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The Hartree  Fock Bogolyubov method in a Transformed.Harmonic  Oscillator basis
(HFB+THO)’ is presented a~ a practical tool for axially deformed conflguration-
space calculations. It is shown that the HFBfTHO  results almost exa&ly  repro-
duce those of coordinate-space HFB calculations for spherical and axially deformed
nuclei. The HFB+THb  procedure, as currently formulated, is fully automated,
thereby facilitating the systematic investigation of large sets of nuclei.

1 Introduction

Recent advances in radioactive ion beam technology have opened up the pos-
sibility of exploring very weakly-bound nuclei in the neighborhood of the par-
ticle drip linesl.  A framework for a reliable theoretical description of such
exotic nuclei is provided by coordinate-space Hartree-Fock-Bogoliubov (HFB)
theory2., Serious difficulties arise, however, when this methodoiogy is applied
to deformed nuclei3.

In the absence of reliable coordinate-space solutions to the deformed HFB
equations, it is useful to consider instead the configuration-space approach,
whereby the HFB solution is expanded in a complete single-particle basis.
This method, with an expansion in a harmonic oscillator basis (HFB+HO),
has been applied extensively in nuclear physics using Skyrme forces, the Gogny
effective interaction, or in calculations based on a relativistic Lagrangian.  For

~ nuclei at the drip lines, however, the HFB+HO expansion converges  much too
[ slowly2, producing wave functions that decrease too steeply at large distances.
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particle HFB wave functions are expanded in a complete set of Transformed
An alternative approach has recently been proposed whereby the quasi-

Harmonic Oscillator (THO) wave functions4 obtained by applying a local-
scaling coordinate transformation’ (LST) to the standard HO basis. The
THO basis preserves many useful properties of the HO wave functions, but in
.addition  gives us access to the precise form dictated by the desired asymptotic
behavior of the densities.

Applications of this new HFB+THO methodology have been reported
both in the non-relativistic and relativistic domains4.  In all of these calcu-
lations, specific global parametrizations  were employed for the’ scalar LST
function that defines the THO basis. Several points in such an approach re-
quire special attention: (i) Any global parameterization  of the LST function
modifies properties throughout the entire nuclear volume in order to’improve
the asymptotic density at large distances. This is not necessary, however,
since the HFB+HO results are usually reliable in the nuclear interior; even
for weakly-bound systems. (ii)  Because of the matching conditions between
the interior and exterior regions, the global LST function has a complicated
behavior, especially around the classical turning point, and therefore it can-
not be easily parameterized with a simple expression. (iii) The minimization
procedure applied to optimize the basis parameters becomes very time..con-
suming, especially when a large number of shells are included. Also, in some
cases, the minimization algorithm is ill-behaved and thus does not bring any

. . -‘.  ., ,i F;

substantial improvement in preeision.
i: ;,-::-.!:z

In the present work, we study how ho better define the THO basis for

.’ ; : :; i J y,
‘. - :t:~

a practical and reliable HFB+THO theory of weakly-bound nuclei far ,from
,~+Z~;?-

‘..:X.,;,-:  ,‘.:;..: :.J: i .;
closed shells. We iirst examine carefully\ the differences between the results .’ k:-TcI::.  ::.%j
that emerge from coordinate-space HFBl and configuration-space HFB,+HO ~.‘:$?$$,
calculations for spherical nuclei. We wiy see th&t it is possible to precisely .‘- ‘. --+‘~{$,;-c;:,~~,;~’
define the region where HFB+HO starts to deviate from the coordinate-space :‘:I ;, :.‘j ::!<:
HFB solution. Based on this observatibn, one can propose a prescription ” .” “‘, ‘5.?,,, .,,  i ‘.T, i _‘. T>, ,:
for a correct continuation .of the HFBfRO density by introducing the $,ST : -c.‘,E,$i:  :?:
function. The resulting THO basis leads ito HFB+-TN0  results which almost _. ,..‘!‘$,‘;6!
exactly reproduce the coordinate HFB i,esults for spherical nuclei2  and the

,.+:; >?“Z 1::):
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Figure 1. Left: logarithmic derivative of the density (upper panel), and the density in the
logarithmic scale (lower panel), as functions of the radial distance. The coorctinate-space
HFB.results  (solid line) are compared with those for the HFB+HO method with N&=12
and 20 HO shells, as well .with  the approximation given by Eq. (6) (small circles). Right:
comparison of the HFB+HO  (closed symbols) and HFB+THO  (open symbols) densities in
the linear (upper panel) and logarithmic (lower panel) scales. Though the calculations were
carried out for a specific nucleus and Skyrme interaction, the features exhibited are generic.

2 New representation of the LST function

2.1 Coordinate versus configurational HFB calculations

The main differences between coordinate HFB and configurational HFB+HO  :
results can be seen clearly in plots of the associated local density distributions.
A typical example is shown in the left part of Fig. 1 where the densities
and their logarithmic derivatives from coordinate-space HFB calculations are I
compared with those from the configurational HFBSHO  method.

Invariably the logarithmic derivative p’/p associated with the coordinate- :
space HFB solution shows a well-defined minimum around some point Rmin in :
the asymptotic region, after which it smoothly approaches the constant value



499498

k=21c,  where

is associated with the HFB asymptotic behaviour for the lowest quasiparticle
state that has the corresponding quasiparticle energy Emin  (see Ref.2).  This
property is clearly seen in the upper left panel of Fig. 1. One can also see
that the HFB+HO  densities and logarithmic derivatives are in almost perfect
agreement with the coordinate-space results up to (or around) the distance
R min + Consequently, we conclude that the HFB+HO densities are numerically
reliable up to that point.

Moreover, the HFB value of the density decay constant k, when calculated
from Eq. (l),  is also correctly reproduced by the HFB+HO results. It is
not possible to distinguish between the values of Ic that emerge from the
coordinate-space and harmonic-oscillator HFB calculations, both values being
shown by the same line in the upper left panel of Fig. 1.

Soon beyond the point’&r,,  the HFB+-HO  density begins to deviate dra-
matically  from the coordinate-space results. When the number of harmonic
oscillator shells N&  is increased, the logarithmic derivative of the HFB+HO
density develops oscillations around the exact solution, As a result, the log-
arithmic derivative of the HFB+HO  density is very close to the coordinate-
space result around the mid point R, = (R,,, - Rmin)/2, where R,, is the
position of the first maximum of the logarithmic derivative after R,i,.

In summary, the following HFBfHO quantities agree with the coordinate-
space HFB results: (i)  the value of the density decay constant Ic; (ii) the local
density up to the point R

i.
min where the logarithmic derivative p’/p shows a ,I

clearly-defined minimum; (iii,)  the actual value of this point Gin; (iw) the ;
value of the logarithmic derivative of the density at the point l+& defined 1;

above. In fact. the last of the above is pot established nearly se firmly as
!> :

the first three; nevertheless, we shall make use of it in developing the new
formulation of the HFB+THO  method. 1

Beyond the point &, the fails to capture the physics
of the coordinate-space in the far asymptotic, region. It is
this incorrect large-r behavior now try to cure by introducing the
THO basis.

2.2 Approximation to HFB local den&i

Our goal is to try to find an
HFB density that is based only on

the exact (coordinate-space)
contained in the HFB+HC

results. For this purpose, one can use t WKB asymptotic solution of the

single-particle Schriidinger  equation for a given potential V(T), under the ’
assumption that beyond the classical turning point only the state with lowest
decay constant 6 contributes to the local density. Under this assumption, the
logarithmic derivative of the density can be written as

(2)
where the first term comes from the three-dimensional volume element, while
the next two terms correspond to the first and the second order WKB solu-
tions. The reduced potential V,

V(r) = p(r) = vjv + fETp + ?g, (3)
is the sum of the nuclear, centrifugal, and Coulomb (for protons) contribu-
tions, where 8 is the multipolarity of the particular state. In practical appli-
cations it turns out that near R, the next-to-lowest quasiparticle states do
still. contribute to the local density P, and this effect is much more important
than the second-order WKB term shown in Eq. (2). Therefore, we use the
asymptotic approximation that has the form

&II 2=---
*/,\ Jk2 + 4V + C/r2. (4)
Y\‘I b--+co  ’

Since the decay constant k is known from the HFB+HO  calculation, and
assuming that the nuclear part VN is small, we are left with only one rmdefined
phenomenological parameter C in the logarithmic derivative. One can fix
the actual value of C from the condition that the logarithmic derivative (4)
coincides with the HFB+HO result at the mid point &. Then, in order
to make a smooth transition from the HFB+HO  density P(T) in the inner
region to the approximate asymptotic expression (4) in the outer region, we
introduce the following representation for the logarithmic density derivative:

The constants a, b and m are determined from the condition that the logarith-
mic derivative of the density (5) and its first derivative be smooth functions

a t  Rmin a n d  R , , . Notice that the first derivative of (5) at &in is automat-
ically zero so that there is no need to introduce a fourth parameter to satisfy
this condition.
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Having determined a smooth expression for )?)‘(r)/,!i(r)  and its first deriv-
ative, we can derive a corresponding approximate expression for the local
density distribution p(r)  by simply integrating Eq. (5). The result is

P(r)  =

where the integration constants A and B are determined from a matching
condition for the density at the points &in and R,,, respectively. Finally,
p(r) should be normalized to the appropriate particle number.

The approximation 3(r) works fairly well for all nuclei that we have con-
sidered. As seen in Fig. 1, the density that emerges from prescription (6) is
in perfect agreement with the coordinate-space HFB results.

2.3 LST function for HFE-+THO calculations

The starting point of our new and improved HFB+THO procedure is thus.
to carry out a standard HFB+HO calc$lation for the nucleus of interest,
thereby generating its local density, and Ithen to use the method outlined in
the previous section to correct that density in the large-r regime [see Eq. (6)];
The HFB+HO density can be expressed as an expansion in the HO basis
according to

4 1

The next step is to define the LST4 iso that it transforms the HFB+HO
density (7) into the corrected density 04  Eq. (6). This requirement leads to
the following first-order differential equation,

j(r) = f2W afP$ - r--P (of) 7R2 an2; (8)
which for spherical densities and the init al

li
condition f(0) = 0 can always be

solved for f(R). In the cese of axially-d formed nuclei, we instead carry out
a Legendre expansion of the deformed HLB-t-HO local density in terms of the
spherically symmetric components pi(r).) Only the’scalar component, m=c(~),
has the normalization of the total densit distribution. Therefore, in the case
of deformed nuclei, we use pi=e(r)  in Eq. to define the LST function f(R).

ax, A

Figure 2. Comparison of HFB+THO results (black symbols) with the results  of Terasaki
et al.” (open symbols) for the quadrupole deformations (upper left panel), quadrupole
moments (lower left panel), rms radii (upper right panel) and Szn values (lower  right panel)
within the Mg chain.

In this way, the solution f(R) of Eq. (8) generates a THO basis that
when applied to the HFBtHO density ,Q leads to the corrected density ,Z(r)
which has proper asymptotic behavior. Most importantly, no information is
required to build the THO basis beyond the results of a standard HFB+HO
calculation. Since no further parameters enter, there is no need to minimize
the HFBSTBO  total energy. As a consequence, with this new methodology we
are able to systematically treat large sets of nuclei within a single calculation.

3 Comparison with available coordinate-space HFB results

3.1 Comparison for spherical nuclei

We have performed configurational HFB+THO  calculations for a number of
spherical nuclei. Sample results are compared with those from coordinate-
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space HPB calculations? in the right panels of Fig. 1. As expected, the
\

HFB+THO  results are in excellent agreement with the exact HFB results.
This and other comparisons we have carried out suggest the usefulness of the I’
THO basis in configuration-space HFB calculations of weakly-bound systems. ’

!
3.2 Comparison for axially defomned  nuclei

Coordinate-space discretization algorithms become technically very compli-
cated when applied to deformed nuclei. It is therefore very difficult to carry
out comparisons of the HFB+THO formalism with exact coordinate-space re- ,.
sults in such nuclei. So far, there has only been one chain of nuclei - the even

:

Mg isotopes - that has been systematically investigated in the coordinate-
space framework, by dombining the imaginary-time evaluation method with

:.>.

a diagonalization of the HFI3  Hamiltonian in a restricted space of canonical
1.

states orbitals3.
,!.:.i.,

We have performed HFB+THO calculations for the Mg chain using our
new HFB+THO prescription and with the same hamiltonian as used in
Ref. “). In Fig. 2, we compare our results with those of Ref. “) in for nu-

f..
: :; :

clear deformations, quadrupole moments, rms radii and two-neutron separa-
: :;.

tion energies. From the comparison, we see that our HFB+THO results are 1
I2
: :‘,

in perfect agreement with the coordinate results6  for the entire Mg chain.
,: .:I
.;. :_-; i.h

4  Dr ip - l ine - to -d r ip - l i ne  caIculati$ns : i-:r -.-.

Having tested the new HFB+THO  procedure and shown that it very accu-
rately reproduces all known results from the coordinate-space approach, we
can now begin to use it as a tool for detailed investigations of nuclei :across
the periodic chart. Recently, we have p:erformed systematic axially-deformed
HFB+,THO calculations for all even-even nuclei from the proton drip-line to
the neutron drip-line with proton numbers 2 = 4,6,8,  . . . . 104. To clarify the
role of the pairing force, we have performed the calculations with both volume
and surface pairing. The analysis of the.large  array of data for these nuclei
(more than 7500) is presently under wry.

.
OOOR22725 with. UT-Battelle, LLC (Oak Ridge National Laboralory), aid
by the US National Science Foundation under grant # PHY-99’70749.
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