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Abstract

The mean cost for converging an estimated density of states using
the Wang-Landau algorithm is measured for the Ising and Heisenberg
models. The cost increases in a power-law fashion with the number of
spins, with an exponent near 3 for one-dimensional models, and closer
to 2.4 for two-dimensional models. The effect of multiple, simulta-
neous walkers on the cost is also measured. For the one-dimensional
Ising model the cost can increase with the number of walkers for large
systems. For both the Ising and Heisenberg models in two-dimensions,
no adverse impact on the cost is observed. Thus multiple walkers is
a strategy that should scale well in a parallel computing environment
for many models of magnetic materials.
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Understanding the statistical mechanics of coupled magnetic moments is
essential to understanding the properties of magnetic materials. On a fun-
damental level this involves evaluating sums over all possible configurations,
such as that involved in the partition function

Z =
∑
Si

exp (−βE[Si]) , (1)

where Si is one of the configurations of all the spins in the system, β =
1/kBT is the inverse temperature in energy units, and E[Si] is the energy
of a particular configuration of spins. Other quantities of interest, such as
the internal energy

〈E〉 = (1/Z)
∑
Si

E[Si] exp (−βE[Si]) (2)

are related to the partition function. Semiclassical models of magnetic ma-
terials, e.g. the Ising and Heisenberg models, have proven very useful in
studying the statistical mechanics of magnetic materials, but direct evalua-
tion of Eqs. (1) or (2) is rarely possible given the number of configurations.

Monte Carlo methods which randomly sample the configurations are a
particularly useful way of estimating these sums. It is possible for each
configuration to be drawn completely at random. However, for a particular
value of the inverse temperature β, only a small subset of configurations
make a significant contribution. Thus the estimate converges much more
rapidly if the choices are made using an importance sampling approach,
which involves a random walk through configuration space. The random
walk consists of a chain of configurations, with each step of the random
walk corresponding to a change in the previous configuration. Whether to
accept the new configuration, or retain the previous configuration, depends
on the configurations importance. One common is to use the Metropolis [1]
formula min [1, exp (−β δE)], to determine the probability of accepting the
new configuration. Here δE=E′

i+1−Ei is the energy difference between the
proposed and original configurations, respectively, and the prime reinforces
the provisional nature of the proposed configuration. Importance sampling
of this type can be used to estimate the property of a system for tempera-
tures not much different from β−1.

Flat-histogram methods use the density of states, g(E), for importance
sampling. The analog of the Metropolis formula in this case is to accept the
new configuration with probability min [1, g(Ei)/g(E′

i+1)]. The effect is to
create an equal probability of visiting each energy level in the system. In
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other words, a histogram of where the random walk is at the end of each
Monte Carlo move would be essentially flat (save for statistical 1/

√
N noise).

Even for situations with energy a continuous variable the histogram will be
flat, and this observation is important for properly handling such systems.

The main obstacle to flat-histogram methods is that g(E) is not known,
otherwise one would directly evaluate formulas such as Eq. (1). Instead, an
estimate of the density of states ĝ(E) must be constructed self-consistently
as the Monte Carlo estimate is generated. Recently, Wang and Landau [4]
developed an algorithm for finding ĝ(E) directly. With this estimate the
partition function can then be calculated as

Z =
∑
E

g(E) exp (−βE) (3)

by noting that the density of states is defined as

g(E) =
∑
Si

δ(E − E[Si]) , (4)

and δ(X) is the Dirac δ-function. Quantities such as the internal energy
are calculated in an analogous fashion. In the Wang-Landau approach, the
majority of the computational effort comes in evaluating ĝ(E), while Eq. (3)
can be rapidly evaluated for many temperatures once ĝ(E) is known.

An important quantity in the Wang-Landau algorithm is visit histogram,
H(E), which records where the random walk has been. At the end of
each step in importance-sampling chain, the H(E) is updated based on
the accepted configuration and the estimated density of states is changed
by ln [ĝ(Ei)]←ln [ĝ(Ei)] + ln f , where f is the modification factor which is
initially ln f=1. (Note that we refer to the ln of many fundamental quanti-
ties since that is how they are encountered in actual implementations of the
Wang-Landau algorithm.) The estimate ˆg(E) is considered to be converged
when

min [H(E)] ≤ A mean[H(E)] , (5)

where both the mean and minimum value are reëvaluated after each Monte
Carlo step. The the flatness parameter 0<A<1 controls the accuracy of the
estimated ĝ(E), with increasing accuracy as A approaches unity. Once the
estimate has been converged for a particular value of ln f , the value of f is
reduced such that ln f ′=ln (f)/2, while ĝ(E) is retained unchanged. For each
iteration in f , a new visit histogram H(E) is calculated, and the process is
repeated until ln f≤1× 10−6, and the estimated ĝ(E) is considered final.

It is possible for multiple, simultaneous walkers to be employed. The
Wang-Landau algorithm discussed above is unchanged, except that both
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Figure 1: Mean cost for final estimate of density of states for the one-
dimensional Ising Model. The solid line is a least-squares fit to the data for
one walker (Nw=1), and it corresponds to a cost S∼N2.89

s . For this system,
more than 10 walkers usually increases the cost compared to one walker.

H(E) and ĝ(E) are updated for each of the Nw walkers after each Monte
Carlo step. All walkers share the same H(E) and ĝ(E). Traditionally, the
random walks for the Wang-Landau algorithm begin from a ground state.
However, when Nw>1 it is important that all walkers start from different
configurations. To randomize these starting configurations, all but one of
the walks underwent five configuration updates that were automatically ac-
cepted.

The scaling of computational cost of the Wang-Landau algorithm is re-
ported as the number of classical spins, Ns, and walkers, Nw, are changed.
The cost is taken to be the number of energy evaluations S, required to
converge to a final ĝ(E). One- and two-dimensional arrangements of Ising
and Heisenberg spins are considered. For all models, the only contribution
to the Hamiltonian is from nearest-neighbor exchange

E = −(1/2)
∑

i

∑
j∈NNd(i)

J ŝi · ŝj , (6)

where NNd(i) is the set of nearest neighbors to point i on a square lattice of
d dimensions. For the Ising model ŝi∈±, while for the Heisenberg model ŝi
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Figure 2: Mean cost for final estimate of the density of states for the two-
dimensional Ising Model. The solid line is a least-squares fit to the data for
one walker (Nw=1), and it corresponds to a cost S∼N2.27

s . For this system,
multiple walkers only increase the cost for small systems.

are three-dimensional unit vectors. For convenience, J is taken to be unity,
and the possible energies allowed for a system lie between −Ns and +Ns.

The mean cost for the Ising model on a one-dimensional lattice with
Ns spins is shown in Fig. 1. Unless stated otherwise, all results in this
report are for an accuracy A=0.75 and with the mean cost estimated from
100 trials. For Ns<20, the increasing cost with Nw is largely an artifact
from the minimum number of steps required before convergence. For larger
systems, the cost is only significantly higher for Nw>10. The solid line in
Fig. 1 is a least-squares fit to the Nw=1 data, S=112N2.89

s . The quality of
the fit suggests that a power-law dependence of the cost on system size is a
good assumption.

The mean cost for the Ising model on a two-dimensional lattice is shown
in Fig. 2. Here a L×4 lattice with Ns=4L spins was employed to allow a
large number of different Ns while keeping Ns small. The finite size effects
for quantities calculated from these lattices would be large, but here only the
cost of converging is studied. The increasing cost with Nw for small systems
is an artifact due to the minimum number of energy evaluations required
before an estimate ĝ(E) could be considered converged at each iteration of
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ln f . Otherwise, there cost is independent of Nw. The dependence of the
cost on Ns is estimated from a least-squares fit to the results for Nw=1, the
solid line in Fig. 2, or S=220N2.27

s . From the figure, it is also apparent that
this estimate of the cost works quite well for all Nw for lattices large enough.
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Figure 3: Mean cost for final estimate of the density of states for a one-
dimensional arrangement of Heisenberg spins constrained to the unit sphere.
The lines indicate that the approximate best estimate for the cost is S∼N3

s .

In addition to the Ising model, the Heisenberg model with three-vector
spins constrained to lie on the unit sphere have also been considered. One
issue that must be considered that there are not discrete energy levels for
the Heisenberg model as there are in the Ising model. One solution to this
problem is to divide the continuous energy values into a finite set of energy
bins. We have taken bins with of width ∆E=1 [5, 6]. In addition, it is com-
mon to increase the convergence by considering only a subset of energies [4],
and here we have chosen to restrict the random walkers to the energy win-
dow −7Ns/4≤E≤+Ns/5. The omission of the energies −2Ns≤E<−7Ns/4
from ĝ(E) prevents accurate estimates of the sums for extremely low tem-
peratures, but still allows accurate estimates for temperatures well below
the Curie temperature [7].

The mean cost for a one-dimensional lattice of these Heisenberg spins is
shown in Fig. 3. The results clearly are not as well behaved as those for the
one- or two-dimensional Ising model. There is a general trend for increasing
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Figure 4: Mean cost for final estimate of the density of states for a two-
dimensional arrangement of Heisenberg spins constrained to the unit sphere.
The lines is a best fit to all data, and corresponds to a cost S∼N2.43

s . The
number of walkers does not affect the cost of estimating g(E) for the two-
dimensional Heisenberg model.

cost with increasing Nw. The cost increases as S∼N3
s as indicated by the

least-squares fit to the Nw=1 data (orange line), and the line corresponding
to S=1000N3

s provided as a guide to the eye.
Much better results are obtained for a two-dimensional arrangement of

Heisenberg spins, again on a 4×L lattice. The results of the mean cost for
this system are shown in Fig. 4. For this data, the artifact seen for small Ns

in the two-dimensional Ising model does not occur since a large number of
evaluations are required for convergence. The data are quite closely coupled
for all Ns, indicating that multiple walkers do not interfere with conver-
gence. The solid line is a least-squares fit to all data, and it corresponds
to S=2700N2.43

s . For this model, there seems to be a systematic trend for
the cost to be less than the power-law estimate for large Ns. Further study
would be required to distinguish whether this is an oscillation around the fit
power-law form, or perhaps a power-law with smaller exponent is valid for
larger systems.

In conclusion, the computational cost of obtaining an estimated den-
sity of states ĝ(E) with the Wang-Landau algorithm as been measured for
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Ising and Heisenberg models in one and two dimensions. A power-law de-
pendence with respect to the numbers of spins, with exponents of about 3
for the one-dimensional systems and 2.4 for the two-dimensional systems.
These results are consistent with the previous studies of the “escape-time”
for a flat-histogram random walker to cross the entire range of energies [8, 9].
This power-law dependence of the cost suggests that the Wang-Landau al-
gorithm, and other flat-histogram methods, are only competitive for small-
and medium-sized systems. If the effects of critical slowing down near the
Curie temperature can be ignored, then the cost of traditional importance-
sampling Monte Carlo increases linearly with Ns. In such a case, Wang-
Landau will be more efficient for only for small systems. The cross-over
value of Ns will depend largely on the desired accuracy and the number
of temperatures statistical mechanics properties will be evaluated at. This
report also demonstrates that multiple, simultaneous walkers do not ad-
versely affect the cost to converge estimates for the two-dimensional Ising
and Heisenberg models. Thus implementing multiple Wang-Landau walkers
should scale well in a parallel computing environment.
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