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1 Introduction 

1.1 Purpose 

 This document describes a suite of statistical methods that can be used to infer lot 
parameters from the data obtained from inspection/testing of random samples taken from 
that lot. Some of these methods will be needed to perform the statistical acceptance tests 
required by the Advanced Gas Reactor Fuel Development and Qualification (AGR) 
Program. Special focus has been placed on proper interpretation of acceptance criteria 
and unambiguous methods of reporting the statistical results. In addition, modified 
statistical methods are described that can provide valuable measures of quality for 
different lots of material. This document has been written for use as a reference and a 
guide for performing these statistical calculations. Examples of each method are 
provided. Uncertainty analysis (e.g., measurement uncertainty due to instrumental bias) is 
not included in this document, but should be considered when reporting statistical results. 
 
1.2 Fundamental concepts 

 While this statistical guide has been written to be as generally applicable as 
possible, it is necessary to define several terms to avoid confusion when using this guide. 
 A lot refers to the entire amount of a specified material. A sample is a random 
subset of the entire lot. An item is a single unit in a sample. Every item in a sample is 
measured for a property that will be used in statistical analysis. Properties can be 
attributes or variables. An attribute property is a characteristic that classifies an item as 
either defective or nondefective. A variable property describes a characteristic of an item 
with a number. Variable properties are quantitative. 
 The distinction between attributes and variables can be quite confusing. An 
attribute property of an item is always “defective” or “nondefective.” The defective or 
nondefective decision for attribute properties can be based on qualitative features (e.g. 
color) or can be based on numeric cut-offs, but the decision is made for each individual 
item. Variable properties always have numeric values for each item. 
 Attribute sampling is statistical analysis using attributes and is based on the 
fraction of items in a sample that is declared defective. The fraction of defective items in 
the entire lot of material is statistically calculated based on the fraction of defective items 
in the sample measured. The fraction of defective items is used to determine whether the 
lot passes the acceptance criterion. 
 Variable sampling is statistical analysis using variables and is based on computing 
values (e.g. average and standard deviation) that describe a measured sample. The 
computed values that describe the sample are used to statistically calculate probable 
ranges for the entire lot. The calculated probable range is used to determine whether a lot 
passes the acceptance criterion. 
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2 Attribute sampling 

 Attribute sampling is based on the fraction of a sample that is declared defective. 
In acceptance testing for an attribute property, a lot is acceptable if there is a sufficiently 
high probability (i.e., confidence level) that the fraction of defective material in the lot is 
below the tolerance limit, where “defective” material is defined by the control limit. The 
control limit defines how a particle is declared “defective” or “nondefective.” The 
tolerance limit states how much material in the lot can fall outside the control limit (how 
much can be declared “defective”) without rejecting the lot. Because only a sample of 
material is measured, the measured fraction of defective material usually differs from the 
actual fraction of defective material in the whole lot. The actual fraction of defective 
material is statistically calculated from the measured fraction to a given confidence level. 
 If a tolerance limit is stated, the statistical tests for attribute sampling are 
ALWAYS “one-tailed” even if there are multiple control limits. 
 
Table 2-1: Example of an acceptance criterion based on an attribute for the AGR 
Fuel Program 
 

Property Control Limit Tolerance Limit (Lt) Confidence Level

Kernel Sphericity ≤ 1.05 0.01 0.95 

 
 As shown in Table 2-1, a proper acceptance criterion for attribute sampling 
specifies a control limit, a tolerance limit, and a confidence level. In traditional statistical 
analysis, the statistician calculates the confidence level that the lot contains less than the 
tolerance limit of units as defined “defective” by the control limit, and then the computed 
confidence level is compared to the confidence level of the acceptance criterion. 
Effectively, traditional statistical methods have a defined control limit, a fixed tolerance 
limit, and a computed confidence level that has to pass the acceptance criterion. 
Traditional statistical methods are tests used for material qualification. Often, a sampling 
plan is generated from statistical techniques for attribute sampling (such as the BDTL or 
SDTL approximation described later in this section) using a priori knowledge about the 
material. A sampling plan simplifies statistical data analysis by requiring a specific 
sample size and by defining the maximum number of defects associated with passing the 
acceptance criterion for that specific sample size. 
 As shown in Table 2-2, there are two fundamental statistical techniques for 
attribute sampling, herein termed: Binomial Distribution (BD) and Standard Deviation 
(SD). Traditional statistical methods for attribute sampling can test a lot against a given 
acceptance criterion, but they do not clearly indicate how good a product is. Critical 
control limits and tolerance limits of materials often need to be determined. Statistical 
approximations for attribute sampling are included in this guide to estimate the control 
limit and tolerance limit for which a given lot of material would be deemed acceptable 
(shown with italics in Table 2-2). A guide for choosing the appropriate statistical method 
is given in Appendix A. Details of each method will be discussed in its specific section.
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Table 2-2: Traditional and alternate statistical methods for attribute sampling. 
(italics denote alternate statistical methods) 
 

Fundamental 
Technique Statistical Method Control 

Limit 
Tolerance 

Limit 
Confidence 

Level 
binomial distribution (BD) 
test defined fixed compared 

tolerance limit (BDTL) 
approximation defined 

determined/ 
compared 

fixed Binomial 
Distribution 

control limit (BDCL) 
approximation 

determined/ 
compared 

fixed fixed 
     

standard deviation (SD) 
test defined fixed compared 

tolerance limit (SDTL) 
approximation defined 

determined/ 
compared 

fixed Standard Deviation 

control limit (SDCL) 
approximation 

determined/ 
compared 

fixed fixed 

 
2.1 Binomial distribution methods for attribute sampling 

 Binomial distribution methods are based on simple probability theory. A binomial 
distribution equation can be used to determine the probability of having a specific 
number of defective items in a sample.1 For binomial distribution methods for attribute 
sampling, a sum of binomial distribution equations is used to determine the probability 
(i.e., confidence level) of having less than a specific fraction (i.e., tolerance limit) of 
defective items in a lot (where “defective” items are defined by the control limit). The 
fundamental equation for the binomial distribution methods is Eq. 2-1:1 

 ∑
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where Lc is the confidence level, n is the total number of items in the sample, nd is the 
number of defective items in the sample, P is the probability of having less than nd 
defective items, and Lt is the tolerance limit. 
 For very large samples, the fundamental equation for binomial distribution 
methods can be impossible to solve exactly because of the resultant large factorial and 
exponential terms. Depending on the tolerance level, samples with millions or billions of 
items can be solved exactly by binomial distribution methods (if like terms in the 
factorials are cancelled) with conventional spreadsheet or mathematics software. For 
commonly used tolerance limits (<10%) and sufficiently large sample sizes (>100), the 
Poisson distribution can be used as a close approximation to the binomial distribution 
(see Eq. 2-2 and Figure 2-1). The Poisson approximation for a binomial distribution 
becomes increasingly accurate for larger sample sizes and smaller tolerance limits.2 
Compared to the binomial distribution equation, the equation for the Poisson distribution 
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is slightly less computationally cumbersome and can readily handle very large sample 
sizes. 
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Figure 2-1: Confidence intervals from binomial and Poisson distributions. A Poisson 
distribution closely approximates a binomial distribution for a sufficiently large 
sample (n) and sufficiently small tolerance limit (Lt). 
 
 The greatest problem with binomial distribution methods (even when using the 
Poisson approximation) is that the fundamental equation is time consuming to solve, 
especially for the statistical approximations (BDTL & BDCL). Using the fundamental 
equation, a confidence level can be computed from a fixed control limit and a fixed 
tolerance limit. The equation cannot be rearranged in order to directly solve for tolerance 
limit or to determine control limits. Complex software, spreadsheets, or tables can be 
generated for the statistical approximations, if desired. Modern statistical software can 
potentially be used to simplify the use of binomial distribution methods. Depending on 
the desired accuracy, the standard deviation methods (section 2.2) can be used to more 
easily calculate desired statistical results. 

2.1.1 Binomial distribution (BD) test 
 The binomial distribution test directly calculates a confidence level for a fixed 
tolerance limit based on a defined control limit and then compares the calculated 
confidence level to the specified confidence level to determine whether a lot passes the 
acceptance criterion. If the calculated confidence level is greater than the specified 
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confidence level, then the lot passes the acceptance criterion. When possible, Eq. 2-1 
should be used to exactly calculate the confidence level. 
 
BD Test Method: 
 Directly use Eq. 2-1 to calculate the confidence level for a given sample size and 
measured number of defects (based on the control limit). Compare the calculated 
confidence level with the confidence level required in the specification to determine 
whether the lot passes. 
 
BD Test Example: 
 This example is based on the acceptance criterion from Table 2-1. Assume a 
sample of 2825 kernels. A kernel is declared “defective” if it has a sphericity greater than 
1.05. Assume that 12 kernels in the sample are measured to have a sphericity greater than 
1.05. 
 To calculate the confidence level, simply insert the values into Eq. 2-1 to obtain: 

0.9995)99.0()01.0(
)!2825(!

)!2825(1
12

0

2825∑
=

− =
−

−=
i

ii
c ii

L  

The calculated confidence level (0.9995) is greater than the specified confidence level 
(0.95), so the lot passes the acceptance criterion. In the BD test, the calculated confidence 
level should be reported. 

2.1.2  Binomial distribution tolerance limit (BDTL) approximation 
 The binomial distribution tolerance limit (BDTL) approximation provides a 
relative measure of lot quality. The tolerance limit that would allow the lot to be accepted 
is estimated based on a fixed definition of a “defective” item (i.e., the control limit) and a 
fixed confidence level. The BDTL approximation can determine, to a fixed confidence 
level, what fraction of a lot is defective. The BDTL approximation can be best used to 
compare the defective content of different lots when the pertinent definition of 
“defective” (i.e., the control limit) is established. 
 
BDTL approximation method: 
 The BDTL approximation is based on Eq. 2-1, but it is not possible to obtain an 
exact, general solution for tolerance limit from Eq. 2-1. With current spreadsheets or 
mathematics software, it’s relatively straightforward to guess and check to obtain the 
tolerance limit that would have the fixed confidence level for the measured number of 
defective items. An example of performing a BDTL approximation with a “guess-and-
check” method is given below. Since confidence levels of practical acceptance criteria 
are greater than 0.75, the tolerance limit must be greater than the measured fraction of 
defective items (pm = nd/n). 
 
BDTL approximation example: 
 This example is based on the acceptance criterion from Table 2-1. Assume a 
sample of 2825 kernels. A kernel is declared “defective” if it has a sphericity greater than 
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1.05. Assume that 12 kernels in the sample are measured to have a sphericity greater than 
1.05. Eq. 2-3 is used to generate confidence levels for different “guesses” for tolerance 
level (lT), as shown in Table 2-3. The goal is to obtain a confidence level of 0.95 for 
twelve “defective” kernels (nd = 12). As a starting “guess”, a value slightly above the 
measured fraction of defective kernels (0.004248) was chosen. 
 

 ∑
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i
Tc ll

ii
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Table 2-3: Tolerance limit “guesses” for BDTL approximation example 
 

 Tolerance Limit (lT) 
“Guess” 

Confidence 
Level Comment 

Guess 1 0.005 0.654 guess for lT is too low 
Guess 2 0.0075 0.978 guess for lT is too high 
Guess 3 0.007 0.957 guess for lT is slightly too high 
Guess 4 0.00675 0.942 guess for lT is slightly too low 
Guess 5 0.00687 0.950 This is the appropriate tolerance 

limit (lT) 
 
 Based on the fixed control limit (sphericity ≤ 1.05), the estimated tolerance limit 
for the lot is 0.00687 to a 95% confidence level (i.e., 0.95). Although the BDTL 
approximation is intended for estimating tolerance limits, it also shows that the lot passes 
the acceptance criterion, because the calculated tolerance level (lT = 0.00687) is lower 
than the specified tolerance level (Lt = 0.01). 

2.1.3 Binomial distribution control limit (BDCL) approximation 
 The binomial distribution control limit (BDCL) approximation can be used to 
estimate the control limit for which the lot would be accepted given a fixed tolerance 
limit and confidence level. The BDCL approximation can only be used for quantitative 
measurements. The details of the method and an example follow. 
 
BDCL approximation method: 
 Calculate the confidence level from Eq. 2-1 for the number of defective items (nd) 
varying from zero to about Ltn. From this table of values, find the nd closest to the fixed 
confidence level without going under, which will be called the “critical nd”. For the 
measured sample, determine the control limit that would declare no more than the 
“critical nd” number of items as “defective.” Be sure not to round numbers or choose 
numbers so that additional items would be declared “defective.” 
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BDCL approximation example: 
 This example is based on the acceptance criterion from Table 2-1. Assume a 
sample of 2825 kernels. For the given sample size (2825) and fixed tolerance level, Eq. 2-
1 is used to generate confidence levels for different numbers of defective items (nd), as 
shown in Table 2-4. 
 
Table 2-4: Confidence levels for different numbers of defective items (nd) for the 
BDCL approximation example. 
 

nd confidence 
level 

nd confidence 
level 

≤ 9 1 17 0.9843 
10 0.9999 18 0.9735 
11 0.9998 19 0.9572 
12 0.9995 20 0.9342 
13 0.9989 21 0.9032 
14 0.9977 22 0.8633 
15 0.9954 23 0.8141 
16 0.9912 24 0.7561 

 
An nd of 19, which has a confidence level of 0.9572, is the closest to the fixed confidence 
level (0.95) without going under. Thus, the critical nd is 19. 
 
Table 2-5: A table of actual sphericity data for the BDCL approximation example. 
An ordered list of the 42 highest sphericities are listed for a sample of 2825 kernels. 
 

1.217 1.059 1.049 1.040 1.037 1.033 1.031 
1.148 1.057 1.047 1.040 1.037 1.033 1.030 
1.092 1.057 1.046 1.039 1.036 1.033 1.030 
1.075 1.057 1.044 1.039 1.036 1.032 1.029 
1.072 1.056 1.043 1.039 1.035 1.031 1.029 
1.060 1.053 1.043 1.038 1.035 1.031 1.028 

 
Table 2-5 contains an ordered list of the 42 highest sphericities from the 2825 sphericity 
measurements used for this example. By looking at Table 2-5, the control limit would 
need to be set at 1.041 for no more than 19 kernels to be declared “defective.” 
 The lot would pass an estimated control limit of 1.041 at a tolerance limit of 1% 
(i.e., 0.01) to a 95% confidence level. Although the BDCL approximation is intended for 
estimating control limits, it also shows that the lot passes the acceptance criterion, 
because the calculated control limit (1.041) is lower than the specified control limit 
(1.05). 
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2.2 Standard deviation methods for attribute sampling 

 Standard deviation methods for attribute sampling use common statistical 
methods to determine the probability (i.e., confidence level) of having less than a specific 
fraction (i.e., tolerance limit) of defective items in a lot (where “defective” is defined by 
the control limit). Confidence levels are based on the assumption that measuring several 
samples for the fraction of defective items would produce results with a normal 
distribution. 
 Standard deviation methods for attribute sampling are based on the Central Limit 
Theorem,1 which states that the frequency distribution for the means (averages) of 
random large samples is approximately normal. Invoking the Central Limit Theorem for 
a sample with a binomial distribution introduces an error in reported values. The error 
depends on: (1) the confidence level and (2) the relative magnitude of the sample size and 
the tolerance limit (Figure 2-2). For common tolerance limits (< 2%), large sample sizes 
(relative to the tolerance limit) with high confidence levels (≥ 95%) have reasonably 
good agreement between the standard deviation methods and the binomial distribution 
methods. If the tolerance limit is low and the sample size is not sufficiently large, the 
standard deviation methods are not considered acceptable to use. As a conservative rule 
of thumb, the standard deviation methods are considered acceptable if the following 
condition is satisfied (see Appendix B for derivation): 

 
tL

n 9
≥  (2-4) 

where n is the sample size and Lt is the tolerance limit (in decimal form). Even though 
the standard deviations methods may be considered “acceptable”, the error in reported 
values may not be tolerable for a given application. All of the cases shown in Figure 2-2 
are “acceptable” for standard deviation methods, but significant error can be observed for 
certain ranges of confidence level. 
 Despite these limitations, standard deviation methods are commonly used for 
media polls and industrial quality control. The key advantages to standard deviation 
methods are their ease of use and their intuitive feel. The pertinent equations are simple 
to solve. A novice in statistics can quickly gain an intuitive feel for the underlying logic 
of standard deviation methods and the meaning of the statistical results. Standard 
deviation methods can be easily applied and tweaked to provide insightful interpretation 
for attribute sampling. Standard deviation methods should not be nonchalantly used 
because of their ease and intuitive feel; a brief check of expected error should be 
performed before their use. 
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Figure 2-2: Comparisons of standard deviation (SD) and binomial distribution (BD) 
methods for various sample sizes and tolerance levels. Data is shown for different 
values of the product of the sample size (n) and the tolerance level (Lt). The data 
applies to sample sizes up to 50 million and tolerance levels up to 2% (0.02). The BD 
methods curve for nLt = 50 was computed for up to n = 50 million for confidence 
level > 0.90, but was only computed for up to n = 1.25 million for lower confidence 
levels.  

2.2.1 Standard deviation (SD) test 
 Based on a fixed control limit and a fixed tolerance limit, the standard deviation 
(SD) test calculates a confidence level, which is compared to the specified confidence 
level to determine whether the lot passes the acceptance criterion. The SD test is widely 
used, simple, and straightforward.1 Note from Figure 2-2 that, for a given number of 
defective items, SD tests often have only slight errors (< 0.01) at high confidence levels 
(≥ 0.95) and relatively large errors (up to 0.04-0.08 too high) for low confidence levels. 
Often, the confidence level error for the SD test (as compared to the BD test) will not 
significantly influence whether a lot passes the acceptance criterion, but the error can 
make comparisons between confidence levels of different lots difficult. 

 
SD test method: 
 First, it must be determined if the sample size is sufficiently large. Calculate the 
attribute standard deviation (σa) using:1 
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n

LL tt
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)1( −
=σ  (2-5) 

where Lt is the tolerance limit and n is the total number of items in the sample. Check to 
see if the tolerance limit ± 3 attribute standard deviations is contained within the range of 
0 to 1. If not, then the sample is not sufficiently large to perform the SD test and the 
sample should be analyzed with the traditional binomial distribution method. 
 Next, calculate the “z statistic” by the following equation.1 

 
a

mt pL
z

σ
−

=  (2-6) 

where pm is the measured fraction of defective items. Use the z statistic to look up a value 
on the z table in Appendix E. If pm < Lt, then the z table value is the confidence level. If 
pm > Lt, then the confidence level equals 1 minus the z table value. There is no standard 
format for z tables, so take care to read the z table properly. If the confidence level from a 
z table is greater than the confidence level of the acceptance criterion, then the lot passes 
the acceptance criterion. 
 
SD test example: 
  This example is based on the acceptance criterion from Table 2-1. Assume a 
sample of 2825 kernels. A kernel is declared “defective” if it has a sphericity greater than 
1.05. Assume that 12 kernels have a sphericity greater than 1.05. 
 First, determine if the sample size is sufficiently large. The attribute standard 
deviation is: 

001872.0
2825

)99.0)(01.0(
==aσ  

The tolerance limit ± 3 attribute standard deviations is 0.004384 to 0.01562. Since it is 
within the range of 0 to 1, the sample is considered large enough to use the SD test. 
 Next, calculate the z statistic. The measured fraction of defective kernels (pm) is: 
12/2825 = 0.004248. Thus, the z statistic is: 

073.3
001872.0

)004248.0()01.0(
=

−
=z  

Table 2-6 shows some data off of a z table (for full z table see Appendix E). The 
pertinent value from the z table is 0.9989. Since pm < Lt, then the z table value is the 
confidence level. 
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Table 2-6: Data taken from a z table with associated confidence level (one-tailed). 
The z statistic is given to three decimal places for key confidence levels. 
 

z statistic z table 
value 

Confidence level 
for pm < Lt 

Confidence level 
for pm > Lt 

0.674 0.750 0.750 0.250 
1.282 0.900 0.900 0.100 
1.645 0.950 0.950 0.050 
2.326 0.990 0.990 0.010 
3.07 0.9989 0.9989 0.0011 
3.090 0.9990 0.999 0.0010 

 
 The lot passes the acceptance criterion, because the calculated confidence level 
(0.9989) is greater than the confidence level in the acceptance criterion (0.95). In SD 
tests, the calculated confidence level is usually reported. 

2.2.2  Standard deviation tolerance limit (SDTL) approximation 
 The standard deviation tolerance limit (SDTL) approximation can be best used to 
estimate the defective content of different lots when the pertinent definition of 
“defective” is established. The SDTL approximation can provide two measures of lot 
quality. First, the SDTL approximation can calculate the greatest tolerance limit that the 
lot would pass for the specified control limit and confidence level, based on the measured 
sample. Second, the SDTL approximation can provide a confidence level for the defect 
fraction of the lot, based on the control limit. 
 Standard deviation methods inherently have associated error (compared to 
binomial distribution methods), but error is often small when the confidence level is high 
(see Figure 2-2). For most common acceptance criteria, the specified confidence level is 
high, so the SDTL approximation often is not significantly different from the BDTL 
approximation. The confidence interval for the defect fraction relies on a t table, which is 
derived based on a normal distribution. Slight errors in confidence interval would be 
caused by using a t table on a binomial distribution. 
 
SDTL approximation method: 
 There are two separate results that can be obtained from the SDTL approximation: 
(a) the greatest tolerance limit that the lot would pass for the given control limit and 
confidence level according to the measured sample and (b) the confidence interval of the 
defect fraction of the lot. 
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(A) Greatest tolerance limit that would be passed 
 From a z table, look up the z statistic (z) that corresponds to the confidence level 
in the acceptance criterion. There is no standard format for z tables, so take care to read a 
z table properly. See Appendix E for a full z table. 
 Determine the fraction of defective items (pm). Appendix C derives the following 
equation, which is used to calculate the tolerance limit (lT) for a fixed control limit and 
confidence level. 

 
nz

npnpzzznp
l mmm
T 22

442
2

222

+

−+++
=  (2-7) 

where n is the total number of items in the sample. Then, the test must be proved valid. A 
test is necessary to prove that the sample size was large enough for SDTL approximation 
to be valid. 
 In order to determine if the sample was sufficiently large, perform the following 
test. Calculate the attribute standard deviation using Eq. 2-5: 

n
ll TT

a
)1( −

=σ  

Check to see if the calculated tolerance limit ± 3 attribute standard deviations is entirely 
contained between 0 and 1. If not, then the sample is not sufficiently large to have a valid 
result from the test, so the binomial distribution tolerance limit approximation should be 
used. 
 
(B) Confidence interval for the defect fraction 
 The standard deviation of the defect fraction (σp) is calculated using: 

 
n

pp mm
p

)1( −
=σ  (2-8) 

Choose a confidence level for the confidence interval that is no greater than 99%. Use a t 
table to determine the t value associated with the sample size and chosen confidence level 
(see Appendix F for the t table). Often, values on a t table are found using ν (the degrees 
of freedom) and α. The ν equals the sample size minus one. To get α, use the following 
equation: 

 
2

1 cL−
=α  (2-9) 

where Lc is the confidence level of the confidence interval. Calculate the confidence 
interval for the fraction of defective items (pp) in the lot using:1 
 pmppm tpptp σσ +≤≤−  (2-10) 

 Check to see if the sample is sufficiently large to specify a valid confidence 
interval. Using the same procedure as for your chosen confidence level, calculate the 
99.8% confidence interval for the fraction of defective items. If the 99.8% confidence 
interval is between 0 and 1, then the sample is sufficiently large to specify a valid 
confidence interval. 
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SDTL approximation example: 
 This example is based on the acceptance criterion from Table 2-1. Assume a 
sample of 2825 kernels. A kernel is declared “defective” if it has a sphericity greater than 
1.05. Assume that 12 kernels have a sphericity greater than 1.05. 
 
(A) Greatest tolerance limit that would be passed 
 From a z table (see Table 2-6), the fixed confidence level of 0.95 (i.e., 95%) can 
be found to correspond to a z statistic of 1.645. The fraction of defective items (pm) is: 
12/2825 = 0.004248. Using the assorted constants, Eq. 2-7 becomes: 

5655
)50.50()645.1()71.26( +

=Tl  

Thus, the solution for the tolerance limit (lT) is: 0.006790.  
 The SDTL approximation must be tested for validity. The attribute standard 
deviation is computed to be: 

001545.0
2825

)99321.0)(006790.0(
==aσ  

The tolerance limit ± 3 attribute standard deviations gives the range: 0.002155 - 0.01143. 
This range is entirely contained between 0 and 1, so the SDTL approximation is proven 
valid for this sample. 
 Therefore, the sample would pass a tolerance limit of 0.00679 to a 95% 
confidence level with the specified control limit (1.05). Although the SDTL 
approximation is intended for estimating tolerance limits, it also shows that the lot passes 
the acceptance criterion, because the calculated tolerance level (0.00679) is lower than 
the specified tolerance level (0.01). 
 
(B) Confidence interval for the defect fraction 
 The standard deviation of the defect fraction is calculated to be: 

001224.0
2825

)004248.01(004248.0
=

−
=pσ  

Confidence intervals are often reported for a 95% confidence, so a 95% confidence 
interval will be determined for this example. From a t table (see Appendix F), the 
appropriate t value is found to be 1.961 (ν = 2824; α = 0.025). Using Eq. 2-10, the 
confidence interval for the defect fraction (pp) is determined to be: 

)001224.0)(961.1()004248.0()001224.0)(961.1()004248.0( +≤≤− pp  

00665.000185.0 ≤≤ pp  

 The validity of the confidence interval must be tested. The t value for a 99.8% 
confidence interval is 3.094 (ν = 2824; α = 0.001). Using Eq. 2-10, the 99.8% confidence 
interval is found to be: 
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)001224.0)(094.3(0.004248)()001224.0)(094.3((0.004248) +≤≤− pp  

0.000461 ≤≤ pp 0.00804 

Since the 99.8% confidence interval is between of 0 and 1, the calculated 95% interval is 
shown to be valid. Thus, the 95% confidence interval of the defect fraction (of the lot) is 
0.00185-0.00665. 

2.2.3 Standard deviation control limit (SDCL) approximation 
 It is often useful to determine what an acceptable control limit for a process would 
be. The standard deviation control limit (SDCL) approximation can provide two 
measures of the relative quality of a lot. First, the SDCL approximation can calculate the 
extreme control limit under which the lot would barely pass at the specified tolerance 
limit and confidence level, based on the measured sample. Second, the SDCL 
approximation can estimate a confidence interval for the attribute property cut-off (APC). 
The attribute property cut-off is the attribute property value that would define an amount 
of defective material in the lot that is equal to the tolerance limit. 
 Standard deviation methods inherently have associated error (compared to 
binomial distribution methods), but error is often small when the confidence level is high 
(see Figure 2-2). For most common acceptance criteria, the specified confidence level is 
high, so SDCL approximation often is not significantly different from BDCL 
approximation. The confidence interval for the APC relies on a t table, which is derived 
based on a normal distribution. Slight errors in confidence interval would be caused by 
using a t table on a binomial distribution. Note that it is impossible to apply SDCL 
approximation to qualitative measurements. 
  
SDCL approximation method: 
 There are two separate results that can be obtained from the SDCL 
approximation: (a) the control limit that the lot would pass at the given tolerance limit 
and confidence level according to the measured sample and (b) the confidence interval of 
the attribute property cut-off for the given tolerance limit. 
 
(A) Control limit that would be passed 
 First, it must be determined if the sample size is sufficiently large. Calculate the 
attribute standard deviation (σa) using Eq. 2-5: 

n
LL tt

a
)1( −

=σ  

Check to see if the tolerance limit ± 3 binomial standard deviations is entirely contained 
between 0 and 1. If not, then the sample is not sufficiently large to perform the test and 
the control limit binomial distribution method should be used. 
 From a z table, look up the z statistic that corresponds to the fixed confidence 
level. There is no standard format for z tables, so take care to read a z table properly. A 
full z table is given in Appendix E. 
 The number of allowable “defective” items in the sample (nd) is determined by: 
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 atd nznLn σ−=  (2-11) 

where n is the total number of items in the sample and Lt is the tolerance limit. See 
Appendix D for a derivation. Round nd down to the nearest integer. By looking at an 
ordered list of the attribute property for each item in the sample, determine the control 
limit that would declare no more than nd items as “defective.” Be sure not to round 
numbers or choose numbers that would declare additional items as “defective.” 
 
(B) Confidence interval for the attribute property cut-off 
 Choose a confidence level for the APC confidence interval that is no greater than 
99% (a 95% confidence interval is common). Use a t table to determine the t value 
associated with the sample size and chosen confidence level (See Appendix F for the t 
table). Often, values on a t table are found using ν (the degrees of freedom) and α. The ν 
equals the sample size minus one. To get α, use Eq. 2-9. Calculate the confidence interval 
for the average number of defects which would occur in hypothetical random samples of 
n items (Nd) using: 
 atdat ntnLNntnL σσ +≤≤−  (2-12) 

where Lt is the tolerance limit. Round the lower limit of Nd down to the nearest integer. 
Round the upper limit of Nd up to the nearest integer. By looking at an ordered list of the 
attribute property for each item in the sample, determine the attribute property value that 
would declare no more items than the lower limit of Nd as “defective.” This is one bound 
of the APC confidence interval. Also, determine the attribute property value that would 
declare no fewer items than the upper limit of Nd as “defective.” This is the other bound 
of the APC confidence interval. 
 Check to see if the sample is sufficiently large to specify a valid confidence 
interval for the attribute property cut-off (APC). Using the same procedure as for your 
chosen confidence level, calculate the 99.8% confidence interval for Nd. If the 99.8% 
confidence interval is greater than zero and less than the sample size, then the sample is 
sufficiently large to specify a valid estimate for the APC confidence interval. 
 
SDCL approximation example: 
 This example is based on the acceptance criterion from Table 2-1. Assume a 
sample of 2825 kernels. Assume that Table 2-7 contains an ordered list of the 42 highest 
sphericities from the 2825 sphericity measurements. 
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Table 2-7: A table of actual sphericity data for the SDCL approximation example. 
An ordered list of the 42 highest sphericities are listed for a sample of 2825 kernels. 
(same table as BDCL example) 
 

1.217 1.059 1.049 1.040 1.037 1.033 1.031 
1.148 1.057 1.047 1.040 1.037 1.033 1.030 
1.092 1.057 1.046 1.039 1.036 1.033 1.030 
1.075 1.057 1.044 1.039 1.036 1.032 1.029 
1.072 1.056 1.043 1.039 1.035 1.031 1.029 
1.060 1.053 1.043 1.038 1.035 1.031 1.028 

 
(A) Control limit that could be passed 
 First, determine if the sample size is sufficiently large. The attribute standard 
deviation is: 

001872.0
2825

)99.0)(01.0(
==aσ  

The tolerance limit ± 3 attribute standard deviations is 0.004384 to 0.01562. Since this is 
between 0 and 1, the sample is considered large enough to use the SDCL approximation. 
 From a z table (see Table 2-6), the fixed confidence level of 0.95 (i.e., 95%) can 
be found to correspond to a z statistic of 1.645. Using the assorted constants, the equation 
solving for nd becomes: 

55.19)001872.0)(645.1)(2825()01.0)(2825( =−=dn  

Rounding down to the nearest integer, nd equals 19. By looking at Table 2-5, the control 
limit would need to be set at 1.041 for no more than 19 kernels to be declared 
“defective.” 
 According to the measured sample, the lot would pass a control limit of 1.041 at a 
tolerance limit of 1% (i.e., 0.01) to a 95% confidence level. Although the SDCL 
approximation is intended for estimating control limits, it also shows that the lot passes 
the acceptance criterion, because the calculated control limit (1.041) is lower than the 
specified control limit (1.05). 
 
(B) Confidence interval for the attribute property cut-off 
 The confidence interval for the attribute property cut-off is determined from the 
attribute standard deviation (see above) and Eq. 2-12. A 95% confidence interval will be 
estimated for this example. From a t table (See Appendix F), the appropriate t value is 
found to be 1.961 (ν = 2824; α = 0.025). 

dN≤− )001872.0)(961.1)(2825()01.0)(2825(      

    )001872.0)(961.1)(2825()01.0)(2825( +≤  
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62.3888.17 ≤≤ dN  

Once the lower and upper limits are appropriately rounded, the lower and upper limits 
become 17 and 39, respectively. One bound of the APC confidence interval is identified 
as 1.044 (Table 2-5), so that no more than 17 items are declared as “defective”. The other 
bound of the APC confidence interval is identified as 1.030 (Table 2-5), so that no fewer 
than 39 items are declared as “defective”. 
 Finally, the validity of the estimated 95% confidence interval must be determined. 
Eq. 2-12 is used with the t value (3.094) associated with 99.8% confidence (for ν = 2824 
& α = 0.001). 

dN≤− )001872.0)(094.3)(2825()01.0)(2825(      

    )001872.0)(094.3)(2825()01.0)(2825( +≤  

61.4489.11 ≤≤ dN  

Since the 99.8% confidence interval falls between 0 and the sample size, the estimated 
95% confidence interval for the control limit is valid. 
 The approximate 95% confidence interval for the attribute property cut-off is 
1.030-1.044. In other words: only 1% of the sample (the tolerance limit) is above the 
attribute property cut-off, and the attribute property cut-off can be stated to be somewhere 
in the range of 1.030-1.044 to approximately 95% confidence (the confidence level of the 
APC confidence interval). 
 
2.3 Comparison of attribute sampling methods 
 The examples for all six attribute sampling methods have used the same 
experimental data.  Table 2-8 allows a direct comparison of the various statistical 
perspectives of the same experimental data. In standard deviation methods, 
approximation of a binomial distribution with a normal distribution did cause a small 
error for this sample. In this case, the standard deviation methods have significant 
advantages over the binomial distribution methods for ease of calculation and for the 
ability to compare quantitative results of different lots of material. The error associated 
with the standard deviation test did not affect the comparison to acceptance criterion (see 
Table 2-1) in this case. To relate these results to Figure 2-2, the corresponding “nLt” 
values are approximately 19 for BDTL & SDTL approximation and approximately 29 for 
the other methods. 
 The statistical approximations provide interesting insights into what criteria the 
sample would pass, but they do not provide specifications that the lot would necessarily 
pass. This subtle distinction is crucial to avoid erroneous conclusions from the results of 
these approximations. 
 For the statistical approximations, special caution must be used in comparing the 
calculated criteria that would be passed by the samples of different lots. The sample size 
affects the criteria that a sample would pass, so a variation in sample size would cause 
differences in the calculated passable criteria. 
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Table 2-8: Summary of the six methods for analyzing attribute sampling data. 
Calculated values are in bold type. The percent error caused by using standard 
deviation methods (instead of binomial distribution methods) is shown for all 
calculated values.  
 

Method Control Limit Tolerance Limit Confidence Level 

BD test 1.05 0.01 0.9995 
SD test 1.05 0.01 0.9989 

-- 
0.06% 
error 

BDTL approx. 1.05 0.00687 0.95 
SDTL approx. 1.05 0.00679

-- 
1.2% 
error 0.95 

BDCL approx. 1.041 0.01 0.95 
SDCL approx. 1.041 

-- 
no resultant 
final error 0.01 0.95 

 
 The most statistically sound method to compare attributes of different lots is the 
comparison of the confidence intervals of the defect fraction or control limits. SDTL and 
SDCL approximations provide these confidence intervals using techniques based on 
widely used statistical methods. The confidence intervals of the defect fraction for 
multiple lots can be graphed to provide a highly intuitive comparison of lot quality. The 
confidence intervals of the control limits for multiple lots provide valuable information 
on lot quality, but differences in confidence intervals of control limits are somewhat 
deceptive. The true significance of differences in the confidence intervals of control 
limits is based on the number of defective items associated with the difference in the 
confidence intervals (see the example in Figure 2-3). 
 

1.031 1.04

1.045 1.052

0

1

2

1.025 1.03 1.035 1.04 1.045 1.05 1.055
sphericity

lo
t

95% conf. interval
for lot 1

95% conf. interval
for lot 2

the difference in 
confidence intervals 

Highly significant difference if several
items occur between 1.04 and 1.045
for both lots.

 
 
Figure 2-3: For control limits, the true significance in differences between lots is not 
graphically intuitive. The significance comes from the number of defective items 
that occur inside the difference in confidence intervals. (Results for two hypothetical 
lots are shown.) 
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3 Variable sampling 

 In variable sampling, property measurements of individual items are used to 
calculate numbers that describe the entire lot. Variable sampling can be based on the 
mean property measurement of a sample or the distribution of property measurements in 
a sample. An acceptance criterion of variable sampling for a mean defines acceptance 
limit(s) that the measured mean must satisfy to a specified confidence level. In variable 
sampling for a distribution, a tolerance limit defines the maximum percent of an ideal 
distribution (which is almost always a normal distribution) that can go outside the critical 
limit(s) based on a specified confidence level. 
 Generally, variable sampling methods are based on the assumption that property 
measurements are normally distributed. The assumption of a normal distribution makes it 
straightforward to calculate variable sampling results that describe the lot to a specified 
confidence level. Unfortunately, experimental data can be significantly different from a 
normal distribution. Experimentally generated distributions often have skewness, 
kurtosis,3 bimodal distribution, multimodal distribution, processing-induced cut-offs, or 
outliers.4 Methods to determine the adequateness of the “normal distribution” assumption 
are discussed in section 3.1. 
 One source of confusion and debate is whether a statistical test in variable 
sampling should be “one-tailed” or “two-tailed.” If the confidence level is based on 
satisfying only one critical limit, then the test is “one-tailed.” If the confidence limit is 
based on simultaneously satisfying two critical limits, then the test is “two-tailed.” 
Therefore, if an acceptance criterion for variable sampling defines only one critical limit, 
then the statistical test is always “one-tailed.” If the acceptance criteria define two critical 
limits, then the acceptance criteria should specify whether the two critical limits apply to 
one “two-tailed” statistical test or the two critical limits apply to two separate “one-
tailed” statistical tests. Unfortunately, acceptance criteria with two critical limits usually 
don’t specify whether the appropriate statistical test is “one-tailed” or “two-tailed.” The 
distinction between “one-tailed” and “two-tailed” is crucial for properly reading the 
statistical tables needed for variable sampling methods. Special attention to unambiguous 
language for writing acceptance criteria and reporting statistical results are included in 
sections 3.2 and 3.3. 
 
3.1  Adequacy of the normal distribution assumption 
 Common features of non-normality are skewness, kurtosis, bimodal (or 
multimodal) distributions, cut-offs, or outliers (Figure 3-1). Only severe features of non-
normality will affect variable sampling based on a mean (VSM) for reasonably large 
sample sizes, but even moderate features of non-normality can significantly affect 
variable sampling based on a distribution (VSD). “Overconservative” VSD reports a 
lower confidence level than actual and is more likely to reject good material. 
“Underconservative” VSD reports a higher confidence level than actual and is more 
likely to accept bad material. The potential effects of various non-normal distribution 
features are discussed below. 
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Figure 3-1: Examples of various sources of non-normality. 
 
 Skewness is a measure of the asymmetry in the distribution, which can appear as 
an imbalance in the tails. Significant skewness can cause significant errors for variable 
sampling based on a distribution, because a normal distribution overestimates the content 
in one tail and underestimates the content in the other tail.  
 Kurtosis is a measure of the content of the center of the distribution relative to the 
tails. A distribution with platykurtosis has too much content in the center of the 
distribution relative to the tails. For statistical tests for a distribution, the assumption of 
normality usually causes overconservative confidence limits for distributions with 
platykurtosis. A distribution with leptokurtosis has too much content in the tails relative 
to the center of the distribution. For a distribution with leptokurtosis, statistical tests for a 
distribution that assume normality claim confidence levels that usually are 
underconservative. 
 Bimodal distributions are the sum of two distinguishable distributions (i.e., two 
peaks discernable in the histogram). Multimodal distributions are the sum of multiple 
distinguishable distributions (multiple peaks discernable in the histogram). Composite 
lots (lots made from combining multiple batches) almost always have distributions that 
are the sum of multiple distributions, but depending on the mean and deviation of each 
batch, the composite lot can have a nearly normal distribution, a multimodal distribution, 
or various non-normal distributions. Depending on the relative intensity and location of 
the modes, bimodal and multimodal distributions can cause significant errors in reported 
means (depending on sample size) and severe errors in confidence levels reported by 
statistical tests for a distribution that assumes normality. 
 Cut-offs are instances where the distribution has a sudden abrupt change from 
having content to having no content. Sometimes, cut-offs are caused by some inherent 
limitation in each item, which can be caused by processing, initial selection, or 
separations. For example, particles may be screened to eliminate overly large and/or 
overly small items. For statistical tests for a distribution, a cut-off can cause 
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overconservative or underconservative results. Introduction of cut-offs to a sample 
through processing, initial selection, or separations is a valuable quality control tool, but 
the effect of a cut-off on statistical tests should be considered before introducing cut-offs 
to items of a sample. 
 Outliers are items with aberrant variable properties that don’t fit within the 
distribution of the remaining sample. It is always possible that an outlier is simply an 
unlikely occurrence from an ordinary probability distribution, but an outlier may not be 
caused by the same probability distribution as the majority of the sample. If a sample has 
a significant percentage of outliers that are beyond the critical limit, statistical tests for a 
distribution will provide results that are underconservative. 
 Several analytical techniques have been developed over the years to provide a 
measure of the normality of a distribution (i.e., its similarity to a normal distribution). 
Shapiro-Wilk and Lilliefors techniques are commonly used techniques to measure 
normality. As can be imagined, it is difficult to adequately describe the normality of a 
distribution with one or two clear, simple indicators, so such techniques are difficult to 
implement practically. Graphical techniques can be used to compare a histogram of the 
sample data with a normal distribution. There are two common options for graphical 
examination of a histogram: (1) directly compare the histogram to a Gaussian (normal) 
curve or (2) a linearized probability plot. Graphical methods can identify potential 
problems. Since essentially all sample data are not “normally distributed”, it is difficult to 
determine the potential effect of deviations from normality. 
 Rigorous analytical and graphical techniques can identify non-normal features in 
almost all measured distributions, but the presence of non-normal features often does not 
cause significantly flawed results from the statistical method. The histogram should be 
examined for non-normal features in order to identify flawed results or questionable 
results before employing rigorous analytical and graphical techniques. 
 
3.2 Variable sampling based on a mean (VSM) 
 For variable sampling based on a mean (VSM), the acceptance criterion has 
acceptance limit(s) that must be met to specified confidence level. VSM methods are 
usually based on sampling producing a normal distribution of means, and only VSM 
methods based on normal distribution will be discussed. The Central Limit Theorem 
states that means based on sufficiently large samples always will have an approximately 
normal distribution, even if the distribution of variable properties in the sample is not 
normal. For large sample sizes, the VSM method works well for distributions of variable 
properties that aren’t very Gaussian (normal).1 
 Small sample sizes with non-Gaussian distributions of variable properties can 
cause error in the VSM method. For small samples (n<30), non-normality that is clearly 
apparent in the histogram can cause a significantly non-normal distribution for a sample 
mean.1 Unfortunately, any error in the reported mean due to a non-normal distribution is 
unpredictable in direction. 
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VSM Method: 
 The sample mean is calculated as a simple average of variable properties of items 
in the sample. The interval for the specified confidence level is called the confidence 
interval and is calculated with a t-test. Some texts will mention using a “z-test” for this 
type of test, but a “z-test” is only valid for large samples while a t-test is valid for all 
sample sizes. To avoid confusion, always use a t-test. Compute the confidence interval 
with Eq. 3-1 for two-tailed tests, Eq. 3-2 for a one-tailed test with an upper acceptance 
limit, or Eq. 3-3 for a one-tailed test with a lower acceptance limit.1 
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where x  is the measured mean of the sample, σx is the measured standard deviation of 
the sample, n is the number of items in the sample, µp is the predicted mean of the lot, 
and t1 (one-sided) or t2 (two-sided) come from a t table (see Appendix F). The proper t 
value is chosen from the t table based on (a) the number of items in the sample, (b) the 
specified confidence level, and (c) whether the test is one-tailed or two-tailed. Often, 
values on a t table are found using ν (the degrees of freedom) and α. The ν equals the 
sample size minus 1. To get α, use: 

 
T

Lc−
=

1α  (3-4) 

where Lc is the confidence level and T is the number of tails of the test (1 or 2). 
 The lot passes the acceptance criterion if the entire confidence interval falls within 
the acceptance limit(s) of the acceptance criterion. For one-tailed tests, the confidence 
interval should be reported with the appropriate inequality sign (≥ or ≤). For two-tailed 
tests, the confidence interval should be reported as a range (i.e., 453-527 µm); do not use 
nomenclature with a “±” (or “+/-”), because the “±” terminology can have several 
different interpretations. 
  
VSM Example: 
 This example is based on the acceptance criterion from Table 3-1. Assume a 
sample of 2924 kernels. Assume that the upper and lower acceptance limits are 
simultaneously imposed, so that this is a two-tailed test. The mean of the sample is 
measured to be 503 µm. The standard deviation of the sample is measured to be 208 µm. 
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Table 3-1: Example of acceptance criterion for variable sampling based on a mean. 
 

Property Acceptance Limits Confidence Level 
Mean Kernel 
Diameter [µm] 480 – 520 

0.95 
(two-tailed) 

 
 To perform the t-test, a t value must be obtained from a t table based on the 
specified confidence level, the sample size, and the number of “tails” to the test. From 
Eq. 3-4, α equals 0.025. From the small t table in Table 3-2, the pertinent t value can be 
found to be 1.961 (full t table in Appendix F). 
 
Table 3-2: Data taken from a t table 
 

 t values for various α 
ν α = 0.05 α = 0.025 

1 6.314 12.706 
10 1.812 2.228 
30 1.697 2.042 
60 1.671 2.000 
200 1.653 1.972 
1000 1.646 1.962 
2000 1.646 1.961 
3000 1.645 1.961 

 
  Eq. 3-1 is solved to obtain the confidence interval for the lot mean.  

2924
)208)(961.1(503

2924
)208)(961.1(503 +≤≤− pµ  

5.5105.495 ≤≤ pµ  

 Thus, the 95% confidence interval is 495.5 - 510.5 µm. The confidence interval 
falls inside of the acceptance limits, so the sample passes the acceptance criterion. 
 Because the VSM method is often misinterpreted, the following point should be 
noted. Unless the sample distribution is extremely peculiar, the majority of this sample 
would be smaller than 480 µm and larger than 520 µm (note the standard deviation of the 
sample was exceptionally large:  208 µm). The VSM method provides no information on 
how broad the distribution of the sample is. The VSM method only specifies a confidence 
interval for the mean. In this example, the VSM method predicts that the mean of the 
sample’s distribution is within the range of 495.5 - 510.5 µm to a 95% confidence level. 
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3.3 Variable sampling based on a distribution (VSD) 

 For variable sampling based on a distribution (VSD), the acceptance criterion 
specifies a tolerance limit for how many items can be beyond the critical limit(s) to a 
specified confidence level. VSD methods are usually based on the items of the sample 
having a normal distribution of the variable property. The assumption of normal 
distribution often is a limitation of the VSD method. The Central Limit Theorem only 
applies to means; for distributions, significant deviations from a normal distribution can 
cause significant errors in the VSD method. See section 3.1 for more detailed discussion 
on  the errors associated with a normality assumption. 
 
VSD Method: 
 The lot passes the acceptance criterion if less than the tolerance limit of a normal 
distribution based on the sample’s mean and standard deviation is outside the critical 
limit(s) to the specified confidence level. 
 The appropriate statistical test is a “tolerance factor” test. To determine the range 
containing all but the tolerance limit of the sample (Rt), use Eq. 3-5 for a “one-tailed” test 
with an upper critical limit, use Eq. 3-6 for a “one-tailed” test with a lower critical limit, 
or use Eq. 3-7 for a two-tailed test.3 

 xt KxR σ1+≤  (3-5) 

 xt KxR σ1−≥  (3-6) 

 xtx KxRKx σσ 22 +≤≤−  (3-7) 

where x  is the mean of the sample, σx is the standard deviation of the sample, K1 is a 
one-tailed tolerance factor, K2 is a two-tailed tolerance factor, and Rt is the range 
containing all but the tolerance limit of sample (to the specified confidence level). The 
tolerance factor is obtained from a table using the confidence level (often written as 1-α), 
the tolerance limit (Lt), the sample size, and the number of tails of the test. Separate 
tolerance factor tables are available for a one-tailed test and a two-tailed test. A full table 
of one-tailed tolerance factors (K1) are given in Appendix G. A full table of two-tailed 
tolerance factors can be found in Appendix H. 
 If the range defined above (Rt) is contained within the critical limit(s), then the 
sample passes the acceptance criterion. 
 
VSD Example: 
 This example is based on the acceptance criteria from Table 3-3. Assume a 
sample of 2924 kernels. Assume that the upper and lower critical limits are separately 
imposed, so that there are two separate one-tailed tests. The mean of the sample is 
measured to be 503 µm. The standard deviation of the sample is measured to be 42 µm. 
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Table 3-3: Example of acceptance criteria for variable sampling based on a 
distribution 
 

Property Critical Limits Tolerance Limit Confidence Level 
Kernel 
Diameter [µm] 

upper limit 600 
lower limit 400

0.01 
0.95 

(one-tailed) 
 
 The pertinent tolerance factor must be obtained from a tolerance factor (K1) table. 
For convenience, Table 3-4 contains a small tolerance factor table for one-tailed tests 
(full table in Appendix G). On this table, Lt equals the tolerance limit. Note that a two-
tailed test would use a completely different table.3 
 
Table 3-4: Data from a tolerance factor table for one-tailed tests (Appendix G) 
 

 Confidence level = 0.95 Confidence level = 0.99 

n Lt = 0.05 Lt = 0.01 Lt = 0.05 Lt = 0.01 
10 2.911 3.981 3.739 5.075 
100 1.92 2.68 2.06 2.85 
500 1.76 2.47 1.81 2.54 
1000 1.73 2.43 1.76 2.47 
2000 1.70 2.40 1.73 2.43 
3000 1.69 2.39 1.71 2.41 

 
The two ranges are calculated using Eq. 3-5 and Eq. 3-6. 

)42)(40.2(503 +≤tR  

mRt µ604≤  

)42)(40.2(503 −≥tR  
Rt ≥ 402µm  

 The lot fails the acceptance criteria, because the one-tailed test for the upper limit 
does not calculate a range (Rt ≤ 604 µm) that is entirely below the upper critical limit. 
Note that the sample did pass the one-tailed test for the lower limit (Rt ≥ 402 µm is above 
400 µm), but both one-tailed tests must be passed to meet the acceptance criteria. 
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Appendix A Guide for suggested use of statistical methods for attribute sampling 
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Appendix B Derivation of the rule of thumb for “acceptable” use of SD methods 

 For results to be considered “acceptable”, standard deviation methods require that 
the tolerance limit is at least three attribute standard deviations away from zero in order 
to have a distribution that is reasonably Gaussian. The attribute standard deviation is 
written as: 

n
LL tt

a
)1( −

=σ  

 The “acceptability” requirement can be expressed as: 

n
LLL tt

t
)1(3 −

≥  

 This expression can be solved for n to obtain: 

t

t

L
Ln )1(9 −

≥  

 Since (1-Lt) < 1, then the conservative simple rule of thumb can be written as: 

tL
n 9

≥  

 Grant and Leavenworth2 recommended a slightly different rule of thumb. They 
considered a normal curve as an unacceptable approximation of a binomial distribution 
when n < 5/Lt. 
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Appendix C Derivation of the standard deviation tolerance limit (SDTL) 
approximation 

 The standard deviation tolerance limit (SDTL) approximation is derived by 
solving the two fundamental equations of the standard deviation (SD) test for tolerance 
limit (Eq. 2-5 and Eq. 2.6). 

n
ll TT

a
)1( −

=σ    
a

mT pl
z

σ
−

=  

By substitution, the following equation is obtained: 

z
pl

n
ll mTTT

−
=

− )1(  

The equation can be solved for po.  

2

2)()1(
z

pl
n

ll mTTT −
=

−  

22 )())1(( mTTT plnllz −=−  
22222 2 mTmTTT nplnpnllzlz +−=−  

Thus, the final equation is obtained: 
 0)2()( 2222 =+−−++ mTmT nplznplnz   

 This quadratic equation (with the form ax2 + bx + c = 0) can be solved with the 
quadratic formula and will have two solutions.  

a
acbblT 2

42 −±−
=  

By inserting the appropriate constants into the quadratic formula, the following two 
solutions are obtained, which correspond to positive and negative z on the normal 
distribution. 

nz
npnpzzznp

l mmm
T 22

442
2

222

+

−+±+
=  

One solution will apply to the fixed confidence level of the acceptance criterion, while 
the other solution would apply to a confidence level of 1 minus the fixed confidence 
level. Since tolerance limits are the maximum allowable fraction of defective items and 
all practical acceptance criteria have confidence levels of greater than 50%, then the 
applicable solution is: 

 
nz

npnpzzznp
l mmm
T 22

442
2

222

+

−+++
=  (see Eq. 2-7) 
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Appendix D Derivation of the standard deviation control limit (SDCL) 
approximation  

 The standard deviation control limit (SDCL) approximation is derived by solving 
a fundamental equation (Eq. 2.6) of the standard deviation (SD) test for the allowable 
number of defective items (nd). 

a

mt pL
z

σ
−

=  

First, solve for pm. For confidence levels in practical acceptance criteria, pm is less than 
Lt, so the absolute value signs can be removed. 

mta pLz −=σ  

atm zLp σ−=  

In order to obtain an expression for the allowable number of defective items (nd), pm 
needs to be expressed as nd/n, where n is the number of items in the sample. 

 at
d zL

n
n

σ−=  

 
 atd nznLn σ−=  (see Eq. 2-11) 
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Appendix E z table (for one-tailed testing)  

 
Confidence levels are given for different z values. For example, the confidence level 
associated with z = 1.28 can be found in the “1.2” row and the “0.08” column, which is a 
confidence level of 0.8997. 

 
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

 
This z table was calculated using Microsoft Excel 2003. 
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Appendix F t table 

 
ν α = 0.1 α = 0.05 α = 0.025 α = 0.01 α = 0.005 α = 0.001 

1 3.078 6.314 12.706 31.821 63.657 318.309
2 1.886 2.920 4.303 6.965 9.925 22.327
3 1.638 2.353 3.182 4.541 5.841 10.215
4 1.533 2.132 2.776 3.747 4.604 7.173
5 1.476 2.015 2.571 3.365 4.032 5.893

10 1.372 1.812 2.228 2.764 3.169 4.144
20 1.325 1.725 2.086 2.528 2.845 3.552
30 1.310 1.697 2.042 2.457 2.750 3.385
40 1.303 1.684 2.021 2.423 2.704 3.307
50 1.299 1.676 2.009 2.403 2.678 3.261
60 1.296 1.671 2.000 2.390 2.660 3.232
80 1.292 1.664 1.990 2.374 2.639 3.195

100 1.290 1.660 1.984 2.364 2.626 3.174
120 1.289 1.658 1.980 2.358 2.617 3.160
140 1.288 1.656 1.977 2.353 2.611 3.149
160 1.287 1.654 1.975 2.350 2.607 3.142
180 1.286 1.653 1.973 2.347 2.603 3.136
200 1.286 1.653 1.972 2.345 2.601 3.131
250 1.285 1.651 1.969 2.341 2.596 3.123
300 1.284 1.650 1.968 2.339 2.592 3.118
350 1.284 1.649 1.967 2.337 2.590 3.114
400 1.284 1.649 1.966 2.336 2.588 3.111
450 1.283 1.648 1.965 2.335 2.587 3.108
500 1.283 1.648 1.965 2.334 2.586 3.107
600 1.283 1.647 1.964 2.333 2.584 3.104
700 1.283 1.647 1.963 2.332 2.583 3.102
800 1.283 1.647 1.963 2.331 2.582 3.100
900 1.282 1.647 1.963 2.330 2.581 3.099

1000 1.282 1.646 1.962 2.330 2.581 3.098
2000 1.282 1.646 1.961 2.328 2.578 3.094
3000 1.282 1.645 1.961 2.328 2.577 3.093
5000 1.282 1.645 1.960 2.327 2.577 3.092

10000 1.282 1.645 1.960 2.327 2.576 3.091
30000 1.282 1.645 1.960 2.326 2.576 3.091
infinity 1.282 1.645 1.960 2.326 2.576 3.090

 
This t table was calculated using Microsoft Excel 2003. 
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Appendix G K1 table (one-tailed tolerance factor) 

 
 Confidence level = 0.95 Confidence Level = 0.99 

n Lt = 0.05 Lt = 0.01 Lt = 0.05 Lt = 0.01 

5 4.202 5.741  
10 2.911 3.981 3.739 5.075 
20 2.396 3.295 2.807 3.832 
30 2.220 3.064 2.516 3.446 
40 2.126 2.941 2.365 3.250 

50 actual 2.065 2.863 2.269 3.124 
50 estimated 2.06 2.85 2.27 3.13 

60 2.02 2.80 2.20 3.04 
70 1.99 2.76 2.15 2.98 
80 1.96 2.73 2.11 2.93 
90 1.94 2.70 2.08 2.89 

100 1.92 2.68 2.06 2.85 
200 1.84 2.57 1.92 2.68 
300 1.80 2.52 1.87 2.61 
400 1.78 2.49 1.84 2.57 
500 1.76 2.47 1.81 2.54 
600 1.75 2.46 1.80 2.52 
700 1.74 2.45 1.79 2.51 
800 1.74 2.44 1.78 2.49 
900 1.73 2.44 1.77 2.48 

1000 1.73 2.43 1.76 2.47 
2000 1.70 2.40 1.73 2.43 
3000 1.69 2.39 1.71 2.41 
4000 1.69 2.38 1.70 2.40 
5000 1.68 2.37 1.70 2.39 

10000 1.67 2.36 1.68 2.37 

 
 
K1 values below n ≤ 50 were taken from McCuen.3 K1 values for n ≥ 50 were 
approximated with an equation from Zwillinger & Kokoska.5 Although not mentioned by 
Zwillinger & Kokoska,5 their equation is an approximation that is inappropriate for low 
n, but is accurate within about 1% or less for n > 40. The actual and estimated K1 values 
are given for n = 50 to demonstrate the accuracy of the values from the approximation 
equation. 



 33

Appendix H K2 table (two-tailed tolerance factor) 

 Confidence level = 0.95 Confidence Level = 0.99 

n Lt = 0.05 Lt = 0.01 Lt = 0.05 Lt = 0.01 

5 5.079 6.634 7.855 10.260 
10 3.379 4.433 4.265 5.594 
20 2.752 3.615 3.168 4.161 
30 2.549 3.350 2.841 3.733 
40 2.445 3.213 2.677 3.518 
50 2.379 3.126 2.576 3.385 
60 2.333 3.066 2.506 3.293 
70 2.299 3.021 2.454 3.225 
80 2.272 2.986 2.414 3.173 
90 2.251 2.958 2.382 3.130 

100 2.233 2.934 2.355 3.096 
200 2.143 2.816 2.222 2.921 
300 2.106 2.767 2.169 2.850 
400 2.084 2.739 2.138 2.809 
500 2.070 2.721 2.117 2.783 
600 2.060 2.707 2.102 2.763 
700 2.052 2.697 2.091 2.748 
800 2.046 2.688 2.082 2.736 
900 2.040 2.682 2.075 2.726 

1000 2.036 2.676 2.068 2.718 
infinite 1.960 2.576 1.960 2.576 

 
Table values were taken from Natrella.6 
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