

RUDA, A Distributed Grid Accounting System*

M.L. Chen, A. Geist, K. Chanchio, D.L. Million
 CSM Division, Oak Ridge National Laboratory

Abstract

This paper presents a distributed resource usage data
management, accounting, and allocation System, RUDA1.
It is designed and developed for Science Grid of the
Department of Energy. To meet the challenges of the Grid
environment, RUDA performs resource usage data
management and accounting without centralized servers
or databases, and supports heterogeneous resources with
no significant impact on their local systems. It can easily
be integrated into any Grid infrastructures, and maintains
the integrity of the Grid security features.

1. Introduction

Modern science and technology, such as High Energy and
Nuclear Physics, Astronomy, Climate and Materials
science, are increasingly collaborative and span wide
disciplinary and geographical areas. They often demand
huge resources of computing, storage, and instruments,
which individual research institutes could not possess.
The widely deployed Internet links geographically
distributed resources and makes resource and data sharing
possible. However, it is still awkward for users to
overcome the barriers formed by specific software of
different vendors and sites, and to integrate a diverse set of
resources and tools into a problem-solving environment.
A distributed infrastructure - Grids - was created in early
2000 [1]. Grid technology, such as the protocols and
services developed by Globus [2], reduces the barriers and
enables flexible, controlled resource sharing on a large
scale. Driven by the demand and attracted by the

1 This work is sponsored by the U.S. DOE Office of Science
under the auspices of the Scientific Discovery through Advanced
Computing program (SciDAC). The submitted manuscript has
been authored by a contractor of the U.S. Government under
Contract No. DE-AC05-00OR22725. Accordingly, the U.S.
Government retains a non-exclusive, royalty-free license to
publish or reproduce the published form of this contribution, or
allow others to do so, for U.S. Government purposes.

promising future of Grids, Grid applications multiply
swiftly and in turn drive the rapid development of Grid
technology.

While many Grid services are maturing, Grid
accounting still remains an issue of research. It is well
understood that the ability to dynamically monitor,
manage, and account for usage data of Grid resources,
such as computational, network, and storage resources, is
one of the key issues for putting Grids into production.
However, the Grid environment, which contains a large
and growing number of widely distributed sites with
heterogeneous resources, poses great challenges to Grid
accounting. Rapid changing of Grid software
infrastructures and the increasing security concerns of
Wide Area Network (WAN) add additional complications.
Therefore, for an accounting system functioning in a Grid
environment, except managing and accounting for the
resource usage data dynamically, it should be flexible,
decentralized, and scalable [3]. Though many methods
and tools exist for resource usage management and
accounting, they tend to be local and vary from site to site,
even from machine to machine. They are centralized
systems, of which the scalability is limited by the load
capability and data size of the centralized server and
database. In addition, there is lack of convenient means
for remote users to monitor their resource usage and
accounting data. The existing accounting methods and
tools could not satisfy the requirements of Grid
accounting.

RUDA has been designed and developed at Oak
Ridge National Laboratory (ORNL) for Science Grid (SG)
[4] of the Department of Energy (DOE). To meet the
challenges of the Grid environment, RUDA is designed as
a distributed accounting system. It collects resource usage
data from local systems, such as job schedulers, local
accounting systems, and so on, of individual resource
entities and stores the data locally. For users, projects,
collaborations, sites, and other organizations to perform
accounting tasks, RUDA can build hierarchical structures
while still storing data in a distributed manner. RUDA
software uses a client/server structure. The RUDA server
is constructed of core software, which performs major
services, plus interfaces which accommodate customized
routines for communications with local systems and

outside world. This structure provides flexibility to
support widely diversified resources and to minimize the
impact on local systems. RUDA is an essentially self-
contained model and can be easily integrated into any Grid
software infrastructures. Security features are among the
most important considerations of RUDA design, as well as
convenient remote data monitoring and system
administration.

A RUDA prototype has been developed to show the
feasibility of the RUDA design. It has been deployed onto
a number of computers of the Science Grid test bed [4]

and Earth System Grid II (ESG) [5], and used daily within
the ESG project to monitor resource loads generated by
large-scale file movement operations and provide
accounting information.

The following sections present a more detailed
overview of the RUDA system. Section 2 outlines the
architecture of the system. Section 3 describes the major
features of RUDA and the mechanisms behind them. The
software structure of the prototype is described in section
4, and section 5 discusses its performance. Section 6 is a
summary.

2. System Architecture

In a Grid environment as shown in Fig. 1, resources such
as computers, storage systems, and instruments owned by
unconnected sites are distributed in a large geographical
area which may cross states, countries, or even continents.
There are also computers, typically laptops or PCs, which
may not provide resources to the Grid but be connected or
temporarily plugged in by users to perform resource
usage-related tasks, such as data monitoring and
accounting. The basic assumption is that all these entities
are connected through high-speed networks and that a
Grid infrastructure has been established in this
environment. Substantial numbers of Grid resource users
are organized into research project groups or
collaborations led by Principle Investigators (PIs).

RUDA software is constructed on a client/server
model. The client processes are for users and
administrators to interface with the server, and to perform
data monitoring and server reconfiguration. The
multithreaded server provides services such as dynamic
configuration, data collection and management,
accounting, and web based data monitoring. The server
can be configured in two running modes and called basic-
server and head-server respectively.

In a RUDA system, each resource entity has a RUDA
basic-server running as a daemon. The basic-server
collects resource usage information periodically from the
local system, according to a configurable time schedule.
In the case of a computer cluster resource, a basic-server
runs on each of its member nodes, and a head-server runs
on its head node. The head-server summarizes the
resource usage data collected from basic-servers of the

member nodes, and manages them collectively as a single
data set. The cluster appears as a single resource entity to
the Grid [Fig. 1].

For data management and accounting purposes, one
can run a head-server on any computer on the Grid and
configure its member resource entities. The server then
collects selected data segments from the basic-servers
running on specified members, and performs management
and accounting for these data collectively. For instance, a
project PI can run a head-server which, according to the
configuration, collects relevant resource usage data from
all resources the project uses, and perform accounting
collectively for his group members and the project. The
RUDA system also provides the capability to build
hierarchical structures for large organizations to perform
management and accounting.

Figure 2 shows a RUDA system example. Sites A
and B, which may be geographically far away from each
other, provide 4 and 10 resource computers respectively to
Grid computing. Each individual resource computer runs
a basic-server to collect resource usage data from its local
system and store them locally. The server also monitors
and accounts for resource usage for each individual
computer at the levels of jobs, users, and projects or
collaborations. C and D are two collaborations who use
some of the resources. To manage their resource usage
data, each of them runs a head-server on a machine on the
Grid. The server is configured to collect the resource
usage data of their collaborators from all relevant resource
computers and to manage the data as a single data set.

Figure 2 also shows a simple example of RUDA
hierarchical structure. The resource computers of site B

belong to divisions 1 and 2. Each division sets up a
RUDA head-server to manage resources usage data and
perform accounting for their Grid users, projects, and
collaborations. The division head-servers need not to
collect detailed data at job level unless desired. An
administrator wants to monitor the current resource usage
and accounting status of all Grid projects and
collaborations at site B. Instead of collecting data from 10
resource computers, he/she runs a head-server and collects
the data of project/collaboration level from two divisions’
head-servers. Large organizations can build multi-layer
hierarchical structures to facilitate management at
different levels and to minimize the traffic on the wide
area network.

The web based monitoring functions of the RUDA
server provides services for authorized users accessing
their data through the web. The head-server provides the
collective data set information at project/collaboration,
user, and job levels. It also provides the links to its
member server web sites for collaborators to navigate to
web pages with the detailed data on each computer. Grid
users can monitor their current resource usage data from
any computer on the Grid, which needs not to have RUDA
software installed. The RUDA web interface also allows
authorized users to request resource allocations and PIs to
redistribute the allocation among their group members.
Command Line Interfaces (CLIs) are provided for users to
query resource usage data and accounting information for
specified resources, and for administrators to do
management tasks.

3. Design Features and Approaches

RUDA is designed to meet the criteria that, in addition to
dynamically monitoring, managing, and accounting for the
resource usage data, a Grid accounting system should be
decentralized, scalable, flexible, and having minimum
impact on local systems.

3.1. Dynamic data management and accounting

RUDA monitors, manages, and accounts for Grid resource
usage data dynamically. It is able to monitor and account
for resource usage of a job at job run time, if the relevant
information can be extracted from the local system, and at
any time after the job is completed.

The RUDA basic-server runs on each resource entity
and, by way of a customized interface routine, collects
resource usage data from the local system. The data
collection process runs according to a configurable time
schedule, and it can also be initiated by a user request.

The RUDA server owns a fully configurable dynamic
data structure. The structure is built of data blocks which
are organized in layers and chains. The data blocks
contain categorized resource usage data of
collaborations/projects, users and their current running
jobs if any. On the top layer of the structure, a data block
records the current resource status of this machine. Upon
receiving newly collected data, such as, wall time, CPU
time, storage space used by each running jobs, the server
updates the data recorded in each job data block and
performs accounting for each job according to a
customized formula. The formula used in the prototype is
a simple summary over weighted resource usages in
standard charge unit:

∑
=

×=
n

i

iweightiamountUsagechangetotal
1

))(())(_(_

Here, n is the total number of resource categories in the
server data structure, i spanning from 1 to n represents
each specific resource category. Weight(i) presents the
weight factor of resource category-i. The weight factors
are determined, through configuration parameters, by the
local resource owner according to their administrative
policy. The formula and the weight factor information are
available for users upon request through a client CLI. The
current accounting result of a running job is recorded in its
data block.

The server summarizes the newly updated usage data
and accounting results of relevant current jobs for each
user, project/collaboration respectively. It calculates the
charges of each resource category and the totals that are
resulted from the current jobs, for each user and
project/collaboration and stores the results in
corresponding data blocks. All resource usage data and

charges of completed jobs are accumulated and recorded
properly in the data structure before moved into a local
database. Based on the data of both current and completed
jobs, the server calculates, for each user and project, the
individual categories and total charges accumulated since
the beginning of current accounting period. By means of a
head-server, any authorized user, project/collaboration,
and site can monitor and account for their Grid usage data
dynamically.

3.2. Scalability

The large and growing scale of the Grid environment
poses great challenges to the accounting system design.
To ease the concern of server load and database size of a
centralized system, RUDA is designed to be a distributed
system. The data collection and storage are local on each
resource entity and therefore decoupled from the scale of
the Grid. The head-server of RUDA, although it can be
used for computer clusters and virtual machines, is
specially designed for sites, collaborations and other
organizations to perform usage data monitoring and
accounting. A PI can run a RUDA head-server and
configure a number of basic-servers as its members. The
head-server, by means of Grid software infrastructure,
initiates a client process on its remote member machine
with data selection criteria as input. The criteria specify
the required project name, and user names if not all users
are selected. They can also define the lowest data block
level, and this function can be used, for example, to cut off
the detailed data of individual jobs. This process selects
concerned data segments according to the criteria and
transfers them back to the head-server. The server
organizes the data from all its members together and
manages them as a single collective data set. The data
size of the head-server managed depends on the size of the
collaboration or project, not on the scale of the Grid.
Furthermore, since the resource usage history is
accumulated and recorded locally by the RUDA basic-
server in individual resource entities, the PI can run the
head-server only when he/she wants to access the data.

RUDA also provides the capability to organize a
hierarchy structure to perform accounting tasks when
needed. A PI can run a head-server and configure a group
of head-servers and/or basic-servers as its members. The
high level head-server then collects selected data segments
from its lower level members and manages them
collectively. Since the data each server manages is
irrelevant to the Grid scale, this design again does not
raise the concern about server load and data size when the
Grid scales up. Besides, constructing a properly organized
hierarchy structure to perform management and
accounting may significantly reduce the wide area
network load and contribute to the scalability of the

system. For example, an international collaboration uses
resources located in many areas of a few countries. A
head-server hierarchy can be built with lowest level
servers for each area, middle level servers for each
country, and a high level server for the collaboration. In
comparison with one head-server structure, this scheme
keeps most network traffic localized and minimizes wide-
area and especially international traffic.

3.3. Flexibility

RUDA software is designed to be applicable to
heterogeneous resources with various local systems. By
means of an isolation layer, major RUDA server functions
are separated from the environment. Interfaces of the
RUDA basic-server accommodate customized RUDA data
collection methods to communicate with resource local
systems. For example, to enable communications between
the RUDA basic-server and a new type of local accounting
system, a developer creates a customized data collection
routine, which extracts the relevant data from the local
accounting system and loads them into a RUDA standard
data cargo. This routine can then be plugged into the
RUDA basic-server to perform the data collection task
without modifying the resource local accounting system.
This structure allows RUDA to support widely diversified
resources and minimizes impact on local systems.

To avoid the complications caused by changes in Grid
software infrastructure, RUDA software is built to be
essentially self-contained. RUDA uses Grid software
infrastructure for WAN communications and data
transfers, but do not depend on details of the
infrastructure. The utilization of Grid infrastructure is
limited to its high level application programming
interfaces, for which changes are less frequent.
Infrastructure modifications beneath the high level API
commands have no effect on the operation of RUDA.
Furthermore, the API calls are assembled in a couple of
customization routines. By modifying a few lines of
customization routines, RUDA can be easily integrated
into Grid software with different infrastructures.

3.4. Security

Security is certainly one of the most crucial issues for Grid
applications. Grid software development has made huge
efforts to gain good security in network communications.
For example, Grid Security Infrastructure of Globus
extends existing standard protocols and APIs, such as
SSL/TLS, X.509 & CA, GSS-API to single sign-on and
delegation, and has gradually formed a consummate
security system [6-8].

RUDA uses Grid infrastructure to ferry
information/data through the WAN and runs both server

and client locally. Grid users can use the RUDA CLIs to
access a remote computer and transfer selected resource
data. These RUDA CLIs are built based on the Grid
infrastructure APIs, in which the Grid security features are
built. For example, the prototype of RUDA uses Globus
infrastructure to run the remote RUDA client procedure to
obtain required data sets and to transfer the data back to
the user. This design simplifies the security issues of
WAN communication for the RUDA accounting system,
and maintains the integrity of Grid infrastructure security
features.
3.5. Manageability

To provide maximum control to the site administrator,
the RUDA server is fully configurable. According to local
resources and policies, administrators can modify control
parameters, such as project and user maps, data update
time interval, data backup method, and so on, which
consequently change the amount of memory, disk space,
and CPU-time used by the RUDA server. RUDA
provides CLIs for easy configuration operation.
Authorized administrators can use these CLIs to control
the RUDA server remotely from any computers on the
Grid. In addition, the RUDA server supports dynamic
reconfiguration. The site administrator can reconfigure
the server whenever needed at run time. After an incident,
such as power failure, the server can automatically recover
current RUDA data structures without losing data.

4. Prototype Software

A prototype of RUDA has been developed on a DOE
Science Grid test-bed at ORNL. The prototype contains
most of the major components of RUDA to test the
feasibility of RUDA design. A client/server structure is
established to provide users and administrators convenient
data access and system configuration.

The RUDA server [Fig. 3] is a multi-threaded process
which performs tasks such as dynamic configuration,
resource usage data collection, data management,
accounting, and Web based data monitoring. The server is
fully configurable. It updates its configuration
automatically at a frequency specified by a configuration
parameter to allow the site administrator to configure the
server dynamically. Three data collection interfaces are
provided which accept input data files and data structures
in RUDA standard forms. Customized data collection
routines are called by the interfaces to input data from
various local systems. The customization routines are
built in a way which provides skeletons to minimize the
effort of adapting analogous local systems. According to
the configuration, the data loading process inputs data
through a proper data collection interface. Upon receiving
new data, the data management process

first checks the validity of the data owner according to the
project and user maps provided by the system
administrator. The data which belong to valid projects
and users will be accepted and processed. The current
version of the prototype only processes data of central
processing unit time, wall time, and memory high water
mark. However, the data structure shown in Fig. 4 has
been set up for a full data set defined according to Global
Grid Forum suggestions, a DOE lab survey, and an
investigation into ORNL local accounting systems [9-11].
The user/project resource usage data are calculated from
historical records and current jobs, and reflect the resource

usage dynamic status. The data are then recorded in the
data structure. The structure management process checks
through the data structure, records completed jobs into
history data sets and remove them from the data structure,
remove obsolete/invalid user/project, and records the
updated data set in a local database. The status of the
computer resources is also recorded. Lower limits of
available resources can be specified by configuration
parameters. In case an available resource is lower than its
threshold, emails are sent to warn the users/admin on a
mailing list.

The server provides web interface services including
resource usage data monitoring and an allocation
application interface. A head-server web page displays the
Grid resource usage data collectively for each relevant
project and user. It also provides the links to its member
server web sites. The basic-server web facility displays
data summarized at project and user level, and navigates to
detailed current resource usage and accounting
information of individual users. The current resource
status of the concerned resource entity is also displayed on
the web. To attract better attention, the background colors
of the status display change from green to yellow or red
while the resource status changes from sufficient to low or
too low respectively. Allocation on major resources of
Science Grid requires pre-approval, and automatic
allocation is not allowed in current practice. RUDA
prototype provides a web interface for allocation
application. By means of this web interface, a PI can
check the available resources and apply for allocation.
The requests are sent to the resource administrator through
email for approval. The status of the allocation
application can be monitored through the web interface.
And an email will be sent to the applicant upon approval.
PIs can also monitor and redistribute the allocation among
their project members by using this interface.

The client processes [Fig. 5] are provided for users
and administrators to interface with the server locally or
remotely. The client processes send user queries to a
server and return the required data or processing
acknowledgment back. CLIs are provided for users to get
online help and to query a specific part or whole set of
resource usage data. Administrators can use CLIs to
configure and control the server, or dump the whole data
set for diagnostic purposes. By means of Globus APIs, the
infrastructure used in the prototype, users and
administrator can access the server from any computers on
the Grid remotely.

5. Deployment of Prototype

RUDA has been running smoothly on a number of Solaris,
Linux, and AIX machines of the Science Grid test bed at
ORNL and the Earth System Grid II at the National Center
for Atmospheric Research. RUDA servers collect and
monitor the resource usage data, and perform the
accounting of users/projects according to a customized
formula successfully. Both modes of RUDA servers
function as expected. RUDA now is being used daily
within the Earth System Grid II project to monitor loads
generated by large-scale, long-haul data movement
operations and provide resource usage accounting
information. The success of the RUDA prototype
operation has proved the feasibility of the RUDA design.

6. Summary

RUDA, a Grid Resource Usage Data Management,
Accounting, and Allocation system is designed for the
DOE Science Grid. RUDA is a distributed accounting
system with features specially designed to meet the
challenges of widely diversified resources and the growing
scale of the Grid environment. A prototype of RUDA has
been developed and tested on a Science Grid test bed, and
is currently used daily within the Earth System Grid II
project.
 To benefit the Grid communities, the RUDA software
packages have been published on the SG web site. One
can check http://www.sciencegrid.org to find more
detailed documentation and RUDA software packages.

References

[1] Foster, I. & Kesselman, C. (Eds), “The Grid: Blueprint for a
New Computing Infrastructure,” Morgan-Kaufmann, 1999.
[2] Foster, I. & Kesselman, C. Globus, “A Toolkit-Based Grid
Architecture,” ibid, p. 278, Morgan-Kaufmann, 1999.
[3]Bill Thigpen & Tom Hacker, “Distributed Accounting on the
GRID,” Global Grid Forum (GGF), March 4-7, 2001.
[4] http://www.doesciencegrid.org.
[5] http://www.earthsystemgrid.org.
[6] http://www.globus.org/security.
[7] Eric Rescorla, “SSL and TLS: Designing and Building
Secure Systems,” Addison-Wesley, 2000.
[8] Richard E. Smith, “Authentication: From Passwords to Public
Keys,” Addison-Wesley, 2001.
[9] http://www.gridforum.org.
[10] Mi young Koo, “Usage Record Fields – Survey Results and
Proposed Minimum Set,” GGF, October 2002.
[11] Laura F. McGinnis, “Resource Accounting – Current
Practices,” GGF, February 2001.

http://www.sciencegrid.org/
http://www.doesciencegrid.org/
http://www.earthsystemgrid.org/
http://www.globus.org/security
http://www.gridforum.org/

	Abstract
	The web based monitoring functions of the RUDA server provid
	References

