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Control and Analysis of a Single-Link Flexible Beam with 
Experimental Verification 

1. INTRODUCTION 

The objective of this report is to ascertain the general conditions for the 
avoidance and reduction of residual vibration in:.a fle,xible manipulator. 
Conventional manipulators usually have a 1.5 to 2-m reach, and their associated 
dynamic models typically are composed of lumped parameter elements; the 
major compliance emanates from the, d@ve trams becauseof torsional loading I; ._ c “I ..ub\~“?*r. ;: & IyL 
effects. The energy storage of the drive system is predominantly potential 
energy because of the low inertia in the drive tram; thus simple spring models 
have been adequate. 

A long-reach manipulator with a large aspect ratio (length to diameter) is a 
fundamentally different problem. Energy storage for this type of manipulator is 
distributive by nature because of the potential energy resulting from bending 
and the kinetic energy due to deflection rates. Instead of ordinary differential 
equations, partial differential equations are required to describe this system, 
making the analysis more difficult. The general flexibility problem associated 
with a distributive dynamic system, with specific emphasis on flexible 
manipulator, will be addressed in this report. Furthermore, three control 
schemes will be discussed and demonstrated on, a~smgle flexible manipulator to 
determine their general merits. 



2. GENERAL PROBLEM STATEMENT 

In this section the general conditions pertaining to the avoidance and 
reduction of residual vibrations in a linear distributive dynamic system will be 
discussed. From Meirovitch (1967), the general formulation for the continuous 
undamped distributive parameter system can be described as 

L[w(ROl + M(P) 
aw?o 

at2 
= f(P,t) + Fj(t) s( P- Pj) (1) 

over some domain D. In Eq. (1), L is the linear, homogenous, self-adjoint, 
positive-definite, spatial, differential operator with derivatives up to order 2p; 
P represents the spatial coordinates; M is a function of P and contains 
information on the mass distribution of the system; f represents the distributed 
forces; Fj represents one of If distinct concentrated forces at points Pj; 6 is the 
Dirac’s delta function; and w(p,t) is the displacement at P at time t. At every 
point of the boundary, there are p boundary conditions of the type 

Bi[w(P*t)] = 0, i = 12, . . . , p , (2) 

where Bi represents linear, homogenous, differential operators containing 
derivatives of order up through 2p - 1. Further, typically, shear and rotatory 
inertia terms are ignored in Eq. (1), and linearization of the dynamic system has 
occurred, which means that Eq. (1) is an approximation at best. 

By means of modal analysis (Meirovitch 1967), Eq. (1) can be transformed into 
the following infinite set of uncoupled ordinary differential equations: 

%i + WF Xi = fi(t) i = 1,2,3, . . . , w 

where 
Xi = ith generalized coordinate; 

WPJ) = i WiP> Xi(t) ; 

i=l 

w 

wi = ith eigenfunction (or mode shape) associated with the problem 
L [ wi ] = CI$ M wi, which also satisfies all of the boundary conditions 
Bj[wi] = 0; 
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fi(t) = 
I 

WiP) f(P,t) d D(P) + i Wi(p) Fj(t) * 
D 

j=l 

(3c) 

Equation (3a) can be converted into state variable form with the usual 
approximation of truncating the series to include n modes and by including 
damping terms c,- as follows: 

0 

-4 -2L 
0 1 

-4 -2 r1m 
. 

. 

4 -2 Lo,, 

or in more compact matrix notation: 

$=AZ+f . 

-x0 
h 
Xl 

i 

il . 
. 
. 

. 
XI 1 
+ I 

1 

0 
fl (0 

0 
f20) . . 

fit) 1 @a) 

W 

For the types of problems addressed in. this paper, the eigenvalues pi 
(for i=l, . . . , 2n) associated with Eq. (4b) are usually distinct, which means that a 
complete set of eigenvectors, Vi, can be found such that Eq. (4b) can be 
transformed into the standard uncoupled canonical form 

z=DZ+ir, (5) 

where 
F;;A’TZ, 
D = diag ( pi ), 
u= T-l?, 
T=[Yi] - 

The solution to Eq. (5) at time T is simply 

* 
3 

q(T) = e@ +O) + @T e-W q(z) dz for i = 1,2, . . . ,2n. (6) 
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If we let the input ui be a time-bounded function (i.e., ui(t) = 0) for time outside of 
0 < t < T, and assuming that all initial conditions are zero, Eq. (6) can be modified 
to 

\ 

m 

e-p17Ui(z)& = e-PITq(T) . 

0 

I 

W 

The left side of Eq. (7a) is the Laplace transform of ui evaluated at pi; i.e., 

Ui(S)l, = pi = 

I 

e-W ui(T) d7 = e-PITfl . m 
0 

For the final state q(T) to be equal to zero (i.e., no residual vibration) then 
vi(S) Is = p must be zero. This means that the Laplace transform of the inputs (fis) 
in Eq. (3~) must be zero when evaluated at the poles of the dynamic system. This 
is exactly the condition stated by Bhat and Miu (1990), where they proved, even 
for the case for repeated roots, “that the necessary and sufficient condition for 
zero residual vibration is that the Laplace transform of the time bounded control 
input have zero component at the system poles.” Furthermore, they mention 
that, “if the system has non-zero damping, then zero contribution at the system 
resonant frequency does not guarantee zero residual vibration.” This last point is 
particularly important because in practice the resonant frequencies of a dynamic 
system are typically known to within a certain precision bound; however, the 
damping is typically not known, nonlinear by nature, or too troublesome to 
obtain. 

The preceding discussion addresses the problem of how to avoid creating 
residual vibrations in a flexible system and is basically an open-loop method. 
The second problem to be addressed in this report is how one can add system 
damping if residual vibrations already exist in the system. Two possible 
approaches exist. The first approach can be found in Jayasuriya and Choura 
(1990) where an input is generated based on perfect knowledge of the model and 
of the initial conditions of the system. After a finite time duration, all of the 
residual vibrations will go to zero. This scheme is again basically an open-loop 
scheme. The second approach is by means of closed-loop feedback using some 
type of measuring device (e.g., accelerometer, strain gauge, optical) on the beam. 
Many schemes are proposed to address this problem and are documented 
(Jansen et al. 1992). The intent of this report is to examine two closed-loop 
schemes that can easily be implemented on a multi-link flexible manipulator. A 
couple of unique solutions to the problem will be addressed and are detailed in a 
later section of this report. 



3. BENCH-SCALE MODEL DESCRIF’TION 

A single-link flexible manipulator has been constructed (see Fig. 1) to examine 
various control schemes in order to ascertain. their potential for long-reach 
manipulators. The servo for the beam is a brush type dc motor with a 653 gear 
ratio. Approximately 10 to 20% of the motor torque is required to overcome the 
friction (coulomb, stiction, and linear friction) at the gear and motor. The block 
at the end of the beam is an accelerometer that will be used to feed data back 
from the tip of the beam. A joint controller based o-n the classical proportional- 
derivative (PD) controller is implemented to drive the beam. Position and 
velocity at the joint are sensed by a resolver. Torque is sensed by means of a 
strain gauge located near the hub of the beam (not shown in Fig. 1). This torque 
signal is used by an inner joint torque control loop whose main purpose is to 
increase the backdrivability (i.e., to reduce friction effects and to improve 
linearity of joint dynamics) of the drive train and to reduce motor torque ripple 
effects. 

The beam transfer functions relating hub torque to tip position and joint 
position have been derived for the uniform beam case (Hansen et al. 1992). For a 
mass at the end of the beam, similar canonical forms are found and can be 
expressed as 

. 

= 

for tip position and 

*; &+2+ 
[ K&1=1 (j& ei 

s2 d 
II L+ 

1 
j=l e$ 

%A+ 
61rj 

1 1 - 
1 1 

for hub position. 
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Tip Position 
ykt) = x 

Tip Mass 

Hub Torque 
Accelerometer 

Fig. 1. Flexible beam model. 



4. ROBUST PRESHAPING 

As previously mentioned, the poles of the dynamic system are typically not 
precisely known. Usually, the resonant frequencies are known to within some 
tolerance. To avoid residual -vibrations, the Laplace transform of the path 
trajectory must equal zero when evaluated at the poles of the dynamic system. 
When the poles lie on the jo axis, the approach is identical to filtering out the jo 
frequency components of the path trajectory p(t). If the poles do not lie on the Jew 
axis and the exact location of the poles of the dynamic system is unknown, then 
the standard notch filter will leave some residual vibrations. For this report, the 
assumption is made that only the resonant frequencies of the system are known; 
the damping ratios are unknown and assumed to be zero. To add robustness to 
the notch filter, the shape of jP(s)L where P(s) =qp(t)), needs to flatten around the 
resonant frequencies of the system so as to diminish the residual vibrations (Bhat 
and Miu 1990). To achieve this flattening, the first n derivatives of P(s) should be 
equal to zero at the resonant frequencies. As the value of n becomes larger, the 
less sensitive the system becomes to the lack of precise knowledge of the beam 
damping and resonant frequencies. This approach, which is formulated in the 
s domain, has similarities with the time domain approach proposed by Singhose 
et al. (X90), and the interested reader can refer to Murphy and Watanabe (1992) 
for details. From a robustness perspective, it is sufficient to set the first 
derivative to zero for the one-link flexible manipulator. This is accomplished by 
setting the zero of the notch filter to have multiplicity of 2. The proposed filter 
presented is called a robust notch filter (RNF) to highlight its purpose of 
diminishing the effect of not knowing the exact pole location of the dynamic 
system. The RNF for each resonant frequency is selected as 

where 
* = zero resonant frequency, 
c+, = low-pass filter natural frequency, and 
Tp = damping ratio (set to 1 to achieve an overdamped 

. response). 

The order of the denominator of Eq. (8) was intentionally set higher than the 
numerator to cause the filter to have a 12-d B-per-octave roll-off at higher 
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frequencies. Although the R term in Eq. (8) is set to the resonant natural 
frequency of the system, the low-pass filter natural frequency wp cannot be 
selected independently of q. If op is chosen much larger than o, then the 
numerator term dominates in the frequency range below c+, making the 
numerator essentially a fourth-order differentiator at frequencies from w, to op. 
Any discontinuities in the path, including up to its fourth derivative, could 
produce large-magnitude oscillations in the system. To avoid this problem, 
op was set equal to a. 

To determine the resonant frequencies of the beam, an accelerometer sensor 
and a fast Fourier transform (FFT) software routine were used to generate the 
power spectrum density curve shown in Fig. 2. (The units for the ordinate axis 
have been modified by an arbitrary ratio so that the peaks are clear.) The beam 
was slewed 20” over 0.25 s to excite the beam vibrational modes. These resonant 
frequencies should correspond to the pin-free boundary conditions. The 
significant resonant frequencies of the beam are determined from this curve. 

2.5 

2 

b- 
o 1.5 
c 
X 

-1 

0.5 

0 

is 1.75 kz. ; 

; 2nd @eak at $0 Hz. : 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..(.................s...... 

i-- 1 

. . . 

5 i? !O i4 

Hz 
6 

J 

Fig. 2. Power spectrum density of accelerometer sensor (the numerical values 
for the vertical scale are relative). 
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The first resonant peak is approximately 1.75 Hz; the second peak is 
approximately 10 Hz. Since the first resonant peak is dominant, only the first 
resonant frequency was “notched” out -of the planned path. To notch out other 
frequency components, one merely has to cascade multiple RNFs together. 

Figure 3 shows the basic block diagram to implement the shaped-input 
method based on the RNF method where the ZOH block represents a zero order 
hold and the PWM block represents a pulse-width modulator. 

Modal Frequencies Tip Acceleration 

I 

Fig. 3. Shaped-input block diagram. 

The FFT block in Fig. 3 is updated at a much lower rate than the other 
feedback loops because its function is to find the resonant frequencies of the 
beam. Update rates of 5 s are feasible with standad digital signal-processing 
boards. The modal frequency locations are not known with any great precision, 
allowing the FFT to update the modal frequencies at a 5-s rate without difficulty. 
For a single-link beam, the modal frequency locations only change because of 
loading; however, for a multi-link beam, both the workspace geometry and 
loading influence their locations. 

Acceleration data were used to compare the performance of a single flexible 
beam with and without preshaping of the planned trajectory. The flexible 
manipulator was slewed 20” for a duration of 0.25 s, as shown in Fig. 4. 
Acceleration data were integrated to obtain relative tip velocity. On the graphs 
showing tip velocity, 1 g (gravitational acceleration of 9.8 m/G) corresponds to 
256.8 binary counts (cts); counts seconds (cts*s) correspond to 0.038 m/s). A 
large tip vibration is apparent after the slewing motion has been completed. A 
small residual motion is always present because of gravitational load variations 
(the beam is slewed perpendicular to the gravitation potential field) and because 
of the nonlinear friction in the drive tram (reduced by the inner torque loop). 
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Fig. 4. Shaped input response. 

In summary, the RNF approach is basically an open-loop scheme; the FFT 
block acts so slowly that its effect on the dynamics of the system is ignored. The 
purpose of RNF is to modify an arbitrary path so that the beam has little residual 
vibration. This scheme is easily appended to existing control schemes with a 
flexible manipulator of arbitrary design. 



. 5. ADAPTIVE INTERFERENCE CANCELER 

The objective of the adaptive interference canceler (AK) controller is to cancel 
the initial vibrations on the system by superimposing another vibrational wave. 
This idea is new to flexible-beam-type problems but has been used in other areas, 
such as noise reduction and electrocardiogram filtering problems. (See Widrow 
(1985) for specific details and for other application areas.) The error signal is 
physically the signal from the accelerometer and the output from the AIC 
controller is the torque drive signal to the actuator Z* (see Fig. 5.) 

Tip Acceleration 

~A*ator - 

m--1--11-- -R-in- 
) 

--t 

1 
Joint 4 3 Joint 

l;Ll ) Position flTorque[ 

Fig. 5. Adaptive interference canceler block diagram. 

Figure 6 is the error model for the AIC controller. Initial vibrations are assumed 
to be undamped sinusoids and are modeled as a cosine wave passing through an 
unknown transfer function block labeled Gdt, which assigns the correct 
magnitude and phase shift to the cosine wave. The plant transfer function is also 
assumed to be unknown and is labeled as G,. 

To analyze the stability of the AIC, which is a nonlinear controller, it is 
assumed that the adaptation parameters x, and x6 (see Fig. 6) vary slowly with 
respect to the vibrational wave. Furthermore, it is assumed that only the first 
modal frequency is of importance (higher modal frequencies are handled by 
adding additional software blocks, as shown in Fig. 6, in parallel at their 
associated modal frequencies) and that the first modal frequency is known 
exactly (i.e., 0, = m) by means of the FFT routine. From Fig. 6, the error signal is 
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The adaptation parameters are governed by 

I- 
I 
I 
I 
I 

I 
I 

I 

I 
I 

I 
I 
I 

I 
I 
I 
- 

gJ$ 
dt 

+ a XI = K e sin at 

d 
dt 

+ax,=Kecosu,,t. 

Software ---a---------- 

(104 

I 
KAccelerometer Signal 

I 

e 

Acceleration 
Torque Signal 

K 
s+a 

Fig. 6. Error model for the AIC controller. 

Averaging techniques are used to analyze the stability of the controller. 
Because the adaptation parameters are assumed to vary slowly with respect to 
the vibrational waves, Eqs. (lOa) and (lob) become 

c+ag=KAvg(ecos&t) (114 

c+a<=KAvg(esinat), OW 
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where 

Using the fact that 

Avg(Acos(o,t+cpA)Bcos(o,t+cpB)) =+os((PA-(PB), (12) 

then 

and 
Avg (e sin Q, t) = 0.5 K p&q,] cos (-x + Q,Cjao)) 

+ 0.5 X, p&j%] cos (LGp(ja) - x/2)- 0.5 k;bit(joO] COS (LGnit(jO,) - x12) * Wb) 

Using Eqs. (13a) and (13b), Eqs. (lOa) and (lob) are rewritten as 

.a 

. 

-a-0.5KJGdcos(LGP) 0.5K&Jsin(LGp) xs 

0.5Kk;dsin(LGp) I[ 1 -cx+0.5Kp&os(LGp) g 

Equation (14) is a linear time-invariant differential equation. The eigenvalues of 
this set of equations can be shown to be 

k=-cxf0.5 K p#i,,] . (15) 

For a stable system, the eigenvalues must lie in the left half plane. Even 
though the system plant Gp is assumed to be unknown, stability will be achieved 
if 01> 0.5 K &,(joJ for K > 0 and 01 > 0. Furthermore, while o, is the first modal 
frequency of the plant G,, there will be some small structural damping that will 
prevent &,(jo,,] from becoming unstable. The equilibrium point for Eq. (4), when 
cx = 0, is found by setting the left side of Eq. (14) to zero. This equilibrium point 
can be shown to force e(t) in Eq. (9) to zero. Unfortunately, a must be greater 
than zero for stability to be satisfied. For nonzero a, the equilibrium point forces 
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e(t) to a smaller, but nonzero value, during each cycle period. Experimental 
results shows that eventually e(t) goes to zero. 

The flexible manipulator is again slewed 20” for a duration of 0.25 s. Tip 
feedback is obtained from an accelerometer at the distal end of the beam. The 
shaping filter is turned off. Figure 7 shows the plot of the adaptive-feedback 
response compared with the ramped response. A significant reduction is clearly 
shown. 

In summary, a simple AX controller was introduced. The advantage of 
accelerometer feedback from the tip of the beam is the simplicity of modifying 
any existing design. Clearly, beam damping was increased. 

40 

30 

20 

10 m 

-10 

-20 

-30 

........... ..:..............: ............. 

............ 

............. ........... ..-.............C ............. 

............ 

- - . - - 

3.5 4 4.5 5 5.5 6 6.5 7 

Time (s) 

Fig. 7. Adaptive-feedback response of the AIC controller. 



6. ACCELERATION FEEDBACK 

For the last controller, the acceleration sensor is again used, but classical 
linear compensation is implemented. The block diagram of this controller is 
shown in Fig. 8. 

Desired 

Tip Acceleration 

Beam and Actuator 
amics -D Dyn 

$ Joint 
Position 

. 

Fig. 8. Acceleration feedback block diagram. 

The flexible manipulator was slewed 20” for a duration of 0.25 s. An 
acceleration feedback scheme was implemented along with local joint and torque 
feedback. Tip feedback is employed by an accelerometer at the distal end of the 
beam. The shaping filter is turned off. A non-minimum phase compensator is 
applied to the tip acceleration signal and is fed back at the actuator. This scheme 
was carefully tuned to avoid potential instabilities due to load variations. The 
dynamic model for the flexible manipulator and the joint and acceleration 
controllers are shown in Fig. 9. A local torque loop is also running but is not 
shown in the diagram because its function is to diminish the effect of the 
nonlinear dynamics of the system. 

s 

. 

15 
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Fig. 9. Basic block diagram of flexible manipulator dynamics and acceleration 
controller. 

For stability analysis, the above block diagram can be cast as the following 
root-locus problem: 

G1N;s2Ga 1 =- 
N!(s+ &Ah) 

where 

G1 = sHt 

l+sK!Hi 

The accelerometer compensator was designed as an all-pass filter 
(i.e., G, = Ka (&- + l)/(& + 1) and zd = - pa) with the associated root-locus 
plot shown in Fig. 10. 

The first three modal frequencies are included in this root-locus plot; 
however, only the lower frequency poles are shown because these are the 
dominant ones. Further, the scales are changed in these plots because the 
purpose of these plots is only to convey the general movement of the system 
poles. 

b 
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Fig. 10. Root-locus plot of the block diagram in Fig. 9. 

As the gain of the accelerometer compensator Kd is varied, the system poles 
move as shown in Fig. 10. Stability is maintained by limiting Kd so that all the 
poles stay in the left half plane. In summary, the time response and its 
comparison to the ramped response are shown in Fig. 11. Clearly, the 
accelerometer response damps out residual vibrations. 
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Fig. 11. Time response of the acceleration controller. 



7. CONCLUSION AND SUMMARY 

* 

Three controllers were implemented on a single flexible manipulator. All 
three controllers have a joint proportional-derivative controller and a base torque 
feedback loop. The first controller, an open loop scheme using RNFS, can be 
used by itself or with the other two controllers. Its function is to modify the 
command signal to reduce the residual vibration modes at the flexible 
manipulator tip. Input commands can be modified in a real-time environment 
by means of conventional microprocessors. Modal frequencies are determined 
by means of an accelerometer sensor. Accelerometers are fairly easy to 
instrument on any mechanical structure, adding to their advantage over other 
sensors, such as strain gauges. Because of measurement noise, the RNFs are 
designed to be robust with regard to the system’s natural frequencies and 
damping ratios. The system can be easily extended to multiple-link 
manipulators. The second controller was an adaptive controller that is based on 
interference cancellation methods. The basic idea is that vibrational waves are 
generated by the actuator to cancel any tip vibrations. Tip vibrations are 
measured by means of an accelerometer mounted on the distal end of the beam. 
The third controller used a linear compensator in conjunction with an 
accelerometer feedback scheme. All three controllers were successfully 
implemented and performed well on a single flexible manipulator. 

.,.. ‘., ,..^. 
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