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1 EXECUTIVE SUMMARY 

Joins of hot isostaticallypressed (HIP'ed) S&N,-4wt% Y,O, (NCX-5100 
family) arid sintered Beta-Sic (NCX-4500) developed during Phase I of the 
contract demonstrated attractive mechanical properties for advanced heat 
engine applicati0ns.l An experimental database was developed for both 
materials based upon limited MOR and buttonhead tensile tests. Within 
the limitations of this database, analytical/numerical models were 
developed for prediction of join life. The purpose of joining Phase II 
was to develop joining technologies for HIP'ed S&N4 with 4wt% Y,O, (NCX- 
5101) and for'a siliconized Sic (NT230) for various geometries including: 
butt joins, curved joins and shaft to disk joins. In addition, more 
extensive mechanical characterization of silicon nitride joins to enhance 
the predictive capabilities of the analytical/numerical models for 
structural components in advanced heat engines was provided. Mechanical 
evaluation were performed by: flexure strength at 22OC and 1370°C, 
stress rupture at 1370°C, high temperature creep, 22OC tensile testing 
and spin tests. 

Silicon nitride joins with excellent room temperature and high 
temperature (137OOC) mechanical properties were developed during Joining, 
Phase I using an albeit simple, planar butt join geometry. Certain heat 
engine components could benefit from development of curved join 
geometries with mechanical performance similar to the planar butt joins. 
Consequently, considerable effort during Joining Phase II was spent on 
development and testing of silicon nitride curved joins. 

The selection of joining methods was guided by an objective to 
produce join interlayers with properties similar to the parent materials. 
The method for silicon nitride joining developed within this contract 
resulted from improvements upon the approach used during Phase I and 
incorporation of independent developmental efforts by Norton Advanced 
Ceramics (NAC) Division of Saint-Gobain/Norton Industrial Ceramics 
Corporation (SGNICC). 
the following steps. 

The silicon nitride joining method consisted of 

NCX-5101 Si3N,, formed by cold isostatic pressing and green 
machining into curved shapes, 
densification. 

was joined in the green state prior to HIP 
Join interlayers were made from various types of aqueous 

dispersions (or slips) of NCX-5101 powder, or made without slip. The 
aqueous slips although applied similarly, differed in method of 
preparation, additive content and the manner in which silicon nitride 
green joins were pre-conditioned. 

Improved green strength was desired for silicon nitride joins to 
minimize the handling rejections experienced prior to hot isostatic 
pressing during Phase I of the contract. 
demonstrated a 5.5-fold improvement 

Curved silicon nitride joins 
of pre-sintered green strength 

compared with methods used for Phase I of the contract. The mechanical 
properties of the improved joining method were also measured by flexure 
strength tests at 22OC and 137OOC. There was no statistical difference 
between the 22OC and 137OOC flexure strength populations as a function 
of location within joined samples. The combined average 22OC flexure 
strength for curved silicon nitride joins was 886.3 MPa with a Weibull 
modulus of 16.4 as determined by 156 flexure specimens from five curved 
join disks. The combined average 137OOC flexure strength for curved 
silicon nitride joins was 516 MPa with a Weibull modulus of 16.0 as 
determined by 59 flexure specimens from five curved join disks. Only 
1.2% of the 22OC flexure failures and 5.1% of the 137OOC flexure failures 
originated within the join interlayer. Shear tests of densified joins 
were not able to fail specimens at the join interlayer due to the high 
strength of joins relative to the parent material. 
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The demonstration of curved join quality similar to planar butt 
joins developed during Phase I of the contract allowed application of the 
joining technique to more complex shapes, such as a simulated rotor 
geometry. Shaft to disk joins made by the procedure developed for curved 
joins were ground to obtain spin test specimens. Additional joins of the 
shaft-to-disk configuration were used to .manufacture tensile specimens 
to determine tensile strength of the actual spin test specimen join 
geometry. 

Tensile strength of curved joins averaged 636 MPa with an estimated 
Weibull modulus of 8.2 with no failure originating from the join 
interlayer. The spin test specimens failed at angular velocities ranging 
between 17,000 and 42,530 revolutions per minute corresponding to a 
maximum principal stress from finite element analysis between 88.0 and 
550.6 MPa. The angular velocity and stress at failure were less than 
predicted by the models developed within this contract due to failure 
origination from grinding damage. The size of surface flaws as 
determined by fractography were consistent with the flaw size calculated 
from the Griffith relationship for brittle failure of solids. This 
emphasizes the need for development of improved machining techniques for 
complex shaped structural ceramic components. 

Tensile creep tests of the silicon nitride planar butt joins 
demonstrated behavior that was similar to the parent unjoined material. 
Creep was evaluated between temperature of 125OOC to 142OOC and stress 
between 100 and 250 MPa. Creep curves display a well defined primary 
creep regime with a gradual transition into secondary creep. None of 
the creep tests exhibited tertiary creep even though some tests were as 
long as 1,692 hours. A novel method of data acquisition allowed the 
measurement of creep strain from different positions upon the gauge 
length within a single creep specimen during each test. As a 
consequence, it was noted that the largest variations of creep strain at 
test termination were observed within specimens as opposed to between 
specimens. The percent difference of total strain at test termination 
between opposing halves of the parent material typically ranged from 5% 
go 57%. This was attributed to the inherent variable nature of creep 
within typical ceramic materials. Five of the 29 failures during tensile 
creep tests, originated within the join interlayer. Failed specimens 
exhibited cavitation at bi-grain junctions and wedge cracking at triple 
grain junctions. The creep data was incorporated into three models to 
develop a predictive tool that could be utilized for specimens of 
different geometry. 

The widely accepted Norton's (or Arrhenius) equation approach was 
first considered to model creep behavior. Values of activation energy 
(Q) , stress exponent (n) and material constant (A) were determined for 
the creep experiments using an iterative procedure. This was done to 
determine a single estimate of these parameters for the entire creep 
matrix from which a reasonable, good correlation of predicted and actual 
creep strain rate was obtained. 

The above model used'the minimum creep rate for a given experiment 
since this represented the creep rate at failure or test suspension 
within the secondary creep regime. 

A less widely accepted approach, but interesting alternative to 
the Arrhenius equation approach, was to model the creep behavior theta 
projection. The theta projection method described time dependent creep 
strain with a series of shape terms to reproduce the creep strain curve 
at a specific stress and temperature. One term of the equation 
represented the decaying primary component and another an accelerating 
tertiary component of creep strain. The theta projection method deviated 
from classical creep modeling by defining the secondary creep regime 
mathematically as the resultant contribution of the tertiary and primary 
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creep. Alternatively, the theta projection method provided a way to not 
only represent the experimental creep curves, but to interpolate to other 
testing conditions as well. However, some of the. experimental data were 
not satisfactorily fit by this method. The theta projection method is 
limited by a dependence upon modeling tertiary creep, which was not 
observed experimentally. In addition, the method requires determination 
of sixteen coefficients, which is excessive. The highly variable 
behavior within the primary creep regime experienced between specimens 
strongly contributed to an unacceptable error for predicted creep strain 
values. The third model that was applied to the data involved an 
internal variable. This method predicts the primary creep through the 
evolution of a scalar internal variable. The creep strain is determined 
by the integration of a system of two, first order, differential 
equations. Validation of the approach was obtained through comparison 
with the actual creep behavior of nine specimens that were tested to 
failure. 

strain 
Creep failure modeling was facilitated by a correlation of creep 

rate with time to failure which allowed application of a Monkman- 
Grant relationship. It was unnecessary to plot separate curves for each 
temperature since a good correlation of all the experimental data was 
obtained with a single curve. 

The development of material models above was useful only if the 
model could predict the performance of structural components. The 
Norton's law was used to predict the behavior of a notched tensile 
specimen which served to simulate behavior of an actual component. 
Reasonable prediction of the time of failure for three specimens tested 
under different loads was an encouraging demonstration of the value of 
the use of a finite element code such as ANSYS in conjunction with the 
Norton's law model. 

Attempts to join NT230 silicon carbide began with manufacture of 
planar butt joins. If the planar butt join quality proved acceptable 
then curved join geometries were to be undertaken. The processing steps 
to manufacture the NT230 material were to form green components by 
pressure casting and subsequently pre-sinter and siliconize. This 
contract attempted to join like parent billets at two different stages 
of processing: siliconized and pre-sintered, unsiliconized. The joining 
approach to be evaluated borrowed from the successful silicon nitride 
joining attempts whereby the join interlayers were applied as aqueous 
dispersions, or slips, of the parent material with other additives. The 
aggregate bodies joined with slip were subsequently pre-sintered and 
siliconized. 

Initial screening trials using two types of slip interlayer for 
joining siliconized and unsiliconized parent materials resulted with 
joins of lower strength than the parent materials. Join quality was 
affected by pronounced silicon enrichment and porosity. Additional 
silicon carbide joins were made to improve quality. A total of six 
interlayer types consisting of various mixtures of silicon carbide and 
other additives were applied to join both siliconized and unsiliconized 
parent materials. Quality of the silicon carbide joins was evaluated by 
room temperature flexure strength tests of specimens ground from the 
joined bodies. All flexure specimens failed at the join interlayer. 
Join strength was lower than the strength of unjoined NT230 of similar 
cross sectional thickness, 
and 233 MPa. 

with respective average strengths of 152 MPa 
Although, the joins exhibited an improved, more homogeneous 

distribution of silicon carbide and silicon, all of the joins lacked a 
contiguous network of silicon carbide that extended into the parent 
material. All of the join methods resulted in join interlayers that were 
discrete relative to the parent materials and of higher silicon 
concentration. The distinct interface between the join interlayer and 
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parent material consisted largely of silicon within the join and silicon 
carbide within the parent material with an absence of interpenetration 
across the interface. In addition, voids within the join interlayer were 
strength limiting. 

While the silicon nitride joins were produced with sufficient 
integrity for many applications, the lower join strength would limit its 
use in the more severe structural applications. Thus, the silicon 
carbide join quality was deemed unsatisfactory to advance to more 
complex, curved geometries. The silicon carbide joining methods covered 
within this contract, although not entirely successful, have emphasized 
the need to focus future efforts upon ways to obtain a homogeneous, well 
sintered parent/join interface prior to siliconization. In conclusion, 
the improved definition of the silicon carbide joining problem obtained 
by efforts during this contract have provided avenues for future work 
that could successfully obtain heat engine quality joins. 
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ANALYTICAL AND EXPERIMENTAL EVALUATION OF JOINING 
SILICON CARBIDE TO SILICON CARBIDE 

AND SILICON NITRIDE TO SILICON NITRIDE 
FOR ADVANCED HEAT ENGINE APPLICATIONS 

PHASE II 

Glenn J. Sundberg 
Ara M. Vartabedian 

Jon A. Wade 
Charles S. White 

4 ABSTRACT 

Techniques were developed to produce reliable silicon nitride to 
silicon nitride (NCX-5101) curved joins which were used to manufacture 
spin test specimens as a proof of concept to simulate parts such as a 
simple rotor. Specimens were machined from the curved joins to measure 
the following properties of the join interlayer: tensile strength, shear 
strength, 22OC flexure strength and 137OOC flexure strength. In 
parallel, extensive silicon nitride tensile creep evaluation of planar 
butt joins provided a sufficient data base to develop models with 
accurate predictive capability for different geometries. Analytical 
models applied satisfactorily to the silicon nitride joins were Norton's 
Law for creep strain, a modified Norton's Law internal variable model and 
the Monkman-Grant relationship for failure modeling. The Theta 
Projection method was less successful. Attempts were also made to 
develop planar butt joins of siliconized silicon carbide (NT230). 

5 INTRODUCTION 

The fabrication capabilities for silicon nitride and silicon 
carbide have improved since the beginning of Joining, Phase I in 1987. 
However, it is still difficult to fabricate reliable components of 
silicon nitride and silicon carbide of large size and complex geometries 
for heat engine applications. Two favored near net shape forming 
techniques, injection molding and pressure casting, suffer from 
limitations that become more pronounced when the thickness and complexity 
of the part increases. Warpage and cracking during binder removal of 
injection molded heat engine components still occurs. Long casting time, 
cracking during drying (caused by high capillary forces), density 
gradients and non-uniform shrinkage are limitations of pressure casting 
parts. 

Consequently, joining of smaller sub-components of simpler geometry 
to manufacture a larger, complex shaped aggregate component is currently 
attractive. Theoretically, the reliability of components made by joining 
simpler shape parts can be superior to the single-part complex shape 
containing angles and discontinuities. Furthermore, joining is the only 
viable alternative when a complex component is comprised of sub- 
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components of dissimilar composition that are each manufactured by 
separate processes (e.g. reinforced CMC vanes attached to a monolithic 
hub in a rotor). 

Joining serves as an appealing solution to current fabrication 
problems. Methods developed during Joining, Phase I and II have been the 
only effective approach available to date to obtain heat engine quality 
joins with good strength, acceptable creep and stress rupture life at 
137ooc. 

Silicon nitride joins with excellent room temperature and high 
temperature (137OOC) mechanical properties were developed during Joining, 
Phase I using an albeit simple, planar butt join interlayer. Certain 
heat engine components could benefit from development of curved join 
interlayer geometries with mechanical performance similar to the planar 
butt joins. Consequently, considerable effort during Joining, Phase II 
was spent on development and testing of silicon nitride curved joins. 
A final evaluation of the joining method was to demonstrate performance 
of simulated joined rotors by spin testing. 

Concurrent, with curved join development was testing of high 
temperature creep behavior of planar butt joins developed during Joining, 
Phase I to expand the database begun during Phase I for creation of valid 
analytical numerical models. A number of models were evaluated to 
develop acceptable predictive capability for silicon nitride components 
of different geometries subjected to complex temperature and stress 
fields. 

Silicon carbide joining was also investigated in an attempt to 
create acceptable join quality for heat engine applications. 



, 

3 

6 PROGRAM OBJECTIVES 

This program had the following main objectives: 

silicon nitride curved join development and optimization 
silicon nitride shaft-to-disk join development 
silicon nitride spin testing 
silicon nitride tensile creep evaluation 
analytical/numerical modeling for life prediction in 
different conditions of temperature and stress 
silicon carbide planar (flat) butt join development 
silicon carbide curved join development 
silicon carbide shaft-to-disk join development 
silicon carbide spin testing 

The program was initially divided into the main tasks, as described 
below. 

Task 1.1 Silicon Nitride Butt Joins - Creels Resistance 
Silicon nitride butt joins shall be evaluated in the primary 
and secondary or steady state regions. Creep behavior shali 
be determined at three temperatures and three stresses. 
Specimens shall be evaluated after fracture by microscopy 
methods to determine microstructural changes during 
deformation. 

Task 1.2 

Task 1.4 

Task 1.4B 

Silicon Nitride Curved Join - Join Development' 
Silicon Nitride - 4wtt yttria disks shall be joined to hollow 
rings made from the -same material. Joining shall be 
attempted with and without a slip interlayer. Approximately 
15 joined sets shall be prepared. 

Join strength shall be measured by MOR in 4 point bending at 
25OC and 137OOC. One shear strength measurement at 25OC and 
one at 137OOC shall be attempted on the whole joined disk by 
supporting the outer ring and loading the inner circle until 
failure occurs. Optical and SEM fractography shall be 
performed on both MOR bars and sheared parts to identify 
fracture mode and origin. 

Silicon Nitride Shaft to Disk - Join Development 
Ten components of a shaft to disk configuration will be 
fabricated. The shaft/disk assembly shall be evaluated by 
using microfocus x-ray radiography to detect flaws in the 
join interface. 

Silicon Nitride Shaft to Disk - Spin Test 
The database developed in Phase I and the tensile test 
specimens prepared in this task shall be used to model fast 
fracture behavior of the shaft to disk join during a spin 
test. Five of the components prepared in Task 1.4A shall be 
machined into a rotor configuration and spin tested to 
failure using high speed photography. Following testing, 
fractographic analysis shall be attempted to determine 
fracture mode and origin. Spin test results shall be 
utilized to verify the analytical model. 



Task 2.1A 

Task 2.1B 

Task 2.2 

Task 2.4A 

Task 2.4B 
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Siliconized Silicon Carbide Butt Joins 
Join Development of Siliconized (dense) materials shall be 
joined by using slip 'interlayers which are subsequently 
sintered and siliconized. Joining shall use billets 2 X 2 
X 1.5 inch. The effect of slip composition and grain size 
shall be evaluated. Later studies shall consist of 
evaluating the joining of unsiliconized bodies with slip 
interlayers followed by sintering and siliconization. 

MOR bars shall be machined to include the joined region, then 
tested for join strength at 25OC and 137OOC. Results shall 
provide feedback to optimize slip composition and processing 
conditions. Control (no join) MOR bars shall also be tested. 
Flexural stress rupture performance at 137OOC shall be 
evaluated on joined materials exhibiting the best MOR 
performance. Optical and SEM microscopy shall be utilized 
to identify fracture mode and origins. 

Siliconized Sic Butt Joins 
Creep Resistance Time dependent strain deformation in 
siliconized silicon carbide butt joins shall be evaluated and 
compared to results obtained with unjoined material. Creep 
deformation prediction capabilities developed in Phase I and 
verified with silicon nitride butt joins shall be utilized. 

Siliconized Silicon Carbide Curved Join - Join Development 
The approach for this effort is essentially the same as 
described in Task 1.2 for curved silicon nitride joins. 
However, the siliconized silicon carbide join may be prepared 
by machining green (unsiliconized) material or dense 
(siliconized) material depending on the results from butt 
joining this material (Task 2.1A). Flexural and shear 
strengths of the join shall be measured. 

Siliconized Silicon Carbide Shaft to Disk - Join Development 
The joining method for siliconized silicon carbide shall be 
as developed in Task 2.1A. The approach shall be identical 
to that for silicon nitride as described in Task 1.4A. 

Siliconized Silicon Carbide Shaft to Disk - Spin Test 
The model developed in Task 1.4B shall be utilized to oredict 
failure. Five of the components in Task 2.4A shall be spin 
tested to failure. Fractographic analysis of failed parts 
shall be utilized to determine fracture mode and origin. A 
database consisting of 45 MOR specimens tested at room 
temperature shall be utilized to predict spin performance of 
the component. The spin test results shall be utilized to 
further verify the analytical model. 

During Task 2.1A, Siliconized Silicon Carbide Butt Joins - Join 
Development, difficulties with manufacture of heat engine quality joins 
could not be overcome. Consequently, the dependent Tasks 2.1B, 2.2, 2.4A 
and 2.4B were removed from the Statement of Work. 
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7 MECHANICAL EVALUATION PROCEDURE 

7.1 TENSILE CREEP 

7.1.1 Specimen Preparation 

The tensile creep specimen is shown in Figure 1. 
shape with grip end holes for pin loading. 

It has a dogbone 
The specimen is 3.5" long, 

0.100" thick and has a grip end width of 0.750". 
1.00" long and 0.1" wide. 

The gauge region is 
A large radius transition region (radius = 

1.0") was used to minimize stress concentration within the grip and 
transition regions. A detailed finite element -study was conducted to 
optimize the specimen geometry. A requirement is that the highest creep 
strain rates should be confined to the gauge section. The finite element 
analysis suggests that the maximum stress at the pin hole is less than 
0.9 of the stress magnitude in the gauge length (Figure 21, which is 
acceptable. There is a stress concentration at the surface where the 
transition region blends into the gauge length. The stress concentration 
at the transition is 1.03 which is typical of other tensile specimens2: 

7.1.2 Load Application 

The typical profile included a pre-load of 20 lbs. The pre-load 
was maintained throughout the temperature ramp and pre-soak. After 24 
hours, the load was ramped at a rate of 50 pounds per minute to 85% of 
the final load. The rate was then reduced to 25 pounds per minute to the 
final load and maintained +/- 1 pound for the duration of the test. 

7.1.3 Temperature Profile 

The furnaces were ramped from 22OC to the temperature of creep 
evaluation. The furnace was heated to 12OOOC at 25OC per minute, then 
to soak temperature at 10°C per minute, and maintained +/- l°C to the 
conclusion of the test. 

7.1.4 Extensometrv 

Multiple laser extensometer targets are positioned about the join 
to determine the variation of strain rate within the region containing 
the join as compared with the two regions not containing the join (Figure 
3). Two targets positioned at the extremities of the gauge section and 
two targets positioned adjacent to the join provide the comparative 
strain data. 

A modified target (Figure 4) with a 45O bevel slot and the 
thickness decreased to 1.27 mm minimized the tendency for slipping as the 
gauge section elongates. Additionally, a longer moment arm increased the 
normal force along the line 
slipping. 

contact and improved the resistance to 
This change proved to be more effective than the original 

unslotted targets. 
The actual strain is measured with laser dimensional sensors 

manufactured by Z-Mike Corporation.3 Z-Mike model 1101 sensors were 
modified for hot object measurement and an increased passline extension 
for ten to twelve inch transmitter to object separation to accommodate 
the furnace. The system measurement resolution is 0.1 p, and the 
measurement precision is +/- 1 p at 14OOOC. Both the laser transmitter 
and receiver are mounted on precision linear translation tables with one 
inch manual barrel micrometer drives. 



<< NOTES >> 
1) SURFACE RNISH IN GAGE SECTION= 16 MICROINCH 

2) SMOOTH BLEND, NO UNDERCUT OR TOOL MARKS ALLOWED 
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Figure 1: Tensile Creep Specimen 
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Figure 2: Contours of Maximum Principal Stress for Tensile Creep Specimen 
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The laser extensometry system was used to measure and store the 
displacement of four flags upon each tensile creep specimen (Figure 3). 
The relative displacement between any two flags has been used to 
calculate the strain of different segments of the gauge section. Creep 
data is reported for a specific flag couple. For example, the creep of 
the parent material (segments D1,2 and D3,4) and the join (segment D2,3) 
may be calculated independently or the combined creep of parent material 
and the join (segment D1,4) may be determined. In this manner, creep 
strain as a function of time has been plotted to compare the creep of the 
join interlayer and the parent material at varying temperature and 
applied stress. 

The measurement data was conditioned and formatted in the Z-Mike- 
1100 processor. The system can be programmed to measure several 
dimensions simultaneously. Measurements were always taken between the 
same side of laser target pairs to allow for any uniform dimensional 
changes of the targets due to oxidation or other reactions at high 
temperature. 

7.1.5 Data Acquisition 

The testing supervisory computer was linked to the Z-Mike-1100 
processor via synchronous RS-232 communication line. The test system 
control program prompts the 1100 processor for the average of the 100 
most recent measurements in a moving queue. The data was parsed and 
logged into fields with a time stamp. The load was also logged with a 
time stamp in a separate file or recorded on a stripchart. At the end 
of a test, the data is run through an RPL procedure in RS/14to check for 
proper column entry and deletion of errors and empty fields. A 
preliminary creep strain versus time plot is generated at this time to 
evaluate the test run. A sample curve of the raw data (Figure 5) 
displays creep strain for the entire gauge section (Strain 1-4) and the 
regions above and below the. join (Strain 3-4 and Strain l-2). The curve 
labeled Strain Independent Laser Target is used to record the linearity 
of the laser system over time. This curve should be near zero strain for 
the entire length of the test. The test is useful in distinguishing 
actual strain related phenomena from logging errors and is a good check 
of the system. 

7.2 GREEN SHEAR STRENGTH 

Green shear strength tests were used to guide silicon nitride 
curved join development to obtain a joined, pre-sintered body with 
improved strength. Join shear strength was measured after a pre- 
sintering step, prior to hot isostatic pressing on the entire green join. 
A disc on ring shear fixture (Figure 6) was mounted on an Instron 4206. 
The load rate was 0.02 inches per minute. The shear fixture had a 
load/support ring diameter ratio of 0.802. 

7.3 FIRED SHEAR STRENGTH 

The fired shear strength of curved joins were measured after 
completion of join development stage. Three shear test specimens were 
ground from each dense join by sectioning across the diameter to create 
three disks of 2.50 nun thickness x 70 mm diameter. This decreased the 
load required to fracture the dense join to a level acceptable to the 
testing on the Instron 4206. Five specimens were shear tested at 25OC 
and one at 137OOC. Two load-disc/support-ring diameter ratios were used 
(0.802 and 0.918) at room temperature to observe difference of failure 

mode. 
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. 
7.4 FLEXURE STRENGTH 

7.4.1 Specimen Preparation - Silicon Nitride Curved Join Development 

All joins were diamond sectioned after x-ray microfocus radiography 
for optical inspection to determine join integrity. Additional diamond 
grinding yielded 12 flexure specimens per each curved join. Flexure 
specimens were made and tested according to the ASTMC1161-90 A geometry 
specifications. Deviation from the ASTMC1161-90 during tests will be 
explained in section 7.4.4, Flexure Strength Test Method. The join plane 
was located at the center of the bar, perpendicular to the longitudinal 
(tensile) axis of the specimen. 

7.4.2 Specimen Preparation - Final Testina of Curved Silicon Nitride 
Joins 

Experience with grinding flexure specimens from the curved joins 
allowed a greater yield of flexure specimens from each curved join. 
Thirty-two ASTMC1161-90 A-geometry flexure specimens were obtained from 
each curved join billet according to the configuration illustrated in 
Figure 7. Deviation from the ASTMC1161-90 during tests will be explained 
in section 7.4.4 Flexure Strength Test Method. 

7.4.3 Specimen Preparation - Sic Butt Join Development 

Specimens were diamond sectioned for optical inspection to 
determine join integrity. Additional machining yielded 15 flexure 
specimens per each join. Flexure specimens were made and tested 
according to ASTMC1161-90 B geometry specifications. Deviation from the 
ASTMC1161-90 during tests will be explained in section 7.4.4 Flexure 
Strength Test Method. 

7.4.4 Test Method 

. 

Room temperature testing utilized a Sintech Model 1 test frame. 
An Instron 4206 test frame was used for high temperature tests. Flexure 
tests for silicon nitride curved join development used an outer span of 
20 mm and an inner span of decreased size, 5 mm, on a rolling pin fixture 
to increase the probability of failure within the join. Flexure tests 
for silicon carbide join development used an outer span of 40 mm with the 
same inner of 5 mm. Flexure fixtures were manufactured from silicon 
carbide (NC-2031 and complied with ASTMC1161-90 B. The fixture was 
mounted horizontally with the load applied normally, transmitted through 
a ball bearing, at room temperature. A hemispherical anvil was used at 
elevated temperatures to compensate for any loading eccentricity. The 
specimens were loaded at a cross-head speed of 0.20 mm/minute and data 
acquisition was handled by automated machine control. Specimen width and 
thickness was measured and recorded using a digital micrometer to 
accuracy of 0.01 mm. .Peak load, break load, peak stress, and percent 
strain at break data were recorded and saved on computer file. Elevated 
temperature testing was performed in air using a CM Rapid Temp moly- 
disilicide furnace heated at a rate of 50°C per minute to the test 
temperature and equilibrated at the test temperature for 10 minutes prior 
to testing. 

7.5 SILICON NITRIDE SPIN TEST 

Shaft to disk joins (Figure 8) were ground to yield the four-bladed 
spin test specimens (Figure 9). Five additional joins of the shaft-to 
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Figure 9: Spin Test Specimen Design (Dimensions in Inches) 
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. 
-disk configuration were used to manufacture tensile specimens to 
determine tensile strength of the actual spin test specimen join 
geometry. 

The spin specimens were tested by The Balancing Company, Vandalia, 
Ohio. Specimens were balanced and slowly accelerated at a rate of 
approximately 8.0 revolutions/sec2, to limit rotational acc.eleration 
stress effects, until a failure occurred. Failures were recorded by high 
speed photography (Figure 10). 

7.6 TENSILE FAST FRACTURE _ 

Tensile specimens ground from shaft-to-disk joins contained two 
join interlayers within the gauge length and these were oriented 
perpendicular to the gauge length. The fast fracture tensile specimens 
had flat grip heads and 0.1" diameter by 1.0" in length cylindrical 
gauge sections (Figure 11). These specimens were tested at room 
temperature on an Instron Model 8562 utilizing the Instron t'supergrips". 
In the load train the tensile specimen was attached to two stainless 
steel rods which were connected to the "supergrips". The specimen was 
attached to the rods in a pin and clevis arrangement using stainless 
steel dowel pins. The specimens were loaded to 'failure using a 
displacement rate of 0.100 inches per minute. 

t- . ._“_^ 
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A) Prior To Failure 

B) Immediately After Failure 

Figure 10: High Speed Photography of Spin Test 
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Figure 11: Cylindrical Gauge Tensile Fast Fracture Specimen 
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8 JOIN DEVELOPMENT 

8.1 SILICON NITRIDE CURVED JOIN DEVELOPMENT (TASK 1.2) 

Silicon nitride joins with excellent room temperature and high 
temperature (137OOC) mechanical properties were developed during Joining, 
Phase I using an, albeit simple, planar butt join geometry. Certain heat 
engine components could benefit from development of curved join 
geometries with mechanical performance similar to the planar butt joins. 
Consequently, considerable effort during Joining, Phase II was spent on 
development and testing of silicon nitride curved joins. 

NCX-5101 Si,N, was formed by cold isostatic pressing, green machined 
into curved shapes, joined in the green state and HIP densified to 
theoretical density. Join interlayers were either of various types of 
aqueous dispersions (or slips) made with NCX-5101 powder, or without 
slip. The aqueous slips although applied similarly, differ in method of 
preparation, additive content and the manner in which silicon nitride 
green joins were pre-conditioned. The resultant aggregate curved silicon 
nitride join after HIP densification was comprised of two joined sub- 
components: a disk of 83.8 mm outside diameter and 41.9 nun inside 
diameter into which a solid cylindrical disk was bonded. The join plane, 
within the resultant aggregate body, was formed at the contact of the two 
disks at a diameter of 41 mm (Figure 12). 

8.1.1 Initial Join Development Trial 

Initial curved joining trials were conducted on a small-scale with 
three types of join interlayers: no slip and two different aqueous slips, 
designated A and B. The Slip A and method of application was formerly 
used for the mechanical characterization and analytical modeling' tasks 
in Joining, Phase I and also Task 1.1 of Joining, Phase II. The 
aggregate join were determined to be theoretically dense after HIPing. 
ASTM C373-88 Microfocus x-radiography of each join showed complete 
densification of the join interlayer, with the exception of two areas of 
1 mm x 0.5 mm dimension on the Type A join at the external surface. All 
joins were diamond sectioned after x-ray microfocus radiography for 
optical inspection to determine join integrity (Figures 13 and 14). The 
sectioned Slip A join and no slip join both exhibit incomplete closure 
of the join interlayer at the external surface of the joins (Figures 15 
and 16). Sectioned surfaces of the Type B join appeared entirely dense. 
The Slip B join could be observed as a dark line in Figure 17 while the 
dense regions of the Slip A and no slip joins were not optically 
detected. 

Mechanical Evaluation 

Improved green strength was desired for silicon nitride joins to 
minimize handling rejections experienced prior to hot isostatic pressing 
during Joining, Phase I. Green shear strength tests were performed 
according to procedure of Section 7.2. The Type B slip join interlayer 
provided a significant improvement in green shear strength over no slip 
and Type A join interlayer (Table 1). The Type A joins and the no slip 
joins failed at the join interlayer. Type B joins after failure 
exhibited separation at the join interlayer in addition to fracture of 
the external and internal join disk. The origin of fracture for the Type 
B joins was uncertain. However, it is known that the B joins had 
markedly improved shear strength over the other treatments. Analysis of 
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c 83.8mm 

Figure 12: Curved Join Configuration 
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Figure 13: Sectioned NCX-5101 Silicon Nitride Curved Join 

Figure 14: Cross-Section of NCX-510i Silicon Nitride Curved Join 
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Figure 15: NCX-5101 Silicon Nitride Curved Join Cross Section With 
Tvpe '*A"Slip Interlayer 

Figure 16: NCX-5101 Silicon Nitride Curved Jqin Cross Sec,tion With,No~. 
Slip Interlayer 
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Figure 17: NCX-5101 Silicon Nitride Curved Join Cross Section With 
Type "B"Slip Interlayer 
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. post shear tested Type A join interlayers exhibited a powdery slip 
residue that was easily removed. Slip residue of Type B join interlayers 
was firmly bonded to the parent materials. 

f 
Table 1: Silicon Nitride Curved Jo@ : Greep Shear S-trength at 22% 

Slip Type Join Mean Green Standard Quantity 
I.D. Shear Strength Deviation Tested 

(kPa) (IdPa) 

No Slip 8, 9 589.8 121.8 2 

A 5, 6 330.9 81.3 2 '~ 

B 2, 3 1831.3 515.9 2 , . . _ -.- ._ 1. ,... . ,. _ , I ,.", _ _ __ _ 

The results of 22OC and 137OOC flexure strength tests of specimens 
ground from the curved silicon nitride joins are summarized in Tables 2 
and 3. The first attempts with joining of silicon nitride curved joins 
were promising although the small number of flexure tests of each join 
type made the analysis preliminary. 

Table 2: Silicon Nitride Curved Join - Fleqare.. Stxepgth at 22°C 

slip Join Mean Standard Quantity Join 
TyBe I.D. Flexure Deviation Tested Interlayer 

Strength OfPa) Failures 
OfPa) 

B 1 771 108 6 0 

A 4 832 130 5 1 

No Slip 7 722 132 7 3 
.._ . 

Table 3: Silicon Nitride Curved Join - Flexure Strength at 1370°C 

Slip Join 
Type I.D. 

Mean Standard Quantity Join 
Flexure Deviation Tested Interlayer 
Strength (MPa) Failures 

WPa) 

B 1 626 28 5 1 

A 4 623 28 6 0 

No Slip 7 582 30 4 1 
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There appeared to be an insignificant statistical difference 
between the 22OC and 137OOC flexure strengths of each type of joining 
method. However, the joins manufactured without slip exhibited the 
lowest mean flexure strength and the highest frequency of failures within 
the join interlayer at 22OC and 137OOC. Join interlayers without slip 
were not pursued further. Additional join manufacture and testing of 
slip join interlayers was undertaken to obtain a conclusive analysis. 

8.1.2 Second Curved Join Development Trial 

Encouraging results of the screening trial prompted a more rigorous 
application of the slip interlayer joining method using two of the slips 
from the screening trial (A and B) and the inclusion of two more, 
designated C and D. Two curved joins were made for each of four 
different types of slip interlayer to yield a total of 8 joins. Ground 
join sections indicate that incomplete closure of the near external 
surface of the join interlayer (-1 mm depth) was not controlled by 
application of a varying amounts of slip to the external join seam. No 
apparent trend of incomplete closure of the near external surface of the 
joins with the type of slip interlayer was noted as with earlier work.6 
More work was required to address this limitation of the joining method. 

All joins were HIP'ed to theoretical density and provided 
sufficient flexure strength data to statistically evaluate the mechanical 
properties of joins made with Types A, 
interlayers. 

B and variations of these slip 
Flexure strength tests of specimens machined from the dense 

joins were performed at 22OC and 137OOC. 

Mechanical Evaluation 

22OC Flexure Strenqth 

Mechanical evaluation of the final iteration of silicon nitride 
curved join development is summarized in Table 4. While certain disk 
joins have visible join lines the failures do not often originate at the 
join. Joins 11 and 13 had the highest frequency of join failures with 
incomplete join interlayer closure during hot isostatic pressing as the 
primary cause. A statistical comparison 
parametric robust analysis5 

of data sets using a non- 
found no difference between most of the 

flexure strengths at the 95% confidence level. Joins 15 and 16, made 
with Slip D, showed a significantly greater room temperature strength and 
Weibull modulus relative to the other join types, complete join closure 
and an absence of failures originating in the join interlayer. The Type 
D slip was chosen for the remainder of silicon nitride joining on this 
contract. 

137OOC Flexure Strenuth 

Results from 137OOC temperature fast fracture of MIL STD 1942A, 
Specimen A type bars for the second iteration of curved join development 
are shown in Table 5. There were no statistically significant 
differences of 137OOC strength as a function of slip type. The joins 
made with Types B atid D slips demonstrated an absence of failure 
initiation within the join interlayer at 137OOC and gave the best high 
temperature strength. The high temperature performance and the room 
temperature properties for Type D joins supported selection of Type D 
joins for the remainder of the contract. 



Table 4: Silicon Nitride Curved Join Development - Flexure Strength at 22% 
+ 

Disk Interlayer Specimens Mean Strength Std. Dev. Min. Strength Join Join Weibull 

Number Slip Tested (Mpa) (Mpa) (MpaI Failures Non Closure Modulus 

IO A 11 765 103 ,593 1 0 9.5 

11 A 11 572 228 193 4 3 2.9 

12 C 11 738 159 276 0 0 6.7 

13 C 11 745 214 262 4 2 5 

15 D 11 855 76 676 0 0 14.9 

16 D 11 793 55 710 0 0 14.2 

17 B’ 11 793 62 717 0 0 11.7 

18 B 11 765 
2 

110 448 1 0 12.1 



Table 5: Silicon Nitride Curved Join Development - Flexure Strength at 137OOC 

Disk Interlayer Specimens Mean Strength Std. Dev. Min Strength 
, 

Join Weibull 
Number Slip Tested (Mpa) (Mpa) (Mpa) Failures Modulus 

10 A 7 530 40 462 0 14.6 

11 A 7 455 110 186 2 6.4 

12 C 7 524 41 455 1 17.5 

13 C 7 448 131 131 1 5 

15 D 7 524 48 462 0 12.1 

16 D 7 538 35 469 0 16.1 
N 
al 

17 B 7 538 41 462 0 13.2 

18 B 7 531 28 503 0 19.8 

,. 
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8.2 FINAL SILICON NITRIDE CURVED JOIN MECHANICAL CHARACTERIZATICN, _i; t (TASK 1.2) 

8.2.1 Room Temperature Fast Fracture 

Results of flexure tests on a 5 nun x 2Q mm span are summarized in 
Table 6. Data was labelled by the curved join disk number and the layer 
(A, B, C or D) within the disk from which specimens originated (Figure 
71. A statistical comparison of the outer layers (A, D) to the inner 
layers (B, C) using a robust non-parametric paired analysis found no 
difference at the 95% confidence interval within each joined disk. A 
similar analysis was run for all layers of a disk with each of the other 
disks. The results indicated a lower strength in joins 20 and 24. The 
cause of the lower strength of join 24 was not apparent, although, it may 
be related to a slightly lower density relative to other joins. Optical 
fractography showed failure origins to be located primarily at the 
surface and in most cases near a chamfer. The Weibull modulus for all 
outer layers (A, D) and all inner layers (B, C) were essentially 
identical at 16.4 and 16.5 respectively (Figure 18). The Weibull modulus 
for the combined groups was 16.4. The combined average strength was 
886.3 +/- 56 MPa. 

Table 6: Silicon Nitride Curved JoiqP,Deyelopment - 22OC Plexure 
Strength 

Room Temperature Fast Fracture Data (Task 1.2) 

Di6k 1 Siica 1 Specimen6 1 Mean Strength 1 Std. Dev. 1 Join Join 1 Density 
Number 1 1 Tested PApal IMpa) 1 Failures Non Closure 1 gms/cc 

I I 
19 1 A-D 1 16 925.3 f 38.6 0 0 I 3.229 
19 I B-C I 16 914.3 75.2 0 0 
20 1 A-D 16 840.5 55.2 , 2 I 0 1 3.208 
20 I 6-C 16 843.2 42.1 ( 0 0 I 
21 1 A-D 16 906.1 69 1 0 0 I 3.229 
21 B-C ( 15 926 60.7 0 0 
23 A-D 1 14 885.3 61.4 0 0 1 3.226 
23 B-C ) 16 885.3 51.7 0 0 
24 A-D ) 15 867.4 49 0 0 3.229 
24 B-C I 16 869.4 1 64.1 1 0 0 

8.2.2 137OOC Fast Fracture 

There were no significant differences between join strength at 
137OOC as a function of position within the join (Table 7). The average 
strength for all specimens tested was 516 MPa +/- 47 MPa. The Weibull 
modulus was 16.0 (Figure 19). 
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Table 7: Silicon Nitride Curved Join Development - 137OOC Flexure 
Strength 

Disk 
Number 

1370 Celsius Fast Fracture Data (Task 1.2) 
I 

Interlayer 1 Specimens 1 Mean Strength 1 Std. Dsv. J&l 
Tested 1 IMpa) 1 (Mpa) Failures 

Join Density 
Non-ciosure gmstcc 

26 A,D 14 506.8 I 35 1 0 1 3.228 
26 KC 18 490.2 I 74.5 2 1 

1 I 
28 A.0 / 15 t 523.3 ( 32.1 1 0 / 0 3.232 
28 8.C 14 544 I 45.5 I 0 I 0 

8.2.3 Shear Testing 

TWO densified silicon nitride joined disks were sliced 
perpendicular to the axis to make three test specimens 2.50 rmn thick by 
70 mm diameter from each disk for a total of six specimens. Five 
specimens were shear tested at 25OC and one at 137OOC. The loading 
configuration is shown in Figure 6. Two different load/support ring 
diameter ratios were used. The results are summarized in Table 8. 

Table 8: Silicon Nitride Shear Strength 

Besides the shear stress that develops in the annulus between load 
disk and support ring, an additional stress field of importance that 
develops in this test is the flexural field below the load disk. The 
average shear stress and maximum flexural stress are given by: 
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P 
==2XCt 

(1) 

u= --$$ [ (1-v) “Ii:‘+ (l+v) h-$1 (2) 

where 
a = support radius 
b = specimen radius 
r = loading ring radius 
c = join radius 
t = specimen thickness 
P = applied load 

The flexural stress relationship was presented in reference 5. 
Load/support ring ratios of 0.802 and 0.918 were used in the tests. 

These provide shear/flexure stress ratios of 0.14 and 0.32, respectively. 
Failure origins in the fine room temperature tests were located on 

the bottom of the specimens, within the region of uniform biaxial 
flexure. None of these were associated with the join. Figure 20 shows 
the fracture pattern which developed in specimen 3. The failure origin 
for the 137OOC test was not discernable from the fragments of this 
specimen. 

The flexural strength of the room temperature specimens ranged from 
189 to 447 MPa. These specimen failed within the uniform flexure region 
and thus the 60 MPa level shear stress present in the specimens did not 
composite to these failures. The high temperature specimen failed at 
flexure and sheer stress levels of 330 and,106 MPa, respectively. The 
lack of information on the,,, failure origin in this case prevents a 
determination of the role of the shear stress component in this failure. 

8.3 SILICON NITRIDE SHAFT-TO-DISK JOIN (TASK 1.4) . 

The demonstration of curved join quality similar to planar butt 
joins developed during Phase I of this contract &lowed application of 
the joining technique to more complex shapes, such as a simulated rotor 
geometry. Ten curved NCX-5101 joins of a shaft-to-disk configuration 
were fabricated (Figure 8). Five of the densified joins were machined 
into four-bladed spin test specimens (Figure 9). The remaining shaft-to- 
disk samples were used to manufacture tensilespecimens to determine 
tensile strength of the actual spin test specimen join geometry. 

8.3.1 Tensile Strensth 

The tensile specimens were pin-loaded with flat grip sections and 
cylindrical gauge section with a 0.1" diameter and 1.0" length (Figure 
11). Two join interlayers oriented perpendicular to the gauge length 
were within the gauge of each tensile specimen. The tensile specimens 
are identified with two numbers: the first number denotes the shaft-to 
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Figure 20: Failed Joined Disk 
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-disk join from which the specimen was machined and the second number 
differentiates between. specimens from the.,same parent join (Table 9). 

Table 9: Silicon .~itriae.~~~?lpft-To-Disk Join - Round Gauge ,., "I .^___ .,w.,.,II)v.I""*~"xIri _.I .cii~w.w.wu"~_l*l~* 
Tensile Strength 

Room Temperature Fa~tXract~x!x Data _ 

Specimen # 
. 

Failure stxe%~ Failure 

(ma) Location 

'."- 9 #l 710.25 gauwb non-join .I" .-.. 
9 #2 660. 5o. gauge, non-join 

10 #l 470.99 gauge I non-join 
-- 10 #2 491.06 clevis pin hole 

13 #l 662.53 gauger non-join 
17 #l 491.14 gauge, non-join 
17 #2 592.39 gauge I non-join 

'". 19 #i 359.76 clevis pin hole 

Six of eight specimens tested failed from.su.rface origins with& 
the gauge section away from the,, join interfaces (Figure 21). 
remaining two tensile specimens failed at the clevis-pin hole and were 
not considered in. t,he-+strength distribution. The mean tensile strength 
of the six valid tests was 598 MPa._, W,~.ibull.,~~~~~ysis of this limited 
data set suggests a characteristic,s.frength of 636 MPa and a Weibull 
modulus (m) of 8.2 (Figure 22). 

Fractography suggests that each of .the..fi_ve-spin specimens failed 
from damage induced bqi machining in the 'regions'of high--curvature near 
the shaft, but away from' the join. An example of surface damage is 
provided in the SEM micrograph in Figure 23. The failure speeds of the 
spin tests ranged from 17,000 to 42,530 rpm as is discussed below: 



A) 100x 
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B) 500x 

Figure 21: Failure Origin of a Silicon Nitride Round Gauge Tensile 
Specimen#17-1 
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A) 500x 

B) 2000x 

Figure 23: Failure Origin of a Silicon Nitride Spin Test Specimen.#ll 
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8.3.2 Spin Test (Task 1.4B) 

Table 10: Silicon Nitride Spin Test Results 

Specimen Ang. Velocity Max Stress Surface Defect Size, 2a (microns) 
Number at Failure at Failure Fracture Mechanics Fractographic 

( rpm) (MPa) (Equation 2) Measurement 

3 17000 88.0 3941 
I 18 1 32030 1 312.3 1 313 1 246 - 280 1 
I 11 I 36820 1 412.7 1 179 1 176 - 210 t 

14 37980 439.1 158 158 - 192 
8 42530 550.6 101 88 - 122 -._. .." ,..... . .c 

8.3.3 Modeling 

The spin test specimen was analyzed using a 3D finite element model 
in ANSYS6. Due to symmetry only one quarter of the specimen needed to be 
modeled. The model consists of 8368, eight node, "brick elements 
concentrated at the root of the blade, as well as 2444, four node, 
surface elements (to capture surface stress levels), for a total of 10812 
elements. The loading was specified to be a constant angular velocity 
applied to the entire model along the axis of the rod. Contour plots of 
the maximum principal stress (4) for an angular velocity of 50,000 rpm 
are shown in Figure 24 overlaying the finite element grid. A principal 
stress value of 761 MPa develops through the thickness of the blade root 
a short distance (0.5 - 1.0 mm.) from the join. The join experiences .._ -_-. 
stresses in the 350 to 400 MPa range at this velocity. These results may 
be scaled by the square of the angular velocity. 

Failure origins of the spin specimens were traced to the model- 
predicted region of highest stress. Fractography showed that all of.the 
test specimens failed due to surface flaws., Based on this, a reliability 
analysis assuming surface flaws as.the critical flaw population was 
conducted using the CARES' reliability analysis post-processor. The 
Weibull parameters used in this analysis were from data on approximately 
150 flexure bars which suggest a Weibull modulus (m) of 16.4 and 
characteristic strength of 913 MPa. The predicted probability of failure 
of the spin test specimen is plotted in Figure 25 as a function of 
angular velocity. Plotted as circles on the graph are the actual data 
points from our tests. The predicted failure loads overestimate the 
actuals by 3,000 to 24,000 rpm. 

c 

This discrepancy is likely attributable to the difference in the 
machined surface quality between the spin test specimens and the flexure 
bars. As a result, there were larger surface defects in the spin test 
specimens causing them to fail at a lower load. Similar results having 
overestimated reliability predictions have been reported* for spin 
failure tests of NT154 axisymmetric, monolithic spin specimens. The 
discrepancy between test data and predictions were attributed to the 
different machining procedures used for the specimens which provided the 
strength database and the spin specimens. 

The surface defect size can be attained in two ways. The first way 
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Figure 24: Maximum Principal Stress in the Spin Test Finite Element Model for an Angular Velocity 
of 50,000 rpm 



Figure 25: 

80 80 :. :. ........................... I............................ .......................... I............................ 

I I 70 l............................i. 70 l............................i. .................... .................... 

60 60 L.. L.. I I ......................... ......................... . . ...................... ...................... 

50 I............................ 50 I............................ 

40 ~............................ 40 ~............................ 

I I 30 L........................i........... 30 L........................i........... .......... .......... 
i 

20 20 .......................... p . . . . . . . . . . . . . . . . j............................ I............................ I.. 

I 
l l 

10 L.. ...................... q............................. ,; b . . . . ~ . . . . j . . . . . l”^‘ll”l’., 

I ,._.I. 

I 

I 

“‘I 

. . . / . 

1 “.(” 

/ 

1 
*“i” 

i . ..I.. 
I 
I . . . 
I 
. . 

. . . . 
*.. 
I 
. . 

-L 

! 
I I 

I .............................. +.... ........................ i .............................. . *. .............................. 
! 
1 

I I 
I ........................... 

.............................. . ............................... I . . ....... ........... I I ............ 
1 

w y... ...................... 
I i 

(............................... I................. 
I 

.............................. ........... ..). ......................................................... 

I 

a 

.............................. ............................... ............... 
! 

I i ................ .......... ................. a. .. 

i 

........................... 

..... Experimental 1 / I 
Data Points 

........... l ....... ‘. .................. ..................... 

I 
I CaresNormal Stress 

I AveragingMethod 

. . . . 

. . . . 

. . . 

. . . . 

. . . 

. . . 

. . . 

. . . 

. . . 

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 

Angular Velocity (rpm) 
I I 1 I I I I I 
0 : 30 1122. 274 407 761 1096 d492 

Maximum Principal Stress (MPa) 
Probability of Failure for Joined Silicon Nitride Sgin Test as a Function of Angular 
Velocity 



42 

was to measure the defect from fractographs. A second way was to 
determine the failure stress of the spin test specimens from the finite 
element model based on the angular velocity at failure. 
mechanics, 

Using fracture 
this stress can be used with the toughness of the material 

(K,,=5.5 MPa*m1'2) to determine the flaw size. If a semi-circular surface 
flaw of radius, a, is assumed, the fracture mechanics relationship9 that 
can be solved for the size parameter a is: 

The surface length of the defect is 2a in this model. 
Fractographs of four of the spin specimens are given in Figure 26 

and 27. The arrows are pointing to the apparent mirror boundaries. The 
surface defect (2a) is also noted. 

Table 10 compares the inferred fracture mechanics defect size to 
the measured fractographic defect measurements. Since there is an error 
associated with the measurement of a defect size, a range of values has 
been given for the fractographic measurement. The surface defect sizes 
(2a) calculated from Equation 3 fall either in the range or extremely 
close to the measured values, except for specimen 3 which failed at an 
extremely low load as compared with the other specimens. It is not known 
why it failed at such a low load. The surface defect size needed for 
failure at this load is in the 3-4 mm range which suggests a major defect 
was present in this specimen. The agreement for the other four specimens 
lends credence to the view that machining damage was the failure origin 
in these cases. The size of the defects (diameter, 2a = 101- 313 p) 
exceed that expected from precision grinding, such as is routinely 
employed for MOR bars. Hence it is concluded that the lower than 
predicted failure velocities was attributed to the specific grinding 
procedure used to prepare the bladed spin specimen. 

a.4 SILICON CARBIDE - PLANAR BUTT JOIN DEVELOPMENT (TASK 2.1A) 

8.4/l Initial Join Development Trial 

Attempts were made to join parent materials of siliconized NT230 
to siliconized NT230 and pre-sintered un-siliconized NT230 to 
pre-sintered un-siliconized NT230. The parent materials were billets of 
38 x 51 x 51 mm dimensions with the join plane of 38 x 51 mm dimension. 
The faces to be joined were ground flat prior to joining. Join 
interlayers were applied as aqueous dispersions, or slips, of silicon 
carbide, and other additives, and used to join NT230 silicon carbide 
billets. Microfocus x-radiography was used to ensure only billets 
without gross structural defects were to be used for the contract. After 
joining with slip the aggregate bodies were pre-sintered and 
siliconized. 

Initial screening tests used the same slip interlayer, designated 
A, for making one join from siliconized NT230 parent materials and one 
join of unsiliconized NT230 parent materials. There was a silicon 
enrichment at the join interface. with both joining approaches that 
resulted in a join of much lower strength than the parent materials. 
Joins made from the initial unsiliconized materials exhibited a join 
interlayer with such pronounced silicon enrichment and strength 
degradation that the join interlayer was incapable of withstanding stress 
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I 2a I 

A) Specimen 18, 
Blade 4 

B) Specimen 11, 
Blade 2 

Figure 26: Fractographs of Silicon Nitride Spin Teat Specimens 
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A) Specimen 14, 
Blade 1 

2a 

B) Specimen 8, 
Blade 2 

Figure 27: Fractographs of Silicon Nitride spin Test Specimens 
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of grinding causing fracture of the join interlayer. Macrostructure of 
the join interlayer Was comprised of si1ic.o.n carbi-de. honeycomb cells 
predominant,ly filled with silicon (Figure 28). Microstructure inside of 
cells incompletely filled with silicoq.exhlb~fed_a poorly bonded silicon 
carbide network at the join interlayer (Figure 29). 

Mechanical Evaluation ,,-"' 
Mean flexure strength of the joins was 222 MPa with,,aA,t,andard 

deviation of 41 MPa as compared to a mean fle-xur.e -s.<re$gth oaf the 
unjoined control body of 232.9 MPa. All .failu~e.~..,,_or,lginated within the 
join interlayer at sites of porosity and/or silicon enrichment (Figure 
30). The strength of 232.9 MPa is low for,a typical NT230 body and due 
to inherent thickness limitations of the siliconization process., Typical ..#. e; I .,o., -. ,.~I,-wI^^vI_I-~~-~Q,~uyI*I*llIuI) 
average flexure strength for NT230 is 410-MPa.. ,_ ,.. " 

8.4.2 Final .Join Development Trial (1 _. 
the 
Six 

both 

Additional silicon carbide. joins were made to minimize 
excessive silicon ,enrichment.._and,,porosity at the join interlayer. 
interlayer types, designated A through F, were used for joining 
siliconized and unsiliconized parent materials. Interlayer A was a 
replication of the earlier work which.,,resulted in silicon enrichment and, 
porosity of the join interlayer. 

Inte.;yayers.dyE.+. ~GFo~~KT~~&~e new 

compositions. Attempts were made'to‘sinter and siliconize tvelye joins, 
six with siliconized parent materials and six with unsiliconized parent 
materials. One join made from the siliconized parent materials and five 
joins of the unsiliconized parent materials separated during presinter, 
siliconization or grinding of the mechanical test specimens. Flexure 
specimens were machined frpm -the... rerna,~~~-~~r_~~~f_.,the joins to evaluate 
strength. 

Mechanical Evaluation 

Room temperature strengths of the joins were not improved with the 
different join interlayer treatments.. (Table 11). Failure originated 
predominantly within the join interlayer at regions of porosity and/or 
silicon enrichment. The mean join strengths ranged between 101 and 222 
MPa as compared to 233 MPa for the mean strength of the -unjoined NT230 
silicon carbide parent material of similar cross s.ectiona& t.h$ckness. 
The NT230 parent material of 38 WI cross 
-sectional thickness demonstrated significantly"'lc%r 

..".,." _ . 
strength than 

typical for NT230 of thinner cross~section (410 MPa for 10 q~ thick 
cross-section). Characterization d,etemi,wd _ Hx. cau,~~ ..qf _,_ strength 
dependence upon cross-sectional thic-kness . ..~a~~___due.-._fo.~,."~nh_o_ogeneous 
silicon infi1tration.acr.o.s.s the join cross-sectionduring the manufacture 
of the parent material. 

Polished sections of, the. joined interlayers are exhibited in 
Figures 31 to 36. Joins are identified for .ea.s,e qf,.discussion the _ ~ ‘WSd_ ~^,. _~_ jy ,,.-.,, by 
type of parent material (siliconized+ or unsiliconiz.edeU) and join 
interlayer (A through F). For example, a join S-D was made with the 
initially siliconiied parent materials and joined with interlayer D. The 
appearance of the joins vary widely, with S-B exhibiting the most 
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A) 12x 

, .  .  .  , .  . -  - ”  

B) 77x .' 

Figure 28: Ma&structure of Join Intkrlayer for Join Made With 
Initial Unsiliconized Silicon Carbide Parent Material 



A) 1,000x 

B) 5.000x 

Figure 29: Microstructure of Join Interlayer for Join Made With 
Initial Unsiliconized Silicon Carbide Parent Material 



48 

A) 50x 

B) 250x 

Figure 30: Fracture Origin Within Join Interlayer for Join Made With 
Initial siliconized Silicon Carbide 

. 
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Figure 31: Optical Micrograph of Join Interlayer B Made With 
Initially Siliconized Parent Material 



Parent 

Join 

Parent 

A) 200x 

Parent 

Join 

Parent 

B) 500X 

Figure 32: Optical Micrograph of Join Interlayer C Made With 
Initially Siliconized Parent Material 
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Figure 33: Optical Micrograph of Join Interlayer D Made With 
Initially Siliconized Parent Material 
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A) 200x 

B) 500x 
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Figure 34: Optical Micrograph of Join Interlayer E Made With 
Initially Siliconized Parent Material 
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A) 200x 

Optical Micrograph of Join Interlayer F Made With 
Initially Siliconized Parent Material 
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Figure 36: Optical Micrograph of Join Interlayer D Made With 
Initially Unsiliconized Parent Material 
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Table 11: Silicon Carbide Join Sunpary - Flexure Strength at 22OC 

Billet Interlayer 

Siliconized A ".,_- 
Siliconized B' . . . . . . 
Siliconized C 

siliconized D 
_ 

Siliconized ,_ E 

Siliconized F 

Unsiliconized D 

Unjoined Control 
38mm Thickness 

. ^., 

Flewre std. Number Number 
Strength Dev. Tested of 

OQa) OQa) Failed 

221.8 40.5 

101.11 39.6 

141.76 49.7 

171.06 39.2 

122.87 33.7 

127.02 41.0 

i 179.53 51.2 

1 Joins 

FE- 

2--k- 

uniform microstructure and the lowest silicon content (Figure 31). The 
join S-C and U-D demonstrated extreme silicon enrichment (lighter phase) 
in the center of the join interlayer with segregation of the silicon 
carbide (darker phase) at the edges of the interlayer adjacent to the 
parent materials (Figures 32 and 36). Although the joins S-B, S-D and 
S-F exhibit a more homogeneous distribution of silicon carbide. and 
silicon, all of the joins lack a contiguous network of silicon carbide 
that extends into the parent material. All of the join methods resulted 
in join interlayers that were discrete relative to the parent materials 
and of higher silicon concentration. The distinct interface between the 
join interlayer and parent material consisted largely of silicon within 
the join and silicon carbide within the parent material with an absence 
of interpenetration across the interface. In addition, voids within the 
join interlayer are strength limiting and undesirable (Figures 33, 34 and 
35). 

Additional silicon carbide joining development is required to 
improve silicon carbide join quality. 

L 
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9 SILICON NITRIDE TENSILE CREEP EVALUATION (TASK 1.1) 

9.1 TENSILE CREEP RESULTS 

The objective of this task was to evaluate the creep 
characteristics of parent (unjoined) and joined silicon nitride material 
when isothermally loaded in uniaxial tension at temperatures in the 1275- 
1425OC range. A summary of the results of the tests for the creep of 
both joined and parent material (control) specimens is given in Table 12. 
The table gives the stress, temperature and test time (to failure or 
suspension) for each specimen tested. The minimum creep rate and total 
creep strain reported in the table are for the entire gauge section of 
the specimen (D1,4). 
regime, 

If the specimen did not exhibit a secondary creep 
a minimum creep rate was not calculated and "primary" is entered 

in its place. Specimen 17-9 was ramped from a stress of 120 MPa to 150 
MPa after 100 hours. The specimen had not reached the secondary region 
at 120 MPa and failed only five hours after the ramp. Consequently, no 
minimum creep rate was obtained for that specimen at either load. 

The end result of each test is listed in the status column of Table 
12. For the most part, 
failed. 

the test was either suspended or the specimen 
There were a few instances where the specimen was retested under 

different conditions which is noted in the status column. The comment 
for specimen 2-2, Failed (Torque), represents a premature failure of the 
specimen due to an accidental applied torque. 
47-5, had a failure at the pin hole, 

Only one of the specimens, 
which is mentioned in the table. 

These two specimens are not included as failed specimens in later models. 
The three main locations of failure for the specimens tested were: (1) 
at the join, (2) at the transition region stress concentration (described 
in section 7.1.1) and (3) in the gauge section away from the join. 

The classical characterization of creep deformation involves three 
regimes identified as primary, secondary and tertiary creep. Primary 
creep occurs at the beginning of the high temperature loading where 
strain rate rapidly decreases to a near constant value which is 
maintained during the secondary creep regime. The tertiary creep regime 
is identified by an inflection point in the creep curve where the strain 
rate increases above the secondary creep level. The strain rate 
continuously 
rupture.lO 

increases during this regime which is terminated by 

The creep test curves display a significant primary creep regime. 
However, none of the creep data, for tests as long as 1,692 hours, 
exhibit tertiary behavior when using the classical creep interpretation. 
An approximation to the steady state creep rate was established for those 
specimens which clearly deformed beyond the primary creep regime. The 
procedure taken here was to identify the nearly linear portion of the 
creep versus time curve, for the entire gauge section (D1,4), just prior 
to failure or test termination. This quasi-linear region was fit with 
a straight line and the slope of that line was used as the minimum or 
quasi-steady state creep rate. 

Strain variations were observed along the gauge length within a 
given specimen. The strain variation within specimens was greatest 
between segments D1,2 and D3,4 which contained only the parent material 
without the join interlayer. The percent difference of strain at test 
termination between opposing halves of the parent material typically 
ranged between 5% to 57%. Specimen to specimen variability was .also 
observed in tests conducted under identical conditions. 

The data acquisition method was reviewed to ensure apparent strain 
variation was not an artifact induced by systematic error. No detectable 
temperature gradient was measured in the furnace hot zone at the creep 
gauge section when monitored with thermocouples. The high and low strain 
measurements for creep specimens were randomly oriented at the upper and 
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Table 12: Silicon Nitride Creep Test Summary 

specimen 11 Specimen 1 stress 1 Tamp 1 minimum Creep 1 Test ~ime( Total I status 1 Failure 
1 Number ]I Type 1 WPa) I (Cl I Rate (l/hours) (hours) Creep Location 

Joined 100 1395 primary 7 0.0029 Failed Join 
Joined 100 1422 1.7758-05 476 0.0124 Suspended 
Joined 100 1422 1.829E-05 444 0.0137 Suspended 

[~-19? -11 Joined 1 120 1 1395 1 8.897E-06 1 475 1 0.0075 Suspended I 

134 1 Suspended I 1 

Joined 175 1327 1.2723-06 1100 0.0032 Suspended 
Joined 175 1350 1.769E-05 223 0.0059 Failed Transition 
Joined 175 1350 3.620E-06 687 0.0056 Continuation of 30-S 
Joined 1 190 1300 1 7.856E-06 126 0.0025 Suspended 
Joined i 200 1300 1 5.0908-06 1 350 !0.0032/ Retested as 2-la 1 

2-2 Joined 200 1300 4.151E-06 110 0.0018 Failed (Torque) 
2-3 Joined 200 1300 3.906&-06 753 0.0048 Suspended 
2-la Joined 200 1325 1.4443-0s 50 0.0011 2-l Continued Transition 

1.1953-05 233 Failed Transition j ,I ':-;'- 11 ;:h:; 1 :;I ) ;::; f 1 /0.0046( 
1 1.3573-04 1 8 IO.0017 I Failed ITransition WI 2::: I ,‘r: ! ::z: 1 1 26 0.0030( Failed ITransition ) 6.9023-05 l.O26E-05 

1 159 0.0034/ Failed 1 Gauge 
B i 1.6503-06 1 506 0.00271 Failed (Transition 

2.6891-06 

------- 
/ 

I ~-- ~~ I --- ,------I I ---.- 
Joined 250 1 1285 1 4.866E-06 447 0.0040 Failed Gauge 
Joined 250 1 1300 1 6.428E-05 i 18 10.00181 Failed 1 Gauae 
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lower ends of the creep specimen. The strain of the center segment 
(D2,3) and the overall gauge length (Dl, 4) represented the creep of the 
join interlayer and the entire aggregate joined body, respectively, and 
correlated well with the weighted average of the measured creep segments 
(Figure 37) for all specimens. These findings confirm the measured 
strain variation to be an actual behavior difference and not an artifact 
from data acquisition. 

Results indicate that creep strain variability also exists within 
the NCX-5101 unjoined (control) specimens (Figure 38). This suggests 
that creep strain variability is inherent in the silicon nitride. There 
was no apparent evidence that the joining process contributed to the 
creep strain variability observed in the joined specimens. 

Fourteen of the 27 specimens which ruptured did so at the 
transition stress concentrator. Only five of the 23 joined creep 
specimens that failed did so at the join (Table 12). Several failed 
specimens were sectioned and analyzed with SEM. Analysis of micrographs 
showed the primary creep mechanism to be cavitation at two grain 
junctions (Figure 39). 

9.2 MODELING OF CREEP 

9.2.1 Steady State Creep Rate Model 

Successful mechanical design methodology can be expected to include 
prediction of creep deformation which accumulates over the lifetime of 
high performance ceramic heat engine components. Designs which fully 
utilize the potential of high temperature ceramics will involve critical 
structural locations of components experiencing fully developed secondary 
creep over the majority of the component's life. This requires an 
analytical approach to generalize the experimental findings on the stress 
and temperature dependence of the steady state creep rate. 

The literature documents an extensive history of representing the 
stress dependence of the strain rate by a power law form both for metalsI 
and ceramics12. This relationship is referred to as Norton's law, 

,following the original publication by F.H. Norton13 on the creep of steel. 
The temperature dependence of strain rate has been typically represented 
by an Arrhenius form to yield the following expression for the steady 
state strain rate c*: 

Here A and n are material constants, <T is the applied stress, Q is the 
apparent activation energy for creep, R is the universal gas constant, 
and T is the absolute temperature. In order to fit the data shown in 
Table 12 to Equation 4 first consider the natural logarithm of Equation 
4: 

llld,=ll3A+ZZlIl+$ (5) 

The values of Q, n, and A can be determined from plotting ln(&) 
against various parameters. The value of Q was determined from plotting 
ln(e',) versus l/T at constant stress (Figure 40). The value of Q is the 
negative of the slope of such a curve multiplied by the universal gas 
constant (R). In Figure 40 we see that the calculated value of the 
apparent activation energy, Q, varies with the value of the applied 
stress. There is an approximately linear increase in Q with stress. 
This trend has also been observed for the creep of sintered silicon 
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nitride12. The range of measured values in Q going from 626 KJ/mole to 
1434 KJ/mole is consistent with other values from the literatureI 1'. 
The value for 0~2411 KJ/mole shown for 250 MPa is not considered to be 
real since it is strongly influenced by a data point which appears to be 
an outlier. This phenomenon of increasing Q with stress needs further 
investigation. There is evidence from the literature of the creep of 
metals for Q to decrease with stress but not tp increase. There. .&as .byn . 
data generated on NCX-5101 class mater.ials that-demonstrates that grain 
boundary devitrification occurs with thermal aging 

16wi' "..imc .".ls'.~.Goss;'6T~e that 

this phenomenon which translates into improved creep resistance is 
promoted by stress thus explaining the observed increasing Q with stress. 
Additional evaluation of this phenomenon was beyond the scope of this 
study. 

The value of n was determined from",,,t,he slope of a In(&) versus 
In(o) plot at constant temperature (Figure 41). The values of n showed 
some variation but were centered around--,-a value of 7 for. all of, the 
temperatures except for the results at 142OOC. This possibly suggests 
a change of mechanism at this temperature. 

In order to apply Equation 4 in a finite element analysis to model 
creep deformation in notched creep specimens which were tested, unique 
representative values of A, Q and n were sought. An iterative procedure 
was used, starting with the average value n=7.52 obtained by excluding 
the 142OOC data in Figure 41. Rearranging Equation 5 as: 

(6) 

provides a way to obtain values of A and Q which correspond to the 
average value of n. The value of -Q/R is the slope of the line fit to 
ln(e',o-") versus l/Temperature and In A is the intercept of this line. 
Likewise, an improved estimate for n can be deduced from data plotted to 
the form: 

ln(d,eQ'RT) =lnA+nlno (7) 

This value for n can then be used to determine a new value of Q 
using the procedure corresponding to Equation 6. This procedure can then 
be repeated as many times as necessary to give converged values for n, 
Q (and A). In practice it took only one iteration to converge to the 
values of n=7.53, Q=1138 KJ/mole, and A=8.28~10-~~ Pa-7.53/hour from Figures 
42 and 43. These values were calculated excluding data at 142OOC which 
gave a low n value, excluding 250 MPa data which gave a high Q value and 
excluding 175 MPa data because of the excessively high scatter in that 
data. These are the values for the material parameters that were used 
to characterize the range of creep experiments. A calculation for these 
material parameters was also done based on all the. data. .,The average 
value of n=7.52 was again used to start the iterative procedure. After 
15 iterations, values of 4~1158 KJ/mole and n=7.20 were obtained, which 
are very similar to the previous results. 

In order to evaluate how well the first set of constants represents 
the database as a whole, a three dimensional plot is given in Figure 44. 
In this plot a surface is drawn which represents the creep strain rate 
given by Equation 4 using the constants determined above. In addition 
to this surface given by the model, the individual data points are also 
plotted. There is a 68% average difference between the model predictions 
and the experimental points. This fit is good considering that only 
three material constants are used to correlate dozens of experiments. 
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The time to failure for each of the specimens which ruptured is 
given in Table 12. Twenty-nine of the 51 specimens were tested until 
failure. Of the 29, seven failed in the primary regime, two were 
premature failures (pin hole failure and accidental applied torque to 
specimen), and one (2-l) was tested at two different stresses. This 
leaves 19 valid data points for failure modeling. The time to failure 
of these specimens is plotted in Figure 45 versus minimum creep rate. 
The trend of the data suggests agreement with the Monkman-GrantI' 
relationship: 

where t, is the time to failure and the MO&man-Grant parameters p and C 
are 1.43 and 2.95~10~~ hr-D.43 when the 19 data points are included in a 
linear regression. 
specimens 

It is important to note that 11 of the 19 ruptured 
included in Figure 45 failed at the section where the 

transition region blends into the straight gauge length. This section 
is beyond the range of the creep measurement flags so that the et values 
for these specimens, although accurate for the gauge section, are not 
consistent with the rupture time data. 

Data for the eight gauge/join failures are plotted separately in 
Figure 46 and provide values of 1.17 for p and 4.11~10-~ hr-'.l' for C. The 
MO&man-Grant approach is motivated by the theory that rupture occurs at 
a critical value of accumulated creep strain (ie. fi=l). On this basis, 
the B value of 1.17 is considered more accurate than the fi value of 1.43 
calculated previously for all ruptured specimens used in Figure 45. 

9.2.3 Prediction of Creep Failure of Notched Tensile Specimens 

The development of material models are useful only insofar as the 
model can be used to predict the performance of structural components. 
The finite element method is the most popular and, arguably, the most 
flexible numerical method for application of advanced material laws to 
actual components. An investigation to use these models in the 
prediction of the response of complex members has been pursued in 
conjunction with the development of material models to describe the joins 
and parent material. 

The results being reported here involve incorporating the Norton's 
law modeling into a finite element code and demonstrating how it can be 
used to predict the mechanical response of a structure. 

The commercially available finite element code ANSYS6 has been used 
in this work. Since the strain rates evolve with time and temperature 
the solution must be tracked in an incremental manner. The one- 
dimensional Norton's law can be generalized to represent 
multiaxial deformation as follows: 

where ~'ij is the stress deviator tensor, 
(0, = (3/2 ~'~~0 olij)1/2). 

and t&is the equivalent stress 
The total strain rate is given as the sum of 

the elastic strain rate and the creep strain rate as given above. 
Several criteria were used to select a component to apply the 

finite element method. The component was required to have: (1) a 
nonuniform stress and strain distribution, primarily tensile loading 
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since the material constants were determined from tensile. loading; (2) 
a fairly simple geometry; and (3) amenability to being- tested 
experimentally. Guided by the above considerations, a notched, 
cylindrical tensile member was selected (Figure 47). The specimen has 
a semicircular notch at the center of the gauge section. The finite 
element mesh used in the analysis is represented in Figure 48. The 
figure shows one-half of an azimuthal section with the center. line and 
notch apparent. An expanded view of the notch root me.sh is given in the 
bottom view of the figure. The geometry was meshed with several 
different refinements to ensure that sufficient eleme.ntsWyere use.dW..‘,,The 
mesh shown in Figure 48 has 848, eight node, axisymmetric elements. A 
mesh convergence study using a mesh having 3984 elements verifies the 
results obtained with the coarser mesh. The model is loaded by applying 
a far field tensile stress to the top of the specimen and setting the 
temperature to 137OOC everywhere in the mesh. The far field stress 
corresponds to the loads from the experiments. This simulation was 
conducted assuming isothermal conditions, but that is not a necessary 
requirement. The load was applied, then the specimen was allowed to 
creep for up to 150 hours in 600 equal time increments to capture the 
nonlinear creep behavior. This was a much finer time division than 
required by the convergence criterion specified in ANSYS. 

Experimental and Model Results 

Three dogbone specimens with notched cylindrical gauge sections 
(Figure 47) were tested in creep at three different stress levels as 
described in Table 13. The specimen length is 3.5". The minimum and 
maximum diameters are Q.,.lOq.':~, at& 0.125:. respectively. The experiments 
were carried out according to the procedures described in the.,.Tensile 
Creep Test Methodology of section 7.1 in this report. 

Table 13: Silicon Nitride $Wtc&d Teqsile Creep Summary 

,I- 1 .,.. _- l". ,, j 
Specimen Test Reduced Section Failure 

Number Temperature Average Stress Time 
(Cl (MPa) (Hours) 

1 1370 120 44 
2 1370 135 39 
3 1370 150 3.5 

.*a". ,.*.11. .."".<_ "L_ . 

The results for an analysis which applies a far field tensile load 
such that the average stress across the notched section,..i.s, 120 MPa 
(specimen #l), are presented for two different times. Immediately upon 
loading, the elastic solution gives the maximum stress in..t.he root of the 
notch as 260 MPa. In F.igure 49 the vertical normal stress, am, is 
plotted at 10 hours and 100 hours of deformation. Not_e. ..thaf._. ate" short 
times the vertical normal stress has its maximum at the notc~Qcz,~root,,as 
would be expected'from linear elastic analysis. As the'"‘creep deformation 
continues the creep strain builds up at the notch root and redistributes 
the stress more evenly across the section. It is shown that the_stress 
is more uniform as the creep strain increases. The accumulated creep 
strain at 100 hours has its maximum at the notch root, as shown in Figure 
50. 

The failure was predicted for these experiments by obtaining the 
maximum vertical normal stress at the notch root during deformation as 
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a function of time from the finite element analysis. The corresponding 
creep strain rate (from Norton's equation) was then used to investigate 
whether the MO&man-Grant relationship, obtained from conventional creep 
measurement of silicon nitride butt joins (Section 9.1, was satisfied. 
The time variation of the notch root creep strain rate is plotted along 
with the Monkman-Grant curve, determined earlier in Section 9.2.2 based 
on gauge/join failures in the flat creep tensile specimens, in Figure 51 
for the three specimens tested. Failure times for each of the three 
specimens are marked on their respective deformation paths. Notice that 
the failures of the notched tensile bars are predicted reasonably well 
using the Monkman-Grant relationship and are within the scatter of the 
original data points (Figure 46). 

Considering the fact that Norton's law and thus the constitutive 
equation used in this analysis neglects primary creep, the agreement of 
the predictions with the test results are very good. 

9.2.4 Internal Variable Model 

Having the minimum creep rate characterized is not sufficient as 
input for predicting the creep of structural components. The entire 
creep curve should be represented. The' follotiing agproach was evaluated 
as an effective way to extend the minimum creep rate model (Equation 4) 
to the primary regime as well. 

If we start with the assumption that the effect of stress and 
temperature on the minimum creep rate is representative of their effects 
on the entire creep curve then we can use an internal variable model 
which involves the dimensionless variable,, s, and a material parameter, 
h. The change in structure will be represented by s, while h, is a 
measure of how quickly the material hardens. During creep, s evolves 
from its initial to final values. Here we will assume that we can 
normalize s such that its final value is unity. As s goes from s, to 1 
the creep rate will continuously decrease from its initial value until 
it reaches the temperature and stress dependent minimum value. This can 
be represented by the equations below. 

_ ..- 
I 

6 A~ n, -Q,/RT 
CK =s" = 

(10) 

&=h(l-s)k,. (11) 

Equations 10 and 11 represent a system of two, coupled first order 
differential equations that can be solved for e(t) to compare with 
experiments. The approach of using internal state variables is also 
being considered by Ding et. a1.14 for Si3N, and has been used extensively 
in metals'* to capture nonlinear material behavior. 

In order to evaluate this new model, the creep tests were used of 
nine NCX-5101 joins that were tested until failure. The minimum creep 
rate parameters A,, n, and Q, were determined from a least squares fit of 
the experimentally measured minimum creep rates. Using these values, the 
creep curves that were used in determining the parameters were simulated 
using Equations 10 and 11. The results are shown in Figure 52. The 
solid curves represent the experimental data and the dashed curves are 
the model predictions. 

The results in Figure 52 show good agreement with the experiment. 
The shape and total strain are predicted reasonably well. In testing it 
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was noticed that there is significant scatter in the measured creep 
response curves even for identical testing conditions. The model would 
not be able to capture this kind of experimental variability. 

9.2.5 Theta Projection Method 

F The approach of using Norton's equation to model the quasi-steady 
state creep has received the most attention in the literature but is by 
no means the only creep model available. An attempt has been made by 
Evans and Wilshire1g,20 to develop equations which adequately describe the 
shape of typical creep curves and also quantify how such curves depend 
upon stress and temperature. The time dependent creep strain can be 
described as a function of various shape terms, 8i, which reproduce the 
creep curve at a specific stress and temperature: 

e CZ =E &,e1,e2, 0. .,e,> (12) 

Different forms of Equation 12 have been used in the literature. 
The form which is used here can be understood as the sum of two terms. 
One term represents the decaying primary component and the other the 
accelerating tertiary component of creep strain, as follows: 

e ===el (l-emezt) +8, (ee4t-1) (13) 

Here 8, and e3 are strain like components representing the magnitude 
of primary and tertiary creep. The e2 and 6, are parameters describing 
the rate of the controlling processes. The form of Equation 13 describes 
the shape of a creep curve for ductile metals quite well, but might not 
be expected to work as well for ceramics that. lack a pronounced tertiary 
region. One goal here is to investigate that correspondence. Maximum 
likelihood fits were used to calculate the ei's for each experimental 
creep curve which had the units of hours for time. Interpolation between 
testing conditions is provided by representing the dependence of each 8i 
on temperature and stress analytically: 

f&=8, ( T, u ) 

The curve fit that was used is a simple exponential factor 
expansion in stress and temperature: 

for each ei, i=1,...,4. This curve fit reduces the experimental data 
base to a total of 16 constants. Evans et. a1.22 applied this "theta 
projection" method to different pressureless sintered silicon nitride 
ceramics produced using MgO, CeO,, Y,O, additives. The method showed 
reasonable temperature interpolation capabilities for design calculations 
involving continuously varying stress and temperature conditions. 

The 8i’S have been determined for each specimen using Equation 13. 
These values are used to determine the constants of Equation 15 and are 
listed in Table 14. Units of MPa for stress and degrees Kelvin for 
temperature were used when calculating these coefficients. 
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Table 14: Theta Projection Coefficients 

A B C D 

81 -20.406 0.102 9.523E-03 -6.7333-05 

02 43.095 -0.468 -3.034E-02 3.0173-04 
03 -14.222 0.156 9.776E-03 -9.893E-05 
04 -10.022 -0.340 -4.534E-03 2.3193-04 

A comparison of the fit with an experimental creep curve at 1395OC and 
120 MPa is shown in Figure 53. The primary creep portion of the 
experimental curve is matched very well by the model. However, the model 
can be seen to diverge from the experimental curve to represent a 
tertiary component which is anticipated in the second term of equation 
13. The divergence occurs at the inflection point corresponding to the 
minimum strain rate given by: 

where t, is the time when the minimum creep rate occurs: 

(17) 

This inflection point occurs at 367 hours for the conditions of 1395Oc 
at 120 MPa depicted in Figure 54. 

In view of the fact that tertiary creep was not observed in this 
test program, the four parameter form of equation 13 is not useful in 
representing response beyond the primary creep region. While it 
adequately models the primary creep region, our main interest has been 
in characterizing the secondary creep region. This is the focus of the 
Norton law modeling discussed in section 9.2.1. In that approach, the 
emphasis is on developing a mechanistic understanding of the creep 
process specifically during the secondary creep regime where most 
engineering components operate for the majority of their design life. 

. 
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10 CONCLUSIONS 

The following conclusions may be drawn from the work performed 
under the Joining, Phase II contract. 

Heat engine quality silicon nitride curved joins have been 
developed with similar properties to the planar butt joins developed 
under Joining, Phase I. 

Green strength of the joining method was improved to minimize the 
handling rejections experienced before to hot isostatic pressing. Curved 
silicon nitride joins demonstrated a 5.5-fold improvement of pre-sintered 
green strength compared with methods used for Phase I of the contract. 

Curved silicon nitride joins of 1.27 cm2 
consistent, 

area were developed with 
homogeneous properties across the join interlayer. There was 

no statistical difference between the 22*C and 137OOC flexure strength 
populations as a function of location within curved silicon nitride 
joins. The combined average 22*C flexure strength for curved silicon 
nitride joins was 886.3 MPa with a weibull modulus of 16.4 as determined 
by 156 flexure specimens from five curved join disks. The combined 
average 137OOC flexure strength for curved silicon nitride joins was 516 
MPa with a weibull modulus of 16.0 as determined by 59 flexure specimens 
from five curved join disks. Only 1.2% of the 22*C flexure failures and 
5.1% of the 137OOC flexure failures originated within the 
interlayer. 

join 
The excellent join integrity, characterized by the high 

strength of the join interlayer, prevented failure within the interlayer 
during shear tests of densified joins. 

joins 
The demonstration of curved join quality similar to planar butt 

shapes, 
allowed application of the joining technique to more complex 

such as a simple rotor geometry. Shaft to disk joins made by the 
procedure developed for curved joins were ground to obtain spin test 
specimens. 

Tensile strength of curved silicon nitride joins averaged 636 MPa 
with an estimated Weibull modulus of 8.2 with no failure originating from 
the join interlayer. The spin test specimens 
velocities ranging between 

failed at angular 
17,000 and 42,530 revolutions per minute 

corresponding to a maximum principal stress from finite element analysis 
between 88.0 and 550.6 MPa. The angular velocity and stress at failure 
were less than predicted by the models developed within this contract due 
to failure origination at grinding damage. The size of surface flaws, 
determined by fractography, were consistent with the flaw size calculated 
from the Griffith relationship for brittle failure of solids. This 
result emphasizes the need for development of improved machining 
techniques for complex shaped structural ceramic components. 

Tensile creep tests of the silicon nitride planar butt joins 
demonstrated behavior that was similar to the parent unjoined material. 
Creep was evaluated between temperature of 125OOC to 142OOC and stress 
between 100 and 250 MPa. Creep curves displayed a well defined primary 
creep regime with a gradual transition into secondary creep. None of 
the creep tests exhibited tertiary creep even though the duration of some 
tests were up to 1,692 hours. 
test termination was 

The largest variation of creep strain at 

specimens. 
observed within specimens as opposed to among 

The percent difference of total strain at test termination 
between opposing halves of the parent material typically ranged from 5% 
to 57%. This was attributed to inherent variable behavior of the ceramic 
parent material. Five of the 29 failures during tensile creep tests, 
originated within the join interlayer. Failed specimens exhibited 
cavitation at bi-grain junctions and wedge cracking at triple grain 
junctions. The creep data was incorporated into three models to develop 
a predictive tool that could be utilized for specimens of different 
geometry. 

The widely accepted Norton's (or Arrhenius) equation approach was 
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initially considered to model creep behavior. Values of a.cti~at.kx ..,_ 
enerw (Q), stress exponent (n) and material co,ns.fant.,,(A) were determined 
for the creep experiments. An iterative procedure was used. to dete?&n.e,.;._ 
a single estimate of these parameters for the entire .c-reep matrix from 
which a good correlation of predicted and actual.creep strain rate was 
obtained. 

The above model Usea,t.~.~,,,I5ll~~~~-creep rate for.a given experiment 
since this represented the creep rate at f aiiure or _ t e3.g .22sspens ion 
within the secondary creep regime. Although this simplified the first 
attempt to model creep behavior, a more thorough treatment was later used 
where the entire creep curve, including the primary creep regime, was 
input in the model. The revsultant internal variable.model.. expressed the -. 
creep behavior by a system of two, 

..-. ,.+"yed""‘~~Igg?- ";"&y,$. *., a,i f f erent ial 

equations. Validation of the approach was obtained through comparison 
with the actual creep behavior of nine specimens that were tested to 
failure. 

A less widely accepted, but interesting alternative to the 
Arrhenius equation approach, was considered to model the creep behavior. 
The theta projection method described time..dependent creep strain with 
a series of shape terms to reproduce the creep strain curve at a specific 
stress and temperature. One term of the equation represented the 
decaying primary component and another an accelerating tertiary component 
of creep strain. The theta projection method deviated from classical~ 
creep modeling by defining the secondary creep regime mathematically as 
the resultant contribution of the tertiary and primary creep. 
Alternatively, the theta projection method provided a way not only to 
represent the experimental creep curves, but to interpolate to other 
testing conditions as well. However, the method did not satisfactorily 
fit all of the experimental data. The highly variable behavior within 
the primary creep regime experienced from specimen to specimen strongly 
contributed to an unacceptable error for predicted creep strain values. 
Additionally, the dependence of the theta projection model upon tertiary 
creep, which was not observed, invalidated use of this approach. 

Creep failure modeling was facilitated by a correlation of creep 
strain rate with time to f,ai,lurewhich, qllowe.d,application of a Monkman- 
Grant relationship. It was unnecessary to plot separate curves for each 
temperature since a good correlation of all the experimental data was 
obtained with a single curve. 

The development of material models, above, was useful only if the 
model could predict the performance of structural components. The 
refined models developed above were used to predict the behavior of a 
notched tensile specimen that served to simulate.behavior,of,an, ac,tual 
component. Reasonable prediction of the time of failure for three 
specimens tested under different loads was an encouraging demonstration 
of the value of the use of ANSYS finite element code in conjunction with 
the Norton's law model. 

NT230 silicon carbide joining of planar butt joins resulted with 
join quality affected by pronounced silicon enrichment and porosity. 
Additional trials used a total of six intqrlayer types consisting of 
various mixtures of silicon carbide and other additives applied to both 
siliconized and unsiliconi.zed parent materials. Quality of the silicon 
carbide joins evaluated by room temperature flexure strength tests of 
specimens ground from the joined bodies showed all flexure specimens 
failed at the join interlayer. Join strength was lower than the strength 
of unjoined NT230 of similar cross sectional thickns,ss, with average 
strengths of 152 MPa and 233 MPa respectively. Although, the joins were 
structurally sound and exhibited a improved, more homogeneous 
distribution of silicon carbide and silicon, all of the joins lacked a 
contiguous network of silicon carbide that extended ,into, the parent 
material. All of the join methods resulted in join interlayers that were 
discrete relative to the parent materials and of higher silicon 
concentration. The distinct interface between the join interlayer and 



parent material 
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interpenetration 
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and 
of 

the 

consisted primarily of silicon within the join 
within the parent material with an absence 

across the interface. In addition, voids within 
join interlayer were strength limiting. 

The silicon carbide join quality was deemed unsatisfactory for more 
demanding structural applications and, therefore, the decision was made 
not to proceed to more complex, curved geometries. The silicon carbide 
joining methods covered within this contract, although not entirely 
successful, have emphasized the need to focus future efforts upon ways 
to'obtain a homogeneous, 
siliconization. 

well sintered parent/join interface prior to 
Improved definition of the silicon carbide joining 

problem obtained by efforts during this contract have provided avenues 
for future work that should successfully obtain heat engine quality 
joins. 

. . . 
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