed on the yearly totals to test for signifi-
cant differences among the forest types.

Live foliage from the ten predominant species of trees on the
watershed, determined by order of total basal area, was analyzed for
biomass, nutrient concentration, and changes in nutrient content through
the growing season. Seasonal trends for these variables, including the
ranking of nutrient concentrations for spring versus fall, were discussed
in relation to differential growth, translocation, and leaching factors.
Most of the litterfall in all forest types (77-85%) was in leaves with
fall maximum. Reproductive parts (8-14% with spring and fall maxima)

and branches (8-11% with no seasonal trend) contributed the remainder.
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The ranking of nutrient content in litterfall was similar in spring and
fall, except for the replacement of nitrogen by calcium in autumn as the
predominant nutrient (followed by K > Mg > P > Na).

Comparisons were made between weight and nutrient content for
Tiving leaves and leaf litter input in litterfall. The ranking of total
nutrient content per leaf in spring foliage was N > K > Ca > Mg > P > Na.
The autumn foliage ranking was the same as that for autumn leaf 1litter-
fall (Ca > N> K > Mg > P > Na), the change being due to differing
behavior of the particular nutrients (translocation, biomass dilution
and removal by leaching).

In the four forest types analyzed, significant differences
occurred in the biomass and individual nutrients recycled to the forest
floor. The greatest litterfall and amounts of nitrogen input occurred
in the pine forest type. Oak-hickory forests had the greatest litter
inputs of magnesium and potassium. Calcium return was greatest in the
mesophytic hardwood forest. No marked differences in the amounts of
sodium and phosphorus return in the forest floor occurred among meso-
phytic hardwoods and oak-hickory forest types, which were consistently

higher than pine and pine-oak-hickory forest values.
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CHAPTER I

INTRODUCTION

Development of the Problem

Litterfall is one of the most important processes in forest eco-
systems, because it is a major pathway for both nutrient and energy
recycling to the forest floor (Bray and Gorham 1964). Litter is the
substrate upon which nutrient mineralization in the upper soil horizons
is based (Carlisle, Brown and White 1966); biological return of ele-
ments is particularly important to the nutrition of woodlands on soils
of low nutrient status where tree growth depends to a great extent upon
the short-term or annual recycling of nutrients. Tree growth can be
decreased by removing litter from beneath forests growing on poor soils
(e.g., Van Goor and Tiemens 1963). Fallen leaves and other Titter com-
ponents are important sources of nutrients and organic material in for-
est soils for forest nutrition and continued productivity.

Many chemical elements are contained in woodland plants and have
well-defined biogeochemical cycles. Some elements, such as carbon,
circulate in large quantities; others, for example, nickel and cobalt,
are present only in trace amounts (Warren and Delavault 1954, 1957).
Several elements, including calcium, magnesium, potassium, nitrogen,
and phosphorus, are essential to plant nutrition. Others such as
sodium, are not required in plant biochemistry, but are physiologically

essential to other forest organisms in higher trophic levels.

Objective

The objective of this study was to quantify the seasonal dynamics

of biomass and nutrients in litterfall components for four forest types
1
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on Walker Branch Watershed, ERDA Reservation, Oak Ridge, Tennessee.
Leaf weights and nutrient contents of the ten dominant trees in those
forest types were analyzed in order to relate changing nutrient values
in foliage during the growing season to observed values in litter input
to the forest floor. Data were collected on the growth rate of leaves
of deciduous and coniferous trees, and the seasonal variation in ele-
mental concentrations and total amount for nitrogen, phosphorus, calcium,
sodium, potassium and magnesium. Concomitant measurements were made of
total Titter inputs to the forest floor for the four forest types which
characterize the watershed. Seasonal biomass and nutrient contents of
litterfall and its components of leaves, reproductive parts and branches,
were determined on a unit area basis. Summaries of the total biomass
and element return to the forest floor were developed for the entire
watershed, based upon the contribution of area of each forest type to
the total watershed. The relative importance of nutrient return in
litterfall in each forest type was addressed, as was the importance of
bioTogical inputs of elements through litterfall in the recycling of

elements from vegetation to soil in forest ecosystems




CHAPTER II

MATERIALS AND METHODS

Site Description and Location

The study was conducted on the 97.53 hectare (ha) Walker Branch
Watershed on the ERDA Reservation in Oak Ridge, Tennessee (Figure 1).
The watershed is underlain by Knox dolomite, and soils formed over this
substrate are well drained and have a high infiltration capacity. Mean
annual precipitation is 135 cm/yr, and temperature averages 13.3°C
(Curlin and Nelson 1968).

Detailed characterization of the composition and structure of
forest types on Walker Branch Watershed has been reported by Curlin
and Nelson (1968) and Grigal and Goldstein (1971). The following is
a brief summary to clarify the general characteristics of each forest
type. The pine forest consists of relatively pure pine stands of
planted loblo1ly (Pinus taeda) and natural stands of shortleaf pine

(Pinus echinata) with few other arboreal species. The understory is

poorly developed, and honeysuckle (Lonicera japonica) is the predomi-

nant ground cover. The pine-oak-hickory forest has codominants of

Pinus echinata, Carya sp. (mainly Carya tomentosa) and Quercus sp.

Other canopy species include black gum (Nyssa sylvatica) and sourwood

(Oxydendron arboreum). The pine-oak-hickory forest has a developed

understory of dogwood (Cornus florida), red bud (Cercis canadensis),

and sassafras (Sassafras albidum). The oak-hickory forest has the same

composition of tree species as the pine-oak-hickory forest type except

that pines are absent. The mesophytic hardwood type is characterized

by tulip poplar (Liriodendron tulipifera) and red maple (Acer rubrum)

3
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with a well-developed canopy of deciduous hardwood characteristic of
the deciduous hardwood forest (Braun 1964). Other infrequently occurring
tree species that are indigenous to streams and valleys are classified

in the mesophytic hardwood forest, e.g., sycamore (Platinus occidentalis)

and beech (Fagus grandifolia). The ground vegetation stratum is well

developed with perennial, herbaceous vegetation (Taylor 1974).

Sample Plot Location

On the basis of variance estimates calculated from forest manage-
ment data collected on the Oak Ridge Reservation, preliminary analyses
(Curlin and Nelson 1968) determined that 300 .081-ha plots distributed
among the four forest types were needed for dimension analyses to esti-
mate stand composition and productivity within = 15% accuracy on the
watershed. Within the core study plots 80 Titter traps were allocated
according to the range of size classes, age and height categories for
each forest cover type (Table 1).

Because pine forest types exhibited greatest consistency among
plots for the above characteristics, fewest litter traps were allocated
to that category. Mesophytic hardwood and oak-hickory forest types,
with greatest range in composition and structure, received the largest
allocation of Titter traps. The criterion for the number of traps
allocated to a single forest type was that of maintaining a coefficient
of variation (C.V.) for litter biomass estimation < 25%. Actual varia-
tion (expressed as C.V.) associated with estimates of annual litter
input for each forest type using this experimental design (Table 1)
was: 28% for pine, 20% for pine-oak-hickory, 24% for oak-hickory, and

26% for mesophytic hardwoods.



Table 1. Allocation of litter traps based on percentage
cover of the four forest types on Walker Branch

Watershed

Distribution of
Forest Types

Forest Litter Trap
Type Acres % Area Allocation

1 Pine 17 7 6

2 Pine-0ak-Hickory 35 14 14

3 Oak-Hickory 143 60 35

4 Mesophytic Hardwood 46 19 25
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Litterfall Collection and Chemical Analyses

Litterfall collections began on July 1, 1969 and continued for
one year. Collections were made monthly during the summer, biweekly
during the autumn, and once during the winter. Nine collections were
made during the year (Table 2). Litter traps (Figure 2) were one meter
square with 25 cm high redwood sides and bottoms of bronze wire mesh
(6 mesh per cm). The litter traps were leveled at approximately 60 cm
above the ground to prevent input of resuspended windblown materials.
Prior examination indicated that all material caught in the traps came
directly from aboveground vegetation and was not blown in from the for-
est floor.

The Titter collected from the traps was separated into three
components: (1) leaves and needles, (2) branches and bark, and (3)
reproductive parts. The material was separated into each component
at the trap site, brought into the laboratory, dried for 24 hours at
76°C, weighed, and milled to pass a number 40 screen. Samples weighing
approximately one gram were then ashed for 8 hrs at 525°C, dissolved in
2.5 ml of 2 N HC1, filtered through Whatman No. 42 filter paper, and
brought to volume with 100 ml distilled water. Calcium, potassium,
magnesium, and sodium determinations were made by the Analytical Chem-
istry Section of the Oak Ridge National Laboratory using a Perkin-
Elmer Model 403 Atomic Absorption Spectrophotometer. Strontium was
used to reduce anion interference. The procedures used to determine
each element are described in Kahn (1971). Phosphorus determinations
were made by the sulfuro-molybdate method on a Technicon Auto Analyzer.

The details of the method used for the phosphorus determinations are



Table 2. Dates and intervals of litter trap
collections on Walker Branch Watershed

Collection Days between
Number Date Collections
1 July 31, 1969 31
2 September 2, 1969 33
3 October 15, 1969 43
4 October 30, 1969 15
5 November 12, 1969 13
6 December 2, 1969 20
7 March 5, 1970 93
8 June 1, 1970 88

9 July 1, 1970 30




§i PHOTO 0984-71
:,gg

Figure 2. A one meter square litter trap on a study plot used
to collect litterfall components.
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available in Lundgren (1960). Total nitrogen was determined by the
semi-micro Kjeldahl procedure described by Black (1965).

A1l calculations of chemical contents of sample materials were
based upon the mean of replicate analyses of two homogeneous subsamples
of v 1 g each taken from the dried and homogenated 1itter component.
Precision of chemical determinations (maximum percentage deviation from
the mean) based upon National Bureau of Standards orchard leaf stan-
dards for the respective analytical procedures was: calcium, 2%;
nitrogen, 2%; sodium, 4%; phosphorus, 4%; magnesium 2%; and potassium,
2%. These percentages are the maximum range of individual measurements
from mean values and incorporate errors associated with both analytical

procedures and variances between subsamples.

Leaf Sampling

The objectives of separate analyses of leaf material were: (1)
to determine growth rates of leaves of major species from bud break
until abscission and (2) to quantify the seasonal change in concentra-
tion of major nutrients in Tiving leaves. Ten tree species, which con-
tributed 88% of the basal area (Table 3) of the watershed, were sampled
beginning May 2, 1969 and continuing through May 4, 1970 (phenologically
from cessation to cessation of dogwood flowering) on a maximum of 17
different sampling dates (Table 4). Forty trees were sampled across
the ten species studied; the same trees were sampled at each collection
date. Table 3 summarizes the number of trees, age, and range of diame-
ter at breast height (DBH) of each species.

Canopy foliage was sampled by shooting leaves (25 leaves were

sampled) off the trees with a shotgun. On each sampling date 25 conifer
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Table 3. Major tree species studied on Walker Branch Watershed with
DBH range, age, number of trees sampled and basal area of

each
Number of a
b DBH Age Trees Basal Area
Species (cm) (years) Sampled  (mé/ha)
Pinus taeda L. 21.1-29.0 20-21 3 0.52
(Loblo1Ty Pine)
Pinus echinata Mill. 30.7-38.1 89-121 3 2.48
(Shortleaf Pine)
Quercus rubra L. 23.9-41.4 28-68 4 1.12
(Red Oak)
Quercus alba L. 29.2-36.7 41-64 4 2.21
(White Oak)
Quercus prinus L. 26.4-46.0 36-83 6 3.39
(Chestnut Oak)
Liriodendron tulipifera L. 22.4-37.9 30-52 5 2.14
{Yellow Poplar)
Acer rubrum L. 16.0-26.7 20-32 4 1.44
(Red MapTe)
Nyssa sylvatica Marsh. 17.0-33.5 27-53 3 0.95
(BTack Gum)
Oxydendrum arboreum (L.) DC. 7.6-11.7 12-2] 3 1.09
(Sourwood)
Carya tomentosa Nutt. 27.9-38.6 38-88 5 2.31

(Mockernut Hickory)

3Total basal area of all overstory vegetation on Walker Branch
Watershed averages 20.8 mé/ha with a total of 53 tree species
represented (Grigal and Goldstein 1971).

bE. L. Little, Jr. 1953. Check List of Native and Naturalized
Trees of the United States. Agricultural Handbook No. 41. U. S.
Government Printing Office, Washington, 1953. 472 p.




Table 4.

Frequency of foliage collections
from ten major tree species on
Walker Branch Watershed

Collection Number Date

1 May 2, 1969

2 May 16, 1969

3 June 4, 1969

4 July 2, 1969

5 July 29, 1969

6 August 26, 1969

7 September 13, 1969
8 September 30, 1969
9 October 15, 1969
10 October 29, 1969
11 November 11, 1969
12 November 26, 1969
13 December 30, 1969
14 February 7, 1970
15 March 31, 1970

16 April 15, 1970

17 May 4, 1970
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leaves, with each fascicle counting as a single Teaf, were collected in
the same manner as deciduous leaves. Conifer leaves were also collected
during the winter months. Leaf collections were brought to the labora-
tory, and the same procedures and techniques were used for drying and

chemical determinations as for litter trap samples.

Sampling Considerations

Certain sources of error must be acknowledged in sampling vegeta-
tion for determination of seasonal nutrient dynamics. One type involves
genetically-based physiological variations within a species-population,
including differences due to life-history phenomena (Manshard 1933).

For conifers, which carry their needles for two of three years, the
situation is further compounded (Hoyle 1965). These factors interact
with environmental heterogeneity and the two sources of error are often
difficult to distinguish. Trees of different ages may have experienced
different environmental extremes during their ontogenies, and may occupy
divergent soil and atmospheric strata. Both age and environmental con-
ditions were variables involved in the results of foliage data of Murneck
and Logan (1932), McClung and Lott (1956), Askew et al. (1959), and Koo
and Sites (1956). The situation is further complicated because growing
leaves utilize nutrients stored in the perennial tissue in previous years.
For these reasons it is risky to transpose results from one year to the
next. In the present study no attempt was made to account for genetic
variability, and sampling was not biased for age or physical condition,
although extreme conditions were avoided. For conifers the newly ini-
tiated foliage was not sampled. The soils on the watershed are quite

similar (Peters et al. 1970), with the main difference involving topographic
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position and consequent soil moisture conditions. In regard to soils
and extreme moisture conditions (for example solid rock outcroppings
and swampy areas) trees occupying highly atypical situations were not
considered.

Concerning time of sampling, many investigators (Frank and Otto
1891, Miller 1926, Chibnall 1929, Mitchell 1936, Biddulph 1941, and
Phillis and Mason 1942) found significant diurnal changes in foliar
concentrations for at least some of the nutrients studied. Mitchell
(1936) and Denny (1933) advocated sampling at the same time of the
day during each collection. Similar precautions were taken in this
study, with all samples being collected within the same 3-4 hour period
on each date.

Much work, a great deal of it conflicting in results, has been
done concerning the effect of position of leaves on the trees on their
nutrient concentrations. These include vertical position (Seiden 1926,
Wallihan 1944, White 1954, and Guha and Mitchell 1966), cardinal posi-
tion (Seiden 1926, Wallihan 1944, Tamm 1951, and White 1954) and posi-
tion on a twig or branch (Wallihan 1944, and Guha and Mitchell 1965).
In the present study those possible effects are integrated into the
sampling technique. The Teaves from whole twigs or small branches,
taken from three cardinal positions at random heights in the canopy,

were removed and composited for each sample.

Expression of Data

The literature reveals a general lack of conformity in expressing
data on foliar nutrient dynamics. Olsen (1948) and Hoyle (1965) draw
attention to the drawbacks in the use of concentration values alone,

including reduction of measurement sensitivity, obscuring seasonal
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gaiﬁs and losses of nutrients and inability to detect differences in
total foliage nutrient levels. While certain phenomena, such as deter-
mination of relative changes among different nutrients at a given time
for a given species, can be gleaned from concentration data alone,
interspecific comparisons and seasonal differences in foliage nutrient
levels, even within the same species, are masked due to changes in the
dry weight of the leaf material. As such, false impressions regarding
translocation to and from the leaves and leaching effects are possible
when using just this one measure. Since total content (weight of nu-
trient per gram dry weight) of a nutrient can be derived quite readily
from concentration and dry weight data, and since the inclusion of all
three parameters requires no additional field work and no significant
amount of additional analytic endeavor, all three measures should

generally be reported.

Statistical Analysis

Analysis of variance techniques were used to compare the concen-
trations of each nutrient considering forest types and litter components
as fixed factors in a factorial arrangement of treatments. Nutrient
concentrations were based on totals from those traps collecting more
than 3 grams (dry weight) of a particular litter component. The P < 0.05
level of significance was used in the analysis of variance while Duncan's
Multiple Range test, also at the P < 0.05 level, was used to compare
means of those factors with significant F ratios.

The total amount of litter collected in a particular trap was
quite variable within a forest type and extremely variable when either
branches or reproductive parts were compared. This variability in the

total nutrient content between litter traps precluded rigourous
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statistical analysis of either branches or reproductive parts. Vari-
ability for total nutrients (sum of leaves, branches and reproductive
parts) and nutrients in the leaf component were less variable but
differed between the forest types. This was especially true for Ca, Mg
and K. Because of these unequal variances, 95% Confidence Intervals
were constructed about each mean with non-overlapping intervals used to
indicate significant differences at the P < 0.05 Tevel.

The Multivariate Technique, Canonical Analysis, was performed to
test for differences that may exist between the four forest types
annually. The total dry weight and the total content of the six nu-
trients in each component of litterfall and in total Titterfall were

values used in this evaluation.



CHAPTER III

RESULTS

Seasonal Foliage Weight and Nutrient Dynamics

Weight changes. Loblolly and shortleaf pine leaf weights remained

relatively constant throughout the year (Figure 3). The uniform weight is
due to the fact that newly initiated leaves were not sampled at any of
the collection dates. A1l deciduous species showed sharp increases in
dry weight during May when foliar development was most prominent. Some
species, notably red oak and tulip poplar, showed gradual increases in
Teaf weight after the first of June whereas leaf weight of other species
did not change. The oaks and tulip poplar produced the heaviest Teaves
and values are consistent with those of Bray and Gorham (1964). Mitchell
(1936) reported maximum dry weights of 15.4, 13.4 and 5.6 g/25 leaves for
red oak, white oak, and red maple leaves, respectively. Corresponding
weights in this study were 17.5, 9.4 and 6.3 g/25 leaves.

The deciduous species lost an average of 28% of their maximum
weight from two to six weeks prior to abscission. Sampson and Samisch

(1935) attributed the 14% weight Toss they observed for Quercus gambelli

prior to abscission to leaching and to translocation of nutrients and
other materials from leaves to branches. Viro (1955) reported leaf weights
prior to abscission in four deciduous species to average 21% less than
weights of leaves during the summer when their weights were greatest.

Timing of leaf abscission. Tulip poplar, black gum, and sourwood

leaves fell earliest (late October), followed by red maple, hickory,
chestnut oak, and red oak leaves (late October-early November). White

nak leaves fell last (mid-November).
17
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Figure 3. Seasonal patterns of the oven dry weights of leaves
of major tree species on Walker Branch Watershed.
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Seasonal Foliage Nutrient Changes

Nitrogen. Although leaves of some deciduous species had higher
nitrogen concentration than did others at a given time, all exhibited a
decrease in nitrogen concentration as leaf development progressed (Figure
4). The decrease in concentration was the result of increases in leaf
weight (dilution) as the season progressed. The highest observed con-
centration on a dry wt basis was 3.6% nitrogen (sourwood) on the early
spring collection (May 2). The average nitrogen concentration in the
early spring collection (May 2) was 2.9% while the average of the autumn
collection (October 29) was 0.5%. Alway, Maki, and Methley (1934) also
found the average nitrogen concentration of nine deciduous tree species
on five sampling dates (June 1, July 1, August 1, September 1, October
11-16) in Minnesota to range from the high in June of 3.0% to a low in
October of 0.8%.

Leaves of the two coniferous species contained generally Tlower
nitrogen concentrations than did deciduous species, and those concentra-
tions remained relatively constant through the year. Rodin and Bazilevich
(1967) found nitrogen concentrations in deciduous leaves to be roughly
twice those in conifer leaves.

Although the actual nitrogen content varied (due to leaf weight
differences) among species, all deciduous species exhibited similar
patterns as the year progressed (Figure 5):

1. There was an increase in nitrogen content during the -

period of most rapid growth (May).
2. The nitrogen content leveled off in June and remained

rather constant until the last of August.
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COLLECTION NO. L] 2 3 4 5 6 7 8 9 10
MAY 2 MAY 16 JUNE4 JULY 2 JULY 29 AUG26 SEPT I3 SEPT 30 OCT45 OCT29
LOBLOLLY PINE 59.8 50.3 54.7 44.6 438 374 26.2 38.0 28.6 33.8
SHORTLEAF PINE 16.8 22.4 174 29.3 10.3 1.8 9.2 2.4 10.6 11.4
RED OAK 208.0 212.0 248.0 2450 2450 204.0 196.0 2300 2200 151.0
WHITE OAK 90.1 17.0 149.0 13.0 124.0 137.0 146.0 126.0 123.0 109.0

CHESTNUT OAK 1430 235.0 236.0 222.0 199.0 207.0 232.0 178.0 182.0 1400.0
TULIP POPLAR 169.0 228.0 210.0 226.0 213.0 186.0 157.0 135.0 129.0

RED MAPLE 85.5 78.3 92.3 79.4 79.9 79.0 89.9 736 64.3 25.2
BLACK GUM 65.8 95.8 144.0 102.0 88.6 63,2 60.5 54.0 30.7
SOURWOOD 23.6 57.3 101.0 109.0 84.5 77.9 74.2 48 .4 46.4
HICKORY 72.9 851 122.0 89.4 108.0 88.3 82.7 83.0 57.8 334
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Figure 5. The amounts of nitrogen in leaves of major tree
species on Walker Branch Watershed.
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3. The nitrogen content decreased from September through

defoliation.

Both coniferous species exhibited a trend of decreasing nitrogen
with time. The nitrogen content in conifer foliage at nearly every
collection was less than the nitrogen content in leaves of all deciduous
species.

Calcium. Other investigators (Alway et al. 1934, Rodin and
Bazilevich 1967, Gagnon et al. 1958, Chandler 1939) found that calcium
concentrations in leaves increase as the season progress (Figure 6).
Calcium is a structural constituent of cell walls and, therefore, is not
diluted by growth; it must be supplied to the foliage throughout the
season. Tulip poplar and hickory leaves had higher calcium concentrations
than did the Teaves of other deciduous species.

Chandler (1939) determined the calcium concentrations in leaves
of six species that were examined in this study just prior to leaf fall
(Table 5). The calcium concentrations in white oak, red oak, and chest-
nut oak leaves were similar, but tulip poplar and hickory leaf values
were higher in Chandler's study and red maple concentrations were higher
in this study.

The deciduous leaves had higher calcium concentrations than did
conifer foliage at nearly all collection dates. There was an increase
in calcium concentrations in conifer leaves in June and July followed
by a sharp decrease in August and September. Loblolly pine leaves
exhibited another increase during fall and winter with a decrease again
in early spring.

The total calcium content in foliage of all deciduous species

studied increased as leaf development progressed (Figure 7). Some species
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Figure 6. Seasonal patterns of calcium concentrations (% dry
weight) in leaves of major tree species on Walker Branch Watershed.
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Table 5. A comparison of calcium values in foliage from six deciduous

species
Walker Branch Watershed

Chandler's 1939 Average 1969-1970 Average
Species (% oven dry wt.) (% oven dry wt.)
Tulip Poplar 3.24 1.92
Mockernut Hickory 2.62 2.04
White Oak 1.36 1.41
Red Oak 1.21 1.12
Chestnut Oak 1.20 1.40

Red Maple 0.91 1.36
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COLLECTION NO. 1 2 3 4 5 6 7 8 9 10
MAY 2 MAY {6 JUNE4 JULY 2 JULY?29 AUG?26 SEPT13 SEPT30 OCTI5 OCT 29
LOBLOLLY PINE 14.5 9.8 29.4 34.3 30.9 25.0 7.6 9.1 401 28.3
SHORTLEAF PINE 3.8 3.8 5.5 17.5 8.7 4.7 4.0 37 3.4 4.0
RED OAK 50.3 67.7 89.5 1140 118.0 137.0 139.0 151.0 185.0 479.0
WHITE QAK 21.2 51.6 74.6 88.6 100.0 99.7 {01.0 2.0 142.0 1427.0

CHESTNUT OAK 27.7 64.9 9.7 112.0 129.0 {74.0 176.0 159.0 173.0 199.0

TULIP POPLAR  41.3 78.6 16,0 1440 181.0 2150 189.0 190.0 166.0

RED MAPLE 15.9 33.3 42.3 48.3 54.3 60.9 84.0 70.5 69.4 30.9

BLACK GUM 1A 26.5 44 .4 56.9 49.2 59.0 60.0 73.8 42.5

SOURWOOD 34 12.4 30.5 41.8 48.5 446 44.4 36.5 442

HICKORY 25.3 58.5 82.0 92.4 12.0 109.0 104.0 123.0 130.0 94.9
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Figure 7. The amounts of calcium in leaves of major species on
Walker Branch Watershed.
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(tulip poplar, chestnut oak, red oak, hickory, and white oak) added great
amounts of calcium while others (black gum, red maple, and sourwood)
added lesser amounts. There was a slight decrease in calcium content
before Teaf fall in tulip poplar, red oak, hickory, red maple, and black
gum associated with a weight loss in leaves prior to abscission.

Magnesium. All species showed fluctuations in magnesium concen-
trations throughout the season (Figure 8). Magnesium concentrations in
red oak leaves (0.59-0.99%) increased during the development, while red
maple leaves (0.23-0.22%) showed no change through the season. Alway
et al. (1934) showed a similar trend for red oak (increases from 0.38 to
0.61%). Red oak leaves had higher magnesium concentrations than leaves
of other deciduous species at all collections. In most collections white
oak and tulip poplar leaves contained the next highest concentrations.
Deciduous leaves of sourwood, red maple, and chestnut oaks had the Towest
magnesium concentrations. Conifers (loblolly and shortleaf pine) had
lTower concentration than deciduous species at nearly every collection.

With the exception of red oak and tulip poplar, magnesium content
of deciduous leaves increased from May through June and then remained
relatively constant throughout the remainder of the season (Figure 9.).
Magnesium contents in red oak, and to a lesser extent tulip poplar,
continued to increase through the summer before declining slightly in
autumn.

Sodium. The sodium concentrations (Figure 10) in the ten species
studied ranged from 0.01 to 0.06%. The sodium values for all species
were quite variable and may have been due to contamination during sample
collection and preparation for analysis. Guha and Mitchell (1965) found

the sodium concentration in red oak leaves to range from 0.02 to 0.30%,
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ORNL-DWG 732384

COLLECTION NO. { 2 3 4 ) [ 7 8 9 10
MAY 2 MAY {6 JUNE 4 JULY 2 JuULY 29 AUG 26 SEPT43 SEPT 30 OCT {5 OCT 29
O LOBLOLLY PINE 6.60 4.41¢ 9.2 3.92 502 3.22 2.72 4.00 3.94 4.26
® SHORTLEAF PINE 2.03 1.26 4.44 4147 1.97 0.97 1,09 0.98 0.87 1,40
& RED OAK 51.65 9740 73.65 76.50 147.98 123.24 t43.57 $23.63 143.9( 426.74
A WHITE QAK 6.43 119 {2.65 £1.54 $5.23 9.16 14.62 8 .40 44.02 1,33
0 CHESTNUT OAK 1{.84 19.80 24.56 24 .20 19.43 24 .95 24.32 18 .80 21.09 20.75
® TULIP POPLAR 18 .56 29.94 44,99 47 .24 58.50 53 .02 55.34 42 .36 40.77
Vv RED MAPLE 6.70 8.93 10.79 14.59 10.65 14.44 45.70 12.76 {2.44
¥ BLACK GUM 8.66 17.05 30.75 28.78 21.08 26.73 21.42 28.59 19.08
¢ SOURWOOD 174 296 6.66 8.51 7.87 6.97 6.77 5.33 7.49
4 HICKORY 8.83 15.87 21.72 21.60 18.73 23, 44 18.93 21.53 24.55 15.54
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species on Walker Branch Watershed.



.y o oa

0.060

0.055

0.050

0.045

0.040

0.035

SODIUM (%)

0.030

0.025

0.020

0.015

0.010

29

ORNL~DOWG 74-93008

R

LOBLOLLY PINE
SHORTLEAF PINE
RED OAK

> > e O

WHITE OAK
CHESTNUT 0OAK
TULIP POPLAR
RED MAPLE

BLACK GUM
SOURWOOD
HICKORY

<
—
%
e o 4 am a0

\
=—

/!
~

ay

e
\
/.
Vo

N

i

=

MAY JUNE  JuLy AUG SEPT ocT NOV DEC JAN FEB MAR APR MAY

Figure 10.

1969 {970

Seasonal patterns of sodium concentrations (% dry

weight) in leaves of major tree species on Walker Branch Watershed.



30
higher than the range in this study. The sodium concentration in most
species had two peaks, one in August and one in October. Sodium con-
centrations did not differ among coniferous and deciduous species.

The sodium content in leaves of the deciduous species increased,
although erratically, until the sixth (August 26) collection when a
decrease occurred (Figure 11). There was another peak just prior to
abscission. Leaves of red oak, chestnut oak, white oak, tulip poplar,
hickory, and black gum in the last collection (October 29) decreased in
sodium content while leaves of sourwood and red maple increased slightly.
The conifer leaves contained a rather constant amount of sodium at all
collection, with Toblolly pine leaves varying more than the shortleaf
pine leaves.

Potassium. Potassium concentrations in foliage (Figure 12) were
more variable than concentrations of other elements studied except
sodium. Potassium concentrations in leaves of deciduous species
decreased initially. Hickory and tulip poplar leaves were exceptions
in that concentrations rose and then declined sharply after the second
(May 16) collection. Potassium concentrations in tulip poplar, red oak,
chestnut oak, and red maple leaves decreased until abscission. Concen-
trations fluctuated somewhat in white oak, hickory, and black gum and
values of the first collection were higher than the last. After an
initial decline of potassium concentration in sourwood foliage there
was an increase up to the time of abscission. Mitchell (1936) found
various deciduous leaf potassium concentrations to vary among species:
0.56 to 1.66%. Kornev (1959) reported concentrations to vary from 0.31
to 1.37%; concentrations in this study were 0.29 to 1.60% and agree with

their results.
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ORNL-DWG 73-2380

COLLECTION NO. i 2 3 4 5 6 7 8 Q {0
MAY 2 MAY{6 JUNE4 JULY2 JULY 29 AUG 26 SEPT I3 SEPT 30 OCT {5 OCT 29
O LOBLOLLY PINE 0.85 0.6 0.82 0.75 0.74 1.35 0.55 0.88 0. 9¢ 0.88
® SHORTLEAF PINE 0.47 0.20 033 0.36 0.14 0.39 0.23 0.37 0.56 0.35
& RED OAK 1.3 2.06 2.66 294 5.38 749 2.88 3.66 5.47 3.63
4 WHITE OAK 0.52 1.23 1.87 1.84 1.9 4.20 2.48 2.00 3.63 2.82
0 CHESTNUT OAK 1.40 2.54 3.38 2.92 2.94 4.70 4.02 39 3.90 3.40
8 TULIP POPLAR 1.47 1.47 3.06 2.53 5.44 4.92 2.70 3.30 2.82
vV RED MAPLE 0.54 0.98 1.26 0.79 1.03 1.84 1.45 1.40 1.70
¥ BLACK GUM 0.33 0.60 1.47 1.82 1.44 2.82 1.52 2.51 1.65
0 SOURWOOD 0.10 0.35 1.06 1.20 0.74 1.48 1.38 1.45 1.50
4 HICKORY 0.54 0.77 1.36 124 1.84 1.89 1.58 1.85 2.96 1.55
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Figure 12. Seasonal patterns of potassium concentrations (% dry
weight) in leaves of major tree species on Walker Branch Watershed.
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Potassium concentrations in leaves of the two pine species
remained constant throughout the year. Conifer foliage contained smaller
concentrations than did the deciduous foliage.

Although the total potassium content in leaves varied among
species, most followed the same general pattern (Figure 13):

1. There was a sharp increase in potassium content during

spring (May 16 collection).

2. There was a leveling off in potassium content until

early autumn (September 13 and September 30 collec-
tions).

The decrease in potassium content was due primarily to a decrease
in percentage concentration and not due to the leaf weight loss before
defoliation. Tulip poplar was the one species that differed from the
other deciduous species in potassium content. After an initial increase
in potassium content at the second (May 16) collection there was a con-
stant decrease until leaf abscission.

Phosphorus. Like nitrogen, the concentrations of phosphorus (Figure
14) in deciduous leaves generally decreased with leaf development. The
deciduous species showed early concentration differences, but those dif-
ferences diminished as the season progressed. Phosphorus concentrations
in conifer foliage were lower than those in the deciduous foliage early
in the season but as the season advanced the conifer foliage had phos-
phorus concentrations nearly equal to the concentrations of the deciduous
foliage. Guha and Mitchell (1965) reported that phosphorus concentrations
decreased from 0.54% in spring to 0.12% in fall in sycamore (Platanus

occidentalis L.) to range from 0.37% in spring to 0.08% in fall. for the

ten species studied on Walker Branch Watershed the highest concentration
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Figure 13. The amounts of potassium in leaves of major tree
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was 0.37% in spring and ranged to the lowest concentration of 0.05% in
fall before abscission.

The phosphorus content in foliage is illustrated in Figure 15.
Leaves of all deciduous species except white oak contained more phos-
phorus during spring than during fall. Most deciduous species (red oak
being the exception) increased in phosphorus content during spring (May

16 or June 4 collection) and then decreased until abscission.

Seasonal Variation in Litterfall Mass

Total litterfall. Total litterfall dry weight ranged from 443

to 492 g/m2 among the four forest types on Walker Branch Watershed
(Figure 16). Pine stands produced the most litterfall followed in
decreasing amounts by oak-hickory, pine-oak-hickory, and mesophytic
hardwood stands but differences between forest types were not significant.
These values are similar to the values reported for deciduous forest
stands in South Carolina (455-630 g/mz) by Metz (1952) but less than
Titterfall in tropical forests (900-1200 g/mz) and more than values for
Sierra stands (90-336 g/m2) (Jenney, Gessel, and Bingham 1949).

O0f the total litterfall, 77 to 82% occurred as leaf fall while
the remainder was branches (8 to 11%) and reproductive parts (8 to 14%).
Bray and Gorham (1964) found an average of 27 to 31% of the total Titter-
fall fell as non-leaf 1itter when they summarized data from various forests
throughout the world.

Leaf fall. Leaf fall ranged from 342 g/m2 in the mesophytic hard-
wood, 377 g/m2 in the pine-oak-hickory, 389 g/m2 in the pine, and 398 g/m2
in the oak-hickory forest. Differences in annual leaf fall totals between

forest types were not significant. Rodin and Bazilevich (1967) reported
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Figure 15. The amounts of phosphorus in leaves of major tree
species on Walker Branch Watershed.
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annual leaf fall in deciduous forests to be fairly constant in different
regions, amounting to 300-400 g/m2.

The leaf component of oak-hickory forests contributed 82% of
total litterfall. Leaves of the pine and pine-oak-hickory forests
accounted for 81% and mesophytic hardwood leaves accounted to 77% of
total litterfall. Rates of leaf fall were greatest during autumn in
all forest types (Figure 17). Peak leaf fall in pine stands extended
over a four week period, whereas, leaf fall in the other forest types
occurred over a shorter interval.

Branch fall. Branch fall was greatest in the pine forest (56
g/mz), followed in decreasing order by mesophytic hardwood (38 g/mz),
pine-oak-hickory (37 g/m2), and oak-hickory (37 g/mz). Differences,
however, were not significant (Figure 16). Branch fall accounted for
from 8 to 11% of the total litterfall. The rate of fall of branches
and bark in the litter traps (Figure 18) was much more variable than
the rate of fall of leaves. Seasonal patterns were evident. Nye (1961)
found branch fall over a small area to be very erratic and difficult to
measure, since it could be influenced greatly by the fall of even a
single large branch or tree. Such factors as wind and age of stand
affect the time as well as the amount of fall.

Reproductive parts fall. Input of reproductive parts on an annual

basis (Figure 16) was greatest in the mesophytic hardwood forest (63 g/m2)
and least in the pine forest (38 g/mz). Reproductive parts input in the
oak-hickory and pine-oak-hickory forests had intermediate amounts (52

g/m2 and 51 g/mz, respectively). Differences in annual reproductive

parts fall between the forests were not significant. The rate of fall

of reproductive parts (Figure 19) was similar for all forest types,
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especially in late spring when reproductive parts play important roles
in litterfall. The importance of reproductive parts to litterfall during
the spring can be seen more fully when the absolute amount (wt./day x
number of days) is considered rather than the relative rates expressed

as g/14 days collection period.

Seasonal Variation of Nutrients in Litterfall

Nitrogen. Total nitrogen return in litterfall was greatest in
pine (3.75 g/m2), followed by oak-hickory, mesophytic hardwood, and
pine-oak-hickory forests (3.65, 3.62, and 3.41] g/m2) (Figure 20).
However, forest type differences were not statistically significant.
Carlisle et al. (1966) found a similar annual nitrogen return (4.11

g/m2) in a Quercus petraea forest. Of the total nitrogen return in

this study, leaf fall accounted for 75 to 81% of total litterfall input.
Nitrogen concentrations in leaf fall of all four forest types
generally decreased as the season progressed from spring through fall
and winter (Figure 21). There was then an increase in May of the fol-
Towing year. The nitrogen concentrations in leaf fall from pine stands
on Walker Branch Watershed ranged from 0.56 to 1.09%. Lutz and Chandler
(1946) also studied conifer and deciduous leaf litter and found the
nitrogen concentrations to range from 0.58 to 1.25% and 0.51 to 1.01%,
respectively. Deciduous stands in this study had nitrogen concentrations
ranging from 0.59 to 1.52%. Annual nitrogen return in leaf fall was
similar in all forest types, and differences ranging from 2.70 g/m2 in
mesophytic hardwood to 3.04 g/m2 in pine (Figure 20) were not significant.
Even though the concentration of nitrogen decreased with the approach of

autumn the greatest amount of nitrogen in leaf fall was transferred to the
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forest floor during autumn due to the greater weight of leaves that fell
during that period (Figure 22). The transfer rate of each nutrient is
dependent upon the weight of each component of litterfall as well as the
concentration of the nutrient. Therefore, the rate may follow the dry
weight pattern of 1itterfall, especially if nutrient concentrations are
Tow. Differences in the seasonal rate of transfer of nitrogen in the
leaf fall between forest types were primarily due to weight differences
in litterfall.

Nitrogen concentrations in branches remained relatively constant
throughout the season (Figure 23). No apparent differences existed
between forest types and concentrations were generally measured in a
relatively narrow range from 0.50 to 0.75%. The annual nitrogen input
to the forest floor as branch fall did not differ significantly among
forest types, and ranged from 0.21 g/m2 in pine-oak-hickory to 0.34 g/m2
in pine (Figure 20). The seasonal pattern of nitrogen returning to the
forest floor in branches (Figure 24) followed weight patterns closely but
no consistent pattern among the forest types was observed.

Nitrogen concentrations in reproductive parts generally followed
the same pattern in all four forest types. Highest concentrations
occurred in the spring and then decreased through fall and remained low
in winter. The concentrations of nitrogen in the reproductive parts
showed similar patterns and magnitudes as leaf fall (Figure 25).

The annual input of nitrogen to the forest floor in the reproduc-
tive parts (Figure 20) was greatest in the mesophytic hardwood forest (0.68
g/m2), least in the pine forest (0.37 g/m2), while pine-oak-hickory (0.46
g/m2) and oak-hickory (0.53 g/m2) forests had intermediate amounts. The

seasonal pattern of nitrogen transfer via reproductive parts (Figure 26)
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showed peaks in fall and late spring. The spring peak is especially
important as it occurred over an 88 day period. Thus, most of the
return of reproductive parts occurred during spring. With few excep-
tions, the pattern of rate of litterfall was the same in all forest
types.

Calcium. The total amount of calcium that returned in all litter
components was greatest in the mesophytic hardwood (5.83 g/m2) forest,
least in the pine-oak-hickory (4.50 g/mz), and intermediate in the pine
(5.10 g/m2) and oak-hickory (4.91 g/mz) forests (Figure 27). The total
amount of calcium in the mesophytic hardwood forest varied significantly
from the total amounts of calcium in the other forest types.

Calcium concentrations in leaf litterfall followed similar patterns
in all forest types with time (Figure 28). The general trend was for
calcium concentrations to generally increase through the growing season
until autumnal leaf fall, after which concentrations decreased until the
next growing season.

The greatest amount of calcium that returned annually in leaf
fall was in the mesophytic hardwood (4.58 g/m2) and least in the pine-
oak-hickory (3.82 g/mz) forest (Figure 27). The pine (4.11 g/m2) and
oak-hickory (3.86 g/mz) forests had intermediate amounts. The leaf
contribution did show statistical differences between the forest types.
The mesophytic hardwood forest leaf calcium content varied significantly
from the pine-oak-hickory and the oak-hickory forests but did not vary
significantly from the oak-hickory hardwood forest.

The seasonal rate of transfer of calcium to the forest floor is
shown in Figure 29. The oak-hickory forest transferred most calcium

at peak leaf fall (November 12). Leaves of the pine-oak-hickory and
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Watershed.
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mesophytic hardwood forests transferred nearly equal amounts of calcium,
although those values were significantly lower than the oak-hickory value.
There was a broader peak for leaf fall in the pine forest and its major
transfer of calcium was, therefore, over an extended time period.

Branches of pine (0.64 g/m2) and mesophytic hardwood (0.61 g/m2)
forests returned the most calcium to the forest floor annually while
oak-hickory (0.53 g/mz) and pine-oak-hickory (0.26 g/mz) forest branches
returned lesser amounts (Figure 27).

Calcium concentrations in branches (Figure 30) were generally
higher than those in leaves (Figure 28). There was no discernable
pattern, however, in the branch calcium concentrations among the various
forest types.

The major input of calcium (Figure 31) to the forest floor was
by pine forest branches at the late fall collection (December 2). The
other three forest types contributed Tesser amounts of calcium with
major peaks during the fall. Again, it should be pointed out that the
age of stand and weather conditions could alter the amount of branch
Titter falling to the forest floor.

As one might expect, the pine forest (0.35 g/mz) contributed the
least amount of calcium in the reproductive parts component to the forest
floor annually (Figure 27). Pine-oak-hickory (0.42 g/m2), oak-hickory
(0.52 g/mz), and mesophytic hardwood (0.64 g/m2) forests contributed
increasing amounts, respectively. The calcium concentrations (Figure 32)
in reproductive parts in all forest types followed the same general trend
with time, with the pine forest varying most. Calcium concentrations in
the reproductive parts varied less during the year than they did in leaves

(Figure 28) or in branches (Figure 30).
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The amount of calcium transferred to the forest floor via the
reproductive parts component (Figure 33) was greatest during autumn
(October 30 and December 2 collections), especially in the pine-oak-
hickory and mesophytic hardwood forests. The summer period (June 1)
contributed a Targe amount of calcium because that is one of the times
when most of the reproductive parts fell.

Magnesium. Total magnesium return in all litterfall components
annually (Figure 34) was greatest in the oak-hickory forest (0.87
mg/mz) with decreasing amounts returned by the mesophytic hardwood
(0.83 mg/m2), pine (0.76 mg/mz), and the pine-oak-hickory (0.75 mg/mz)
forests, respectively, differences were insignificant.

Although differences among forests were insignificant, leaves
(Figure 34) in the oak-hickory (770 mg/mz) forest contributed the most
magnesium to the forest floor annually, with the mesophytic hardwood
forest (710 mg/mz) leaves returning the second greatest amount. Leaves
of the pine-oak-hickory (680 mg/mz) and pine (670 mg/mz) forests returned
the Teast amount of magnesium annually.

Leaf concentration values (Figure 35) in all forest types were
high (.187-.300%) during July, August, and September but dropped after
the October 30 collection and reached lowest values (.063-.088%) during
winter (March 5). Values for all forests then rose by the spring (June 1)
collection (.136-.255%).

A11 forests (Figure 36) transferred most magnesium in leaf litter
to the forest floor at the autumn collection (November 12), with the oak-
hickory forest (292 mg/mz) having the highest value. The pine forest ex-
hibited a broader peak for leaf dry weight transfer (Figure 17, p. 40).

This indicates that the length of time for major magnesium transfer by pine
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leaf litterfall was of longer duration than for magnesium transfer of
the leaf litterfall by the other three forest types, thereby following
the pattern of leaf litterfall.

Only about five percent of the total amount of magnesium in all
components of Titterfall was returned annually to the forest floor in
branches (Figure 34). Pine forest (50 mg/mz) branches contributed the
most, followed by the mesophytic hardwood (40 mg/mz), oak-hickory (40
mg/mz), and pine-oak-hickory (20 mg/mz) forest branches, respectively.

Magnesium concentrations in branches (Figure 37) generally
decreased from early summer (0.103-0.177%) through winter (0.030-0.063%)
after which it increased in all (0.053-0.105%) but the pine-oak-hickory
forest which remained low (0.038%).

With one exception branches transferred insignificant amounts of
magnesjum to the forest floor in comparison with magnesium transfer via
leaves in all forests (Figure 38). The exception was the magnesium
transfer rate at the late autumn collection (December 2) in the pine
forest when a significant amount of branch biomass was collected in that
forest.

The total amount of magnesium (Figure 34) that returned to the
forest floor annually in reproductive parts increased, although slightly,
from pine (40 mg/mz) to pine-oak-hickory (50 mg/m2) to oak-hickory (60
mg/mz) to mesophytic hardwood forests (80 mg/mz).

A11 forest types (Figure 39) had higher magnesium concentrations
in the reproductive parts component in summer and early fall (.132-.214%)
than in winter (.058-.073%) which had the lowest concentrations.

The greatest rate of transfer of magnesium in the reproductive

parts component (Figure 40) begain after the autumn collection (October
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Watershed.
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15) and was greatest in the pine-oak-hickory (9.9 mg/mz) and mesophytic
hardwood (8.6 mg/mz) forests, respectively. The decrease in the rate
of transfer of magnesium was evidenced after the late autumn collection
(December 2) in all forests. The second most pronounced period of
magnesium transfer in all forests (2.1-4.4 mg/mz) was in the June 1
collection and was due to fruiting bodies falling to the forest floor
at that time.

Sodium. The oak-hickory and mesophytic hardwood forests returned
the largest amounts of sodium (90 mg/mz) in total litterfall on an
annual basis (Figure 41). The pine and pine-oak-hickory (80 mg/m2)
forest litterfall components were next and contributed equal amounts
annually. Differences between forest types were not statistically sig-
nificant.

The sodium concentrations in the leaf Titterfall component in
all forests were small and the range was narrow (0.012-0.034%) for the
entire year (Figure 42). Generally, all forests leaves had the same
concentration pattern as the season progressed.

The total sodium content in leaf litterfall for the year was
greatest in the oak-hickory (72 mg/m2) and least in the pine and pine-
oak-hickory (both with 64 mg/m2) forests while the mesophytic hardwood
(65 mg/m2) forest content was intermediate (Figure 41). Values between
the forest types were not statistically significant.

Pine-oak-hickory and oak-hickory forest leaves transferred the major
portion of sodium during a two week period in autumn while pine and meso-
phytic hardwood leaves transferred most sodium over a four week period
during autumn (Figure 43). This transfer rate was expected on the

basis of the leaf 1itterfall biomass transfer rate (Figure 17, p. 40).
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floor in leaf litterfall in four forest types on Walker Branch
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The oak-hickory (31 mg/m2/14 days) forest had the highest single value,
while pine-oak-hickory (19 mg/m2/14 days), mesophytic hardwood (17 mg/m2/14
days), and pine (13 mg/m2/14 days) leaves had decreasing values, respec-
tively.

Pine forest branches (10 mg/mz) were the largest contributors of
sodium to the forest floor for the year (Figure 41). The oak-hickory
(7 mg/mz) forest branches returned the next largest amount of sodium to
the forest floor. The pine-oak-hickory (6 mg/mz) and mesophytic hardwood
(6 mg/mz) branches had equal amounts of sodium and returned the least
amount.

The sodium concentrations in branches of all forest types followed
no pattern (Figure 44). Concentrations were low and fluctuated over a
narrow range. The concentration range in branches was similar with leaf
concentrations in nearly all collections in all forest types.

There were no consistent differences in sodium transfer in branches
among the forest types (Figure 45). Fall and early spring were the two
major periods when most sodium was transferred in all forest types.

The mesophytic hardwood (11 mg/mz) forest reproductive parts
returned the greatest amount of sodium to the forest floor annually
(Figure 41). The oak-hickory (10 mg/m2) reproductive parts component
returned the next greatest amount of sodium while pine (8 mg/mz) and
pine-oak-hickory (8 mg/m2) forest reproductive parts had equal amounts
and returned the Teast sodium for the year.

The sodium concentration in the reproductive parts component of
Titterfall (Figure 46) had, with the exception of the winter (March 5)
collection in the pine forest, a range of values comparable to those

in leaves (Figure 42) and in branches (Figure 44). The high sodium
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weight) in branch litterfall in four forest types on Walker Branch
Watershed.
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concentration in the pine forest-reproductive parts at the March 5
collection may have been because an insect or insect frass was ground
with the reproductive parts component.

Fall and spring were periods when most sodium was transferred
from the canopy to the forest floor in the reproductive parts (Figure 47)
in all forests. Reproductive parts from the mesophytic hardwood forest
transferred the greatest amount of sodium in fall, while the oak-hickory
forest reproductive parts component transferred most sodium during spring.

Potassium. The total amount of potassium in all components of
Titterfall for the year (Figure 48) was greatest in the oak-hickory (2.0
g/mz) forest. The second greatest amount was in the mesophytic hardwoods
(1.9 g/m2) with the pine-oak-hickory (1.6 g/mz) and pine (1.4 g/mz) having
lesser amounts, respectively. The potassium content in total litterfall
in the pine forest was statistically lower than the oak-hickory and the
mesophytic hardwood forests.

The annual summary (Figure 48) indicates that the oak-hickory
(1.8 g/mz) forest leaf litter was the main contributor of potassium.
The mesophytic hardwood (1.6 g/m2) forest leaf Titter contributed the
second greatest amount, while the pine-oak-hickory (1.5 g/mz) and pine
(1.3 g/m2) forest leaf litter contributed lesser amounts of potassium,
respectively. Leaf litter did show significant differences. The pine
forest leaf litter varied statistically from the oak-hickory and the
mesophytic hardwood forests. Potassium leaches from leaves easily and
rainfall alters the amount of potassium in leaf litter if the amount,
intensity, or time of precipitation differs.

The potassium leaf concentration pattern (Figure 49) between the

four forest types varied during spring and summer but did not change
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during fall. The range of concentrations during spring (0.17-0.70%) and
summer (0.28-0.63%) among the forests was greater than the fall (0.26-
0.37). The largest transfer of potassium in leaf litter to the forest
floor was autumnal collection in all forest types (Figure 50). The oak-
hickory (0.72 g/m2/14 days) forest transferred the largest amount of
potassium at that collection due mostly to the larger leaf litter weight
input in the oak-hickory forest and not because of higher percentage
concentrations than the other three forest types. Nearly equal amounts
of potassium in leaves were transferred to the forest floor at that
collection in the pine (0.40 g/m?/14 days), pine-oak-hickory (0.42 g/m?/14
days), and mesophytic hardwood (0.44 g/m2/14 days) forests.

The total amount of potassium (Figure 48) that returned by branch
Titterfall for the year was least in the pine-oak-hickory (30 mg/mz)
forest and greatest in the mesophytic hardwood (80 mg/m2 forest). Pine
(60 mg/mz) and oak-hickory (70 mg/mz) forest branches had intermediate
amounts.

The potassium concentrations in the branch component of litterfall
are illustrated in Figure 51. There was an increase in potassium concen-
trations from summer to autumn in the pine-oak-hickory (0.05-0.23%),
oak-hickory (0.11-0.46%), and mesophytic hardwood (0.21-0.59%) forests.
Pine forest branches did not show this increase (0.22-0.18%). Potassium
concentrations in branches of all forest types are low and followed the
same trend in the winter (March 5) collection (pine, 0.07%; pine-oak-
hickory, 0.06%; oak-hickory, 0.08%; mesophytic hardwood, 0.11%).

As Figure 52 indicates, most potassium in branch 1itter moved to
the forest floor in the autumn in all forest types. The pine forest

branches (20.5 mg/m2/14 days) returned the most potassium to the forest
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floor. The pine forest also returned more potassium later in the season
than the other forest types. The least amount of potassium (0.08-0.45
mg/m2/14 days) moved to the forest floor in the winter (March 5) collec-
tion in all four forest types.

The annual totals of potassium returning to the forest floor in
reproductive parts are shown in Figure 48, p. 80. Reproductive parts of
the mesophytic hardwood (240 mg/mz) forest contributed the greatest amount
of potassium to the forest floor. Reproductive parts of the oak-hickory
(150 mg/m2) forest contributed the second greatest amount, followed by
the pine-oak-hickory (140 mg/mz) and pine (100 mg/mz) reproductive parts,
respectively.

Potassium concentrations were highest in the reproductive parts
component of Titterfall in all four forest types in the autumn (Figure
53). The highest concentrations during that time were from a low of
0.629% in the oak-hickory forest to a high of 1.69% in the pine-oak-
hickory forest. Late winter (March 5) had the lowest potassium concen-
trations in reproductive parts in all forest types (0.09-0.22%).

The potassium transfer rate through reproductive parts (Figure
54) was greatest during fall with a smaller but noticable increase during
early summer (July 2). Again, the transfer rate was influenced mainly
by the mass of reproductive parts that fell during this time.

Phosphorus. The greatest annual total amounts of phosphorus in
total litterfall (Figure 55) were in the oak-hickory (274 mg/mz) and meso-
phytic hardwood (272 mg/mz) forests. The pine (251 mg/mz) forest had
the next highest amount, while all components of pine-oak-hickory (246

mg/mz) forest contributed the least amount of phosphorus to the forest
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floor for the year. Variations between forest types were not stastically
significant.

Leaves of all four forest types (Figure 55) returned almost equal
amounts of phosphorus to the forest floor for the entire year. There
were no significant differences between forests. The oak-hickory (215
mg/mz) forest Teaves contributed slightly more phosphorus than Teaves
of the other three forests (205 mg/mz), which contributed essentially
equally amounts.

Phosphorus concentrations in leaves of all four forest types were
highest in spring (0.07-0.11%) and generally decreased through fall (0.04-
0.05%) which had the lowest seasonal concentrations (Figure 56). The
concentration pattern for the four forests was similar and the concen-
tration range among forest types varied more during spring (0.07-0.10%)
than in fall (early fall, 0.06-0.07% and late fall, 0.04-0.05%). The
pattern of concentration of phosphorus in leaves was similar to the
nitrogen concentration pattern in leaves -- both decreased from spring
through autumn in all forest types.

Pine forest leaves (Figure 57) transferred its major portion of
phosphorus to the forest floor during fall but over a longer and later
time period (November 12 and December 2) than the other three forests
which transferred its major amount in the November 12 collection. The
transfer rate in the November 12 collection had its highest value in
the oak-hickory (89.7 mg/m2/14 days) forest with pine-oak-hickory (54.4
mg/m2/14 days) and mesophytic hardwoods (53.2 mg/m2/14 days) values being
lower and nearly equal. The pine values in the November 12 and December 2

collections were 36.7 and 37.6 mg/m2/14 days, respectively.
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The yearly input of phosphorus to the forest floor by the depo-
sition of branches is illustrated in Figure 55, p. 89. The total amount
of phosphorus contributed by branches in the four forests was low and
variations were slight. The oak-hickory forest branches contributed
the highest amount (21 mg/mz). The pine (20 mg/mz), mesophytic hard-
wood (19 mg/m2), and pine-oak-hickory (11 mg/mz) forest branches
contributed decreasing amounts of phosphorus, respectively.

Phosphorus concentrations in branches during the year are shown
in Figure 58. There was no distinct pattern in phosphorus concentrations
between branches of all four forests at almost every collection period.

The transfer rate of phosphorus from branches to the forest floor
in the four forest types is shown in Figure 59. The pine (5.5 mg/m2/14
days) forest had the highest transfer rate and that rate was observed in
the late autumn collection (December 2). The pine (2.5 mg/m2/14 days)
forest exhibited a second but smaller value in the October 30 collection.
The pine-oak-hickory, oak-hickory, and mesophytic hardwood forest branches
had their highest transfer rates during fall and late spring. The Towest
values were found in the late winter collection (.04-.21 gm/m2/14 days).

The reproductive parts component of litterfall contributed annually
more phosphorus than did branches in all forest types (Figure 55, p. 89).
Reproductive parts of the mesophytic hardwood (52 mg/mz) forest contri-
buted the most phosphorus to the forest floor for the entire year. The
oak-hickory (38 mg/mz),vpine-oak-hickory (31 mg/mz), and pine (26 mg/mz)
forest reproductive parts contributed decreasing amounts, respectively.

The phosphorus concentrations (Figure 60) in the reproductive
parts component for the four forests generally followed the same pattern

as the season progressed. Late fall (December 2) and late winter (March



94

ORNL-DWG 71-9463R
0.08

0.07

0.06 /

0.05 (/i}] y \F////,
0.04 ] / %:::;:;

0.03 4, \// ‘\:ié\Q;;

»
~

\
/

MEAN PHOSPHORUS (%)
>
~
]

® A
DAYS P P-0-H 0-H MH
0.02 31 0.069 0.041 0.029 0.030
64  0.024 0.022 0.036 0.049
107 0.0 0.041 0.074 0.051
122 005 0.0 0.047 0.041
135 0.0 0.045 0.060 0.044
0.04 155 0.042 0.032 0.043 0.046
248 0.035 0.032 0.036 0.056
336 0.029 0.032 0.030 0.049
366 0.0 0.022 0.027 0.065
0 50 100 150 200 250 300 350 400
TIME (days)
(. | ! I | | | | | | | | J

JULY AUG SEPT OCT NOV DEC JAN FEB MAR APR MAY JUNE

Figure 58. Seasonal patterns of phosphorus concentrations (% dry
weight) in branch 1itterfall in four forest types on Walker Branch
Watershed.



95

o
>

ORNL-DWG 71-7951R
6.0 ‘
[ (o] A Py
55 * DAYS P P-0-H 0-H MH
39 1.205 0.935 1.525 0.427
64 1.207 0.084 0.398 0.449
5.0 107 0.0 0.318 0.447 0.108 —
- 122 2.513 0.0 1.135 1.513
> 135 0.0 1.318 0.526 1.093
© 45 155 5.506 0.606 1.255 0.596 _
g 248  0.079 0.100 0.043 0.214
o~ 336 0.530 0.851 0.306 1.544
£ 366 0.0 0.030 0.551 0.477
~. 4.0 —
o
E \
bd
5 3.5 \
—
<
J
2 3.0
3 \
o
2 \
< 2.5
w
o
w
= 2.0 / \
<
04
z ey
<
W
=

N

A

JAAN

|
A\

—
1.0 \ \ \ \
0.5 \\ \ 2 ~— \ \ / A o A
&
0 .
0 50 100 50 200 250 300 350 400
TIME (days)

l | | l ! | | | | | | 1

JULY AUG SEPT OCT NOV DEC JAN FEB MAR APR MAY JUNE

Figure 59. Seasonal rate of return of phosphorus to the forest

floor in branch litterfall in four forest types on Walker Branch

Watershed.



0.4250

0. 1125

0.1000

0.0875

0.0750

0.0625

0.0500

MEAN PHOSPHORUS (%)

0.0375

0.0250

0.0125

Figure 60.

Branch Watershed.

96

ORNL-DWG 71-9462R2

‘ .
] / \ A s
/ \ / ®
™A
/ / / /
AI / /
] |
,///,\\\ L,_, /// *
i L\l
’ \Q\ /
\ "
N \\ “-\ / .
[ ] \\:7 v
[ o A A
DAYS P P-0-H 0-H MH
31 0.063 0.056 0.073 0.064
— 6 oon 0.047 0.087 0.072
107 0.0 0.06 0.08t 0.079
22 0.045 0.108 0.085 0.086
135  0.124 0.0 0.062 0.07t
- 155 0054 0.050 0.050 0.066
248 0.045 0.040 0.050 0.067
336 0.069 0.072 0.087 0.09
366 0.086 0.070 0.089 0.079
50 100 150 200 250 300 350 400
TIME (days)
[ | | | | 1 | | | 1 I |

JULY AUG SEPT OCT

NOV DEC JAN FEB MAR APR MAY JUNE

Seasonal patterns of phosphorus concentrations (% dry
weight) in reproductive parts litterfall in four forest types on Walker



97

5) had the lowest concentrations while early fall and spring had higher
concentrations. The pine (0.12%) forest reproductive parts component in
the November 12 collection had the highest single value.

The reproductive parts of pine, pine-oak-hickory, and mesophytic
hardwood forests transferred most phosphorus during two periods - fall
and spring, while the oak-hickory reproductive parts transferred most
phosphorus during spring (Figure 61). Summer and winter were periods of

least phosphorus transfer in reproductive parts in all forest types.
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CHAPTER IV

DISCUSSION

Seasonal Trends in Deciduous Foliage

Nutrient concentrations and dry weight. Living deciduous leaves

of most species increased in dry weight from leaf emergence through
spring, when a peak dry weight generally occurred. Although there was
variation among species, leaves of most species studied generally had
decreasing concentrations of nitrogen and increasing concentrations of
calcium through growth. With minor exceptions, magnesium concentrations
remained rather constant through the year, while potassium and sodium
were variable without a pattern.

Nutrient content. The nutrient content of leaves from the eight

deciduous species revealed a seasonal trend. During the period of most
rapid growth (May and June) there was an increase in nitrogen, magnesium,
sodium, and potassium content to a peak value in July. The calcium and
phosphorus contents also increased during this period of initial growth,
but the calcium content continued to increase afterward while phosphorus
decreased. During autumn, when leaves began to senesce, all nutrient
contents decreased variably among species. Calcium decreased the least
amount just prior to abscission.

Rank of nutrient concentration. By examining the seasonal data,

a ranking of nutrient concentrations between spring (onset of foliage)
and autumn (leaf fall) periods can be determined. In most cases these
two time periods represent yearly extremes in concentration values.

Spring values were N > K > Ca > Mg > P > Na. Autumn values were Ca >

99
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N >K>Mg > P > Na. The one nutrient which changed in position in the
rank order between spring and fall was calcium.

There are several reasons why calcium could change in position in
the rank order as the season progresses. Potassium is more readily
leached than calcium, especially in the fall (Edwards and Shanks 1972).
Unlike potassium, calcium does not translocate readily from the leaves
in autumn (Williams 1955). For the same reason, calcium exceeded nitrogen
in rank order. Calcium also tended to accumulate in foliage while nitro-
gen did not. Calcium concentrations exceeded those of nitrogen in the
fall because the exceptionally high nitrogen values in foliage early in
the season were diluted as leaf expansion proceeded, rendering low and

continuously decreasing nitrogen concentrations from June on.

Seasonal Trends in Conifer Foliage

Compared to changes in the nutrient status of deciduous conifer
foliage, nutrient content changed little during the growing season. The
dry weight of the two species of conifer foliage was not different in
early May and the end of October. This consistency reflects the fact
that the needles which were sampled were not newly initiated but were
generally second and third year growth. Early season changes character-
istic of recently formed, rapidly expanding leaves were, for the most
part, not observed. Additional nutrient variability was thereby intro-
duced since several years' needles were represented. For example, during
the season of maximum leaf fall, it was possible that senescing needles
and those which would remain for another season were both sampled, thus
obscuring seasonal trends due to possible nutrient loss during senes- .
cence. Factors contributing to lack of sensitivity of the data include

low content and concentration for all nutrients, thus increasing the
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chance of errors and the fact that needles of different ages may have
different nutrient concentrations. Due to the above circumstances no
conclusions concerning seasonal nutrient trends are justified, except for

the fact that most were quite constant through the year.

Seasonal Trends in Litterfall

Rank of nutrient concentrations. The seasonal trends for nutrients

in each component of litterfall and in total litterfall and the seasonal
rank of nutrient concentrations are illustrated in Table 6. Values from
the October 29, 1969 and June 1, 1970 1itterfall collections were used
for seasonal comparisons, since these dates coincide with the live leaf
study. Foliage from both studies will be compared Tater.

The March 5, 1970 collection, the last litter trap collection prior
to June 1, 1970, was made to collect the remainder of the winter's litter-
fall. The June 1, 1970 collection was designed to collect the initial
spring litterfall material.

Nitrogen and phosphorus concentrations in the leaf 1itterfall
decreased from spring to fall while calcium, magnesium, sodium, and potas-
sium concentrations increased. The rank of nutrient concentrations in the
leaf component in the spring was N > Ca > K > Mg > P > Na. Autumn rank
was Ca > N > K > Mg > P > Na. The seasonal change in rank of nutrient
concentrations was calcium with nitrogen, the reasons probably being
that calcium neither leaches nor is translocated very readily and it
tends to accumulate in foliage while nitrogen, having a high concentration
in spring, is diluted by leaf expansion and development.

A11 six nutrients increased in percentage concentrations in the
branch litterfall from spring to autumn. The rank of nutrient concentra-

tions for both spring and fall was Ca > N > K > Mg > P > Na.
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Nitrogen concentration decreased in the reproductive parts while
calcium, magnesium, and potassium concentrations increased as the seasons
progressed. The sodium and phosphorus concentrations remained constant.
The rank of nutrient concentrations for spring and autumn was the same as
the ranking of the leaf litterfall nutrients.

Nutrient concentration patterns or trends and the rank of the
nutrients in the two seasons were the same in the leaf litterfall and

total Titterfall.

Seasonal Comparison of Live Leaf Concentration Values with Leaf Litterfall

Concentration Values

Leaf Titterfall concentration values and live leaf concentration
values in spring and autumn are summarized in Table 7. The values shown
for the 1ive leaves are from the May 1 and October 24 collections. The
values shown for the leaf litterfall study are from the June 1 and
October 30 collections. Although the May 1 live leaf collection and
June 1 leaf litterfall collection are 1 month apart, material collected
on June 1 included material that fell during May and, therefore, the data
are comparable.

Live Teaf concentration values are averages of the eight deciduous
species studied. Because of the biased sampling technique used on the
pines, no conifer values were used. The leaf litterfall concentration
values are therefore an average of only three forest types, omitting the
pine forest. The high spring calcium concentration, 1.03% in the leaf
litterfall, is a consequence of a significantly higher value in the oak-
hickory forest.

Nitrogen and phosphorus concentrations decreased as the seasons

progressed in both live leaves and leaf litterfall, while calcium and
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Table 7. Seasonal*nutrient concentrations and rank of nutrient concen-
trations™ in live leaves and in leaf litterfall

Percentage Concentration

Live Leaf Leaf Litterfall Live Leaf Leaf Litterfall

Nutrient May 1 June 1 October 29 October 30
N 2.90 1.12 0.95 0.78
Ca 0.61 1.03 1.45 1.30
Mg 0.32 0.10 0.36 0.21
Na 0.02 0.02 0.03 0.02
K 1.23 0.22 0.84 0.47
P 0.28 0.08 0.09 0.06

*
Rank of nutrient concentration:

Live Leaf - Spring: N > K > Ca > Mg > P > Na; Autumn: Ca > N >
K> Mg > P > Na.

Leaf Litterfall - Spring: N > Ca > K > Mg > P > Na; Autumn:
Ca >N>K>Mg>P > Na.




105

magnesium concentrations increased (sodium increased slightly). The
potassium concentration decreased in the live leaves, but increased in
the leaf litterfall. That discrepency is probably a result of the very
Tow June 1 leaf litterfall concentration value, therefore increasing the
chances of leaching due to the time lag between litter trap collections.

Table 7 also shows the seasonal rank of nutrient concentration in
live leaves and leaf litterfall. The ranking of the nutrients in the two
comparisons was the same in the autumn. In the spring, calcium ranked
above potassium in leaf litterfall but below it in 1iving leaves. This
change is probably due to translocation or leaching of potassium that
occurred in leaf litterfall while calcium was cumulative, did not trans-

Tocate, and leached little.

Seasonal Foliage Nutrient Dynamics

Calcium. Since calcium is not translocated from leaves (Chandler
1939), an understanding of its seasonal dynamics is easier. Newly emerged
leaves contain minimum amounts and concentrations of calcium. There was
generally a sharp increase in both of these parameters thru May, during
which time leaf dry weight was also increasing rapidly. Thus, during the
earliest portions of the growing season there was a rapid accumulation of
calcium in the leaves, most probably due to translocation from lower parts
of the tree. With minor exceptions, both content and concentration contin-
ued to increase fairly rapidly during June. At that time, most species
(except red and chestnut oak) showed no increase or a slight to moderate
decrease in dry weight. This was probably due to canopy leaching since
almost five inches of rain fell during that period. Thus, due to that
decrease in dry weight and apparent lack of leaching of calcium as

compared with other components of leaf biomass, the rise in concentration
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of calcium was considerably greater than that of content. Edwards and
Shanks (personal communication) found low levels of calcium leaching
during that period.

Resumption of dry weight increase for most species took place in
July. The exception was in black gum, which continued to decrease in
dry weight thru July. Those increases in dry weight for the seven other
deciduous species were closely paralleled by increases in both concentra-
tion and content of calcium. Besides black gum, whose decrease in dry
weight was reflected in a drop in concentration and content of calcium,
the only exception to the previously mentioned trend was in red oak, where
a decrease in concentration was accompanied by a slight increase in total
content. Thus, not only did calcium content keep up with dry weight
increase in most species but, as can be seen by the continuing increase
in concentration, it was actually accumulating at a faster rate than was
dry matter. The increase in calcium content during that time may have
been facilitated by the relatively low (6.0 cm.) rainfall during that
period.

The rapid increase in dry weight was again interrupted during
August when trends generally varied from either a slight to moderate
decrease (sourwood in the latter case) to a slight increase in dry weight
values compared to those of July. Since a large amount of rain fell
during that period (15 cm.) canopy leaching may have also been a factor
in the dry weight pattern. However, during that time, six of the eight
deciduous species showed increases in concentrations of calcium, while
five of the eight showed substantial increases in total calcium content.
Thus, again, while dry weight was not increasing or was actually decreas-

ing, concentration and content of calcium were increasing. Sourwood,
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which showed the largest decrease in dry weight, also showed a slight
decrease in overall content of calcium, but, as can be seen by the
increasing concentration of calcium in the sourwood leaves, the decrease
in calcium content was much less than the dry weight loss. On the other
hand, hickory and white oak were exceptions to the general pattern and
leaching could be a factor for values in those two species.

From the beginning of September to the end of the leaf season,
trends were different among the species studied, possibly reflecting
different phenological sequences {e.g., time of senescence). Sourwood
and tulip poplar, which senesce early, declined in dry weight (which
began in August) through the remainder of the season. Unlike tulip
poplar, which exhibited a decreasing total content of calcium with a
constant concentration, (thus showing that calcium was lost in proportion
to the other dry weight components) the calcium concentration of sourwood
increased continuously while the content remained constant. In sourwood
calcium was not lost in proportion to dry weight of living leaves.
Hickory, black gum, and red maple (except for one high value for the
later) continued their constant levels of dry weight through September
with a subsequent sharp decline during October. For those species, the
period of constant dry weight was accompanied by increasing concentra-
tions and somewhat higher contents of calcium, suggesting that calcium
increases were partly compensating for the loss of foliar weight due to
decreases of other nutrients. For black gum and red maple, the period of
abrupt decrease in dry weight was accompanied by decreases in both con-
centration and content of calcium, the former to a much lesser extent
than the latter. This suggests that for black gum and red maple calcium

decreased more quickly than dry weight. Hickory, on the other hand,
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showed the opposite trend by an increase in concentration of calcium
during autumn (with a corresponding decline in total content). Thus, for
hickory, total calcium was lost from leaves less rapidly than dry weight.

The oaks (chestnut, red, and white) showed 1ittle tendency to
decline in overall calcium content through October. Except for a small
decline in red oak at the end of October, the total content of calcium
was still increasing in white and chestnut oak Teaves.

The divergent behavior exhibited by tulip poplar compared to the
oaks and hickory as to their calcium content during the late summer-
early fall period can be used to explain different results obtained in
throughfall studies at ORNL. Edwards and Shanks (1972 and personal
communication) measured throughfall in a forest which had approximately
80% of its basal area in tulip poplar. Their results showed an over-
whelming proportion of the yearly canopy leaching of calcium during
September-October. Their results coincide well with data from this study,
which show that the calcium was lost in proportion to dry weight (which is
appreciable) during that time. Since calcium is not translocated from
the leaves, (Chandler 1959) its loss can only be explained by canopy
leaching. Henderson and Todd (1972) observed that late summer-early fall
canopy leaching of calcium was not exceptionally greater than during the
rest of the growing season, even in the mixed mesophytic stands. Since
tulip poplar comprises a much smaller percentage (18%) of the basal area
of the stands on the Watershed than in the forest studied by Edwards and
Shanks, less canopy leaching by the oak and hickory foliage should occur
on the watershed.

Phosphorus and nitrogen. Phosphorus and nitrogen exhibited some-

what similar trends in concentration and content in leaves during the
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growing season, especially during early spring. Both nutrients are highly
mobile in plants (Williams 1955) and are generally regarded as being in
Timited supply in most ecosystems.

During May, the period of rapid leaf expansion, both nutrients
exhibited extensive decreases in concentration in all species studied.
Phosphorus concentration declined by 50%, while the nitrogen concentra-
tion declined somewhat less. A comparison of total content helps explain
the less drastic decline in nitrogen concentration levels. There was a
general rise in total content of both nitrogen and phosphorus between
May 2 and May 16, indicating that there was an overall accumulation via
translocation during the period, even though phosphorus and nitrogen
were not increasing in content as fast as dry weight. Thus, in contrast
to calcium, phosphorus and nitrogen translocated through the season.

The exceptions were red oak, which remained constant in content of
nitrogen and decreased in phosphorus content, and red maple, which
exhibited a general increase in phosphorus content but declined slightly
in nitrogen content.

The nitrogen and phosphorus concentration trends between the May 16
and June 4 collections were dissimilar, with nitrogen content continuing
to increase or at least remaining constant. The exceptions were tulip
poplar and white oak, the former showing recovery of that loss in total
content at the July 2 collection. Phosphorus content, on the other hand,
declined significantly in six species, remained constant in black gum,
and increased in sourwood (with subsequent significant declines at the
July 29 sampling). Thus, phosphorus was lost from leaves during that
time either by translocation to other plant parts or via leaching, or

both.
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Most studies (Tamm 1951, Olsen 1948, Henderson and Todd 1972) have
found that leaching of nitrogen to be of relatively minor importance and
thus this process can be disregarded as a factor influencing nitrogen
content and concentration in foliage. Results of phosphorus leaching
were more variable, with most Titerature values ranging from 5 to 15%.
The spring peak in phosphorus throughfall seen by Carlisle et al. (1966)
coincides with observations by Henderson and Todd (1972) and Edwards

(personal communication) on Walker Branch Watershed and a Liriodendeon

forest, at ORNL. Edwards' data also show a peak in the late summer-
early fall while other studies do not. This difference may be due to
differential behavior of phosphorus in different species. Tulip poplar,

which makes up 80% of the basal area in the Liriodendron forest, exhibited

the most pronounced loss of almost all nutrients in the present study,
with distinct periods of net loss interrupted by an increase during
August. What is probably occurring in the case of phosphorus are high
rates of leaching that began abruptly in May as the leaves with high con-
centration were beginning growth, after which there was a continual pro-
cess of less intense leaching through June or July, depending on the
species. The effect of leaching is probably magnified by translocation

of phosphorus from the leaves to other plant parts. Generally the
phosphorus content increased or remained the same in mid-summer, possibly
due to continued transport to the canopy and lack of leaching due to low
levels of phosphorus in the leaves at that time. Except for white oak and
sourwood, (which retained leaves after October 29) all other species
showed a Tate summer-early fall decline in phosphorus content. A1l species
except sourwood exhibited a decline in concentration during the fall after

variable behavior during mid-summer. The leaching of phosphorus during
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senescence contributed appreciably to the decline in phosphorus content.
A large part of this September-October nutrient Toss probably occurred via
translocation, as noted in other studies (Carlisle et al. 1966, Alway et
al. 1934, Guha and Mitchell 1965, and Rodin and Bazilevich 1967).
Similar phenomena probably occurred in the case of nitrogen, which also
showed declines in content during late summer-early fall for all species.
Edwards (personal communication) observed a small peak for nitrogen leach-
ing in May and a larger peak in September-October, with canopy intercep-
tion occurring during at least one sampling period each season. Similar
results were obtained by Carlisle et al. (1966). Thus, the trend for
nitrogen is quite similar to that of phosphorus, with variable behavior
during the mid-summer period due to a combination of leaching, canopy
interception and translocation, and overall losses during the fall due
to leaching and translocation. The biggest difference in the behavior
of the two nutrients was from late May to July, when phosphorus contents
declined much more than those of nitrogen. The difference was most
likely due to differential leaching patterns, with nitrogen showing only
slight tendencies to decline in content during that time. Because of
djfferential leaching, nitrogen concentrations declined less during the
late spring-early summer period, due to the decrease or lack of increase
in leaf dry weight and leaf nitrogen content during the interval.
Potassium. Like phosphorus and nitrogen, potassium was rapidly
accumulated during early spring (May) in the newly-formed leaves, when
concentrations were generally highest. In two species, tulip poplar and
hickory, potassium was accumulated at a faster rate than dry weight,
giving increased concentrations during the first sampling interval (May

2 to 16). The other species showed decreasing concentrations. A1l
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species showed decreasing concentrations during the second interval
(May 16 to June 4). For three species the lower concentrations can be
attributed to dry weight increases exceeding actual increases in potas-
sium content, while for the others there were decreases in the total
content accompanying increases in dry weight.

Potassium was leached in great quantities (Henderson and Todd 1972)
from most vegetation, and there is substantial evidence (Edwards and
Shanks 1972) that there was rapid translocation to the leaves throughout
the growing season to replenish the leaching loss. The ready availability
of potassium in most soils and its high degree of mobility within plants
probably influenced its rapid translocation. Early season leaching of
potassium is probably responsible for the late May drop in potassium
content and partially responsible for the drop in concentration. Sourwood
and black gum, the two species that increased substantially in potassium
content during the May 16 - June 4 interval, are understory species. It
seems possible that they did not lose potassium because the rainwater
reaching their leaves already had a substantial amount of potassium in it.
It is widely accepted that healthy leaves are capable of taking up nutri-
ents from as well as releasing them to incident precipitation.

After June 4, trends among the different species became more
variable. Generally, there was no pattern of continual loss of potassium
through mid-summer, except for tulip poplar, which continued the June 4
decline at an accelerated rate through June and July and then at a lesser
rate for the rest of the season. Most other species, while exhibiting
oscillations during the growing season, maintained or reached element

content levels as high as or higher than that of mid-May before exhibiting
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a sharp drop in concentration and content during the late summer-early
fall. Sourwood was the only species which showed no such decline.

These data tend to support the conclusion that much of the potassium in
tree leaves is held in excess of plant needs ("luxury consumption"), and
the excess is readily removed by rainwater. If potassium were less readily
leached, its seasonal pattern would probably be similar to that of calcium.
Attiwill (1966), Chandler (1939), and Carlisle et al. (1966) found potas-
sium to translocate readily just prior to abscission.

Magnesium. The seasonal behavior of magnesium in foliage has
been shown in the literature to be quite variable, depending on the indi-
vidual species (Guha and Mitchell 1965). In the present study, most
species showed an increase in total content during the period of rapid
leaf growth, and that has been confirmed by results from this study.
Depending on whether the accumulation was greater or less than the accumu-
lation of dry weight during the same period, there was either an increase
or a decrease in concentrations.

From early June to mid-summer, two trends were apparent. Overall
increases were seen in total magnesium content and concentration of
magnesium in red oak and tulip poplar, while relatively constant values
of total content were recorded in the other species. Because dry weight
changes were more variable than changes in magnesium content, concentra-
tion values for these species were somewhat variable, but they, too,
oscillated around a constant mean.

September and October again showed several distinct trends in
magnesium behavior. Red oak, although again quite variable, increased
in magnesium content, while tulip poplar, hickory, and black gum decreased

in content. The rest remained relatively constant. However, due to
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decreases in dry weight during October, the decreases in contents noted
above were much less severe when expressed on a concentration basis, with
sourwood showing an overall concentration rise.

The behavior of tulip poplar can be explained on the basis of
throughfall leaching. Edwards (personal communication) reported substan-

tial amounts of magnesium leaching (up to 40%) in the Liriodendron forest,

with peak values during the late summer and fall. Losses during senescence
in tulip poplar in our study were on the order of 25% of peak summer
values. Translocation could have been a factor, since magnesium can move
out of leaves and into the rest of the plant, but this is probably of
minimal importance, since magnesium is readily available in the soils at
O0ak Ridge.

Throughfall data from the three deciduous forest types (Henderson,
personal communication) on Walker Branch Watershed showed less distinct
seasonal trends and somewhat less magnesium leaching than in the tulip
poplar forest, and that is shown in magnesium behavior of the other
species in this study. For example, there was a general lack of pro-
nounced autumnal decline in magnesium content of most species, indicating
lack of translocation or leaching at that time. Henderson and Todd (1972)
found highest throughfall inputs during late summer and early fall to
occur in the mesophytic hardwood stands, the forest type were Lirioden-
dron makes its greatest basal area contribution.

Sodium. Sodium values were extremely variable both for total leaf
content and Teaf concentration through the season, with three overall
peaks and declines exhibited by most species. When analyzed seasonally,
the trend was for lowest content and concentration early in the season

and rising continually through the season. Throughfall values for sodium
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in the literative are generally low (less than 5% leaching, Edwards
personal communication) found canopy leaching to be about 6% leaching

in the Liriodendron forest at ORNL. Thus, throughfall input can generally

be disregarded as being of any real significance in causing changes in
sodium content in foliage in this study. Guha and Mitchell (1965) found
several distinct peaks for sodium for all species they studied. In their
case, just as in the present study, the peaks for different species are
fairly well synchronized. Their study demonstrated increases in sodium
content and concentration at the end of the growing season (during senes-
cence) with no subsequent decline. Although considerable variation in
sodium concentrations were observed in the present study, the variability
of the data does not justify the conclusion that leaching of translocation
was occurring to any great degree. Almost all species showed two sodium
concentration peaks and those peaks suggest at least two possibilities.
One possibility is adsorption of atmospheric sources of sodium on the
leaves, while another possibility is contamination during handling of

the samples. Sodium occurred in such Tow concentrations in the foliage
of the vegetation on Walker Branch Watershed (0.02-0.05% units) that
contamination by either source is possible. The suggested trend, that

of gradually increasing concentrations and contents through the season,

becomes more possible when these possibilities are considered.

Comparisons of Annual Totals of Litter Components

Total elemental content and dry weight. The annual totals of dry

weights and total elemental contents in each component of litterfall in
each of the four forest types are summarized in Table 8. Leaves comprised
the majority of 1itterfall in all forest types (77-82%). Reproductive

parts constituted the second greatest amount (11-14%) with the exception
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Table 8. Dry weight and elemental content of litterfall components by
forest types

Mean of Dry Weight (g/mz) by Forest Types

Component P % P-0-H % 0-H % MH %
Annual Dry Weight
Litterfall
Leaves 389 81 377 81 398 82 342 77
Branches 56 11 37 8 37 8 38 9
Reproductive Parts 38 8 51 11 52 10 63 14
Total 492 465 488 443
Elemental Content
Nitrogen
Leaves 3.04 81 2.74 80 2.88 79 2.70 75
Branches 0.34 9 0.21 6 0.24 7 0.24 7
Reproductive Parts 0.37 10 0.46 14 0.53 14 0.68 18
Total 3.75 3.41 3.65 3.62
Calcium
Leaves 4,11 81 3.82 8 3.86 80 4.58 79
Branches 0.64 13 0.26 6 0.53 10 0.61 10
Reproductive Parts 0.35 6 0.42 9 0.52 10 0.64 11
Total 5.10 4.50 4.91 5.83
Magnesium
Leaves 0.67 88 0.68 91 0.77 89 0.71 85
Branches 0.05 6 0.02 2 0.04 4 0.04 5
Reproductive Parts 0.04 6 0.05 7 0.06 7 0.08 10
Total 0.76 0.75 0.87 0.83
Sodium
Leaves 0.06 76 0.06 76 0.07 78 0.07 78
Branches 0.01 12 0.01 12 0.01 11 0.01 11
Reproductive Parts 0.01 12 0.01 12 0.01 11 0.01 11
Total 0.08 0.08 0.09 0.09
Potassium
Leaves 1.28 8 1.47 90 1.76 89 1.59 83
Branches 0.06 4 0.03 1 0.07 3 0.08 4
Reproductive Parts 0.10 7 0.14 9 0.15 8 0.24 13
Total 1.44 1.64 1.98 1.91
Phosphorus
Leaves 0.20 80 0.20 83 0.21 78 0.20 74
Branches 0.02 8 0.01 4 0.02 7 0.02 7
Reproductive Parts 0.03 12 0.03 13 0.04 15 0.05 19
Total 0.25 0.24 0.27 0.27
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of the pine forest (8%) while branches, again with the exception of the
pine forest (11%), contributed the least (8-9%).

In considering the six nutrients studied in this paper, leaves
contained 74 to 91% of the total nutrient content of litterfall in each
of the forest types. With the exception of the calcium (13%) and magne-
sium (7%) content in branches of the pine forest, the elemental content
of reproductive parts was equal to or greater than the elemental content
of branches in all forest types.

Table 9 ranks forest types according to the contribution of
biomass and nutrient content in each litterfall component. The nutrient
content and biomass of leaf 1itterfall in the four forests varied more
than the content and biomass of reproductive parts and of branch litter-
fall, which did not differ from each other.

The differences in amounts of nutrients in leaf litterfall in the
four forests can be accounted for by discussing each nutrient individually.
Although the oak-hickory forest was higher in total biomass than the pine
forest, the amount of nitrogen (g/mz) was higher in the matter. That
is probably due to the time period of leaf fall which was longer in the
pine forest (smaller but much broader peak) than in the oak-hickory
forest (sharp peak).

Although the mesophytic hardwood forest contributed the least
amount of leaf biomass, the calcium content (g/mz) was greatest in that
forest because of the high calcium content in tulip poplar (Figure 7,

p. 25), the dominant overstory species of the mesophytic hardwood forest.
The mesophytic forest also contributed the highest concentration of

calcium during peak leaf fall (Figure 27, p. 53).
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The magnesium, potassium, and phosphorus contents (g/m2) in leaves
were highest in the oak-hickory forest (highest producer of biomass).

The sodium contents (g/mz) in the oak-hickory and mesophytic hardwood
forests were equal. The sodium range in Teaves was very low and very
slight differences in values (Table 9) are observed.

The annual Teaf litterfall nutrient content with respect to rank
of forest types exhibited other, more minor variations. Those variations
may be explained from the data on nutrient concentrations and nutrient
content in the live Teaf study and the leaf biomass, percent concentra-
tion, and mean rate of accumulation in the litter trap study.

Significance of nutrient litterfall input with other sources.

The input of major nutrients to the forest floor via litterfall versus
atmospheric (wetfall and dryfall) and leaching inputs in a very important
and significant contribution. Atmospheric and leaching input values on
Walker Branch Watershed taken from Swank and Henderson (1975) are used
with Titterfall input found in the present study to calculate total
nutrient input to the forest floor (Table 10). Potassium is the only
nutrient that litterfall did not contribute at Teast 50% of total input.
Of the total input canopy leaching contributed 48% of the total potassium
input, atmospheric input, 7%, and litterfall, 45%.

Rank of nutrient content of litterfall components. The rank order

of the annual total of dry weight and of each of the six elements investi-
gated in each component of litterfall is shown in Tables 11 through 14.
The ranking for the leaf (Table 11), branch (Table 12), and total litter-
fall (Table 14) components in each forest type was Ca > N > K > Mg > P >
Na and the average values for nutrients in the four forest types are in

the tables. The ranking for the reproductive parts component (Table 13)
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Table 10. Comparisons of the significance of the elemental content in
Titterfall input (Kg/ha/yr) to the forest floor with other
sources of input on Walker Branch Watershed

Litterfall Atmospheric Leaching

Total _—

Nutrient Input Input % Input % Input %
Nitrogen 53.5 36.1 68 13.0 24 4.4 8
Calcium 80.9 50.9 63 15.7 19 14.3 18
Magnesium 13.6 8.0 59 3.1 23 2.5 18
Potassium 39.2 17.4 45 2.9 7 18.9 48

Phosphorus 3.5 2.6 73 0.6 17 0.3 9
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Table 11. Amounts (g/mz/yr) of elements in annual leaf litterfall in
the four forest types on Walker Branch Watershed

Dry
Forest Type Ca. > N > K > Mg > P > Na Weight
1 Pine 4.11 3.04 1.28 0.67 0.20 0.06 398
2 Pine-0ak-Hickory 3.82 2.74 1.47 0.68 0.20 0.06 377
3 Qak-Hickory 3.86 2.88 1.76 0.77 0.21 0.07 398

4 Mesophytic Hardwood 4.58 2.70 1.59 0.71 0.20 0.07 342
Average 4,09 2.84 1.52 0.71 0.20 0.07 378
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Table 12. Amounts (g/mz/yr) of elements in annual branch 1itterfall in
the four forest types on Walker Branch Watershed

Forest Type Ca N > K > Mg> P > Na B£¥ght

1 Pine 0.4 0.34 0.06 0.05 0.02 0.01 56

2 Pine-0ak-Hickory 0.26 0.21 0.03 0.02 0.01 0.01 34

3 Oak-Hickory 0.53 0.24 0.07 0.04 0.02 0.01 37

4 Mesophytic Hardwood 0.6] 0.24 0.08 0.04 0.02 0.01 38
Average 0.51 0.26 0.06 0.04 0.02 0.01 &4




123

Table 13. Amounts (g/mz/yr) of elements in annual reproductive parts
litterfall in the four forest types on Walker Branch

Watershed

Forest Type N > Ca > K > Mg > P > Na B£¥ght

1 Pine 0.37 0.35 0.10 0.04 0.03 0.01 38

2 Pine-0Oak-Hickory 0.46 0.42 0.14 0.05 0.03 0.01 51

3 Oak-Hickory 0.53 0.52 0.15 0.06 0.04 0.01 52

4 Mesophytic Hardwood 0.68 0.64 0.24 0.08 0.05 0.01 63
Average 0.51 0.48 0.16 0.06 0.04 0.01 51
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Table 14. Amounts (g/mz/yr) of elements in annual litterfall in the
four forest types on Walker Branch Watershed

Dry
Forest Type Ca.> N > K > Mg > P > Na Weight
1 Pine 5.10 3.75 1.44 0.76 0.25 0.08 492
2 Pine-0ak-Hickory 4.50 3.41 1.64 0.75 0.24 0.08 465
3 Oak-Hickory 4,91 3.65 1.98 0.87 0.27 0.09 488

4 Mesophytic Hardwood 5.83 3.62 1.91 0.83 0.27 0.09 444
Average 5.09 3.61 1.74 0.80 0.26 0.09 472
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in each forest type was N > Ca > K > Mg > P > Na and the average values
for the forest types are in Table 13. The only variation in the ranking
then, is the change of position between nitrogen and calcium in the
reproductive parts component.

Elemental content and dry weight on total area of each forest type

and on entire watershed. The dry weights and elemental content in each

component of litterfall for the year for the total area of each forest
as well as for the entire watershed are shown in Table 15. Numbers used
in this table were rounded off to the nearest unit while the percentage
values were taken from the actual numbers. The dry weight of leaves for
the entire watershed constituted 81% of the total Titterfall with repro-
ductive parts (11%) and branches (8%) accounting for the remainder.

Leaves contained 78 to 88% of the total amount of any of the six
nutrients studied. Reproductive parts contained the same amount of
calcium (10%) and sodium (11%) as branches but greater amounts of nitro-
gen, magnesium, potassium, and phosphorus.

Canonical analysis. Canonical analysis (Seal 1968) was applied to

the total weight and total content of the six nutrients in each component
of 1itterfall and in total litterfall for the year in each forest type
to test for differences between the four forest types. Canonical analysis
reduces the seven (six nutrients plus dry weight) measurements which may
be dependent to two measurements which are independent and these two
factors are plotted on a two-dimensional graph. A 95% confidence circle
is drawn around the points for each forest type. Overlapping of circles
means that forest types do not differ significantly from one another.

As shown in Figure 62(a), leaves of the pine and pine-oak-hickory

forest types were not significantly different from each other but leaves



126

Table 15. Extrapolation, using the area of each forest type, of annual
transfers of dry matter and mineral content in litterfall
components on Walker Branch Watershed

Forest Types
Entire
P P-0-H 0-H MH Watershed
Component (6.88ha) (14.16ha)(57.87ha)(18.62ha)(97.53ha) %

Annual Dry Weight
Litterfall

Leaves

Branches
Reproductive Pa
Total

Mineral Content

Nitrogen
Leaves
Branches
Reproductive
Total

Calcium
Leaves
Branches
Reproductive
Total

Magnesium
Leaves
Branches
Reproductive
Total

Sodium
Leaves
Branches
Reproductive
Total

Potassium
Leaves
Branches
Reproductive
Total

Phosphorus
Leaves
Branches
Reproductive
Total

rts

Parts

Parts

Parts

Parts

Parts

Parts

27,400
3,900
2,600

33,900

209
23
25

258

283
44
24

351

O i g

53,300
5,300
7,200

65,800

230,600
21,400

30,400
282,400

388 1,667
30 139
65 307
483 2,112
541 2,234
37 307
59 301
637 2,841
96 446
3 23

7 35
106 503
9 41

1 6

1 6
11 53
208 1,019
4 41
20 87
232 1,146
28 122
1 12

4 23
33 156

63,700

7,100
11,800
82,600

503

45
127
674

853
114
119
1,086

132
7
15
155

375,000
37,700
51,000

463,700

2,767
237
524

3,527

3,910
501
504

4,915

720
37
59

817

66
10
10
86

1,611
64
158
1,833

201
18
39

258

81
11

78
15
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from the oak-hickory and mesophytic hardwoods did differ significantly
from each other and also from leaves of pine and pine-oak-hickory forests.

The branch component of litterfall is shown in Figure 62(b).
Branches of the pine, pine-oak-hickory, and oak-hickory forest types did
not appear to differ significantly, but there is a slight indication that
mesophytic hardwood branches differed from branches of the pine-oak-
hickory and oak-hickory forests.

Figure 62(c) illustrates the results of the canonical analysis for
reproductive parts. Pine reproductive parts differed significantly from
those of the other three forest types, which did not differ significantly
from each other.

Results of the canonical analysis of total litter from leaves,
branches and reproductive parts are plotted in Figure 62(d). Pine and
pine-oak-hickory did not significantly differ from each other, but did
differ significantly from oak-hickory and mesophytic hardwood, which also

differed significantly from each other.



CHAPTER V
SUMMARY

1. The rank of nutrient concentrations in leaf Titter during spring
was N > Ca > K> Mg > P > Na while in fall it was Ca > N> K > Mg > P >
Na. The concentration of nutrients in the reproductive parts component
of 1itterfall during spring followed this pattern: N > Ca > K > Mg >
P > Na. Autumn ranking was Ca > N > K > Mg > P > Na. The spring and
autumn nutrient importance in branches was Ca > N > K > Mg > P > Na.

The rank of nutrient concentration in combined 1itterfall during spring
was N > Ca > K > Mg > P > Na. Fall ranking was Ca > N > K > Mg > P > Na.

2. Litterfall biomass averaged 492 g/mz/yr in the pine forest,
465 g/n’ in the pine-oak-hickory forest, 488 g/m’ in the oak-hickory
forest, 444 g/mz/yr in the mesophytic hardwood forest. Seasonal peaks
in litterfall inputs were: autumn for the leaf component, spring and
autumn for reproductive parts, while the branch input was distributed
erratically throughout the year. This ranking did not differ among
forest types. For the watershed as a whole (97.5 ha), the litterfall

biomass values were (in kg); leaves 3.75 X 105, branches 3.77 x 104,

4, and total litterfall 4.65 x 105.

reproductive parts 5.20 x 10

3. The majority of litterfall biomass in all four forest types was
made up of leaves (77-85%). Reproductive parts contributed 8-14% while
branches contributed 8-11%. Leaves constituted 81% of the dry weight of
litterfall on the whole watershed, reproductive parts accounted for 11%,
and branches accounted for 8%.

4. A canonical analysis technique performed on the litterfall bio-

mass and nutrient content data for the four forest types revealed that at

129
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least one forest type differed significantly from the rest for each
litterfall component and total litterfall.

5. The producers of leaf foliage biomass were, in decreasing
rank on an annual basis: red oak, chestnut oak, tulip poplar, white
oak, hickory, red maple, black gum, sourwood, loblolly pine, and short-
leaf pine. Foliage of the deciduous species increased sharply in dry
weight during early development and then gradually increased or leveled
off. Prior to abscission all deciduous species lost weight. The conifer
foliage showed no seasonal increase in dry weight because only mature
leaves were collected.

6. The rank of nutrient concentration in spring foliage was N >
K> Ca> Mg >P > Na. Autumn nutrient concentration order was Ca > N >
K> Mg > P > Na. The nitrogen and phosphorus concentrations decreased
as the growing season progressed while calcium increased with develop-
ment. Magnesium concentrations remained constant, while potassium and
sodium concentrations were variable from onset until defoliation.

7. Foliage of deciduous species increased in calcium content
until abscission while the nitrogen, magnesium, sodium, and potassium
content increased initially (during the period of most rapid growth) and
then leveled off. The phosphorus content increased initially, also, but
decreased thereafter. During fall, when leaves began to abscise, all
nutrient content decreased, with calcium decreasing the least.

8. Foliage nutrient dynamics can be seen as a function of leaf
biomass changes as well as such factors as differential canopy leaching,
physiological age and condition of the leaf and translocation to and from

the leaf. Thus, foliage biomass and nutrient dynamics, just as those of
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lTitterfall, were mediated by environmental conditions, especially with

regard to the hydrologic cycle.
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