OAK RIDGE ORNL/TM-2004/110
NATIONAL LABORATORY

MANAGED BY UT-BATTELLE
FOR THE DEPARTMENT OF ENERGY

Proof-of-Concept Demonstration
Results for Robotic Visual Servo
Controllers

September 2004

Prepared by

P. V. Chawda
HERE Program

W. E. Dixon, Ph.D.

T. J. Flynn
HERE Program

E. B. Holcombe
SULI Program

L. J. Love, Ph.D.
J. C. Rowe

UT-BATTELLE

ORNL-27 (2-03)




DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy
(DOE) Information Bridge:

Web site: http://www.osti.gov/bridge

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source:

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22161

Telephone: 703-605-6000 (1-800-553-6847)

TDD: 703-487-4639

Fax: 703-605-6900

E-mail: info@ntis.fedworld.gov

Web site: http://www.ntis.gov/support/ordernowabout.htm

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange
(ETDE) representatives, and International Nuclear Information System (INIS) representatives from the
following source:

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831

Telephone: 865-576-8401

Fax: 865-576-5728

E-mail: reports@adonis.osti.gov

Web site: http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government
or any agency thereof. The views and opinions of authors expressed herein do not
rheces?arily state or reflect those of the United States Government or any agency
thereof.




ORNL/TM-2004/110

PROOF-OF-CONCEPT DEMONSTRATION RESULTS FOR
ROBOTIC VISUAL SERVO CONTROLLERS

P. V. Chawda
W. E. Dixon, Ph.D.
T. J. Flynn
E. B. Holcombe
L. J. Love, Ph.D.
J. C. Rowe

Date Published: September 2004

Prepared by
OAK RIDGE NATIONAL LABORATORY
P.O. Box 2008
Oak Ridge, Tennessee 37831-6285
managed by
UT-Battelle, LLC
for the
U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-000R22725






CONTENTS

Page

LIST OF FIGURES . ...ttt e e e e ettt e s e e e e e e e ea ittt e e e e e eeeesssnnaaaeeeeaeesssnnnnnaeens v

ACKNOWLEDGEMENT ... ..ottt ettt e s e e e e et e taaaa s e e e e e eeaeabaaaaeeeeeaeerensnneeeeas vii

ABSTRACT ...ttt e et e e ettt e e e ettt e e e e atea e eeatenneaaesanneaaesnnnsarasennaaaesnnaaanes ix

1. INTRODUCTION......otttiiiiiieiiiiiiiiie e e e e e ettt ree e e e e e eeeeares e aaeeeaeessssnssaaseeaseesssnnnnaaseeeeessssnnnns 1

2. COOPERATIVE VISUAL SERVO CONTROL ......ccovtttiiieieiiieiiiiiiiee e eeeeeeiiiee e e eeeveiieans 3

2.1 OBJIECTIVES ...ttt e e e e ettt e e e e e e et eebaba e e e eaeeaeees 3

P 2 S U B I SRR SPTURURPPPN 4

2.3 DISCUSSION. ... .ottt ettt e e e e e e et e eaa e aaeaeeeeeeasareanaaeeaasssssssnnnaaaaaaeeenes 11

3. HOMOGRAPHY-BASED VISUAL SERVO CONTROL.........cccovtiiiiiineeeeiieiiiiceee e 13

3.1 OBJECTIVES ... e ettt e e e e e e e ettt e e e e e e e eeeaabnaeeeeeaaeenes 13

3.2 GEOMETRIC MODEL.......cciititiiiiiiiie ettt ettt e e e e e e ee e e e e eeeeeeees 13

3.3 EUCLIDEAN RECONSTRUCTION .....coiiiiiiiiieiiiiieee ettt e e eea s 16

3.4 TRACKING CONTROL DEVELOPMENT.........cccotttiiiiiiee et e e eeaeeeens 17

3.5 REGULATION CONTROL DEVELOPMENT.........couttiiiiiiiiiiiiiiccieee e e eeeens 17

T ST 2 N U] 5 T SUURPRN 18

4. CONCLUSIONS ..ttt e e e ettt e e e e e e ettt atb s e e e e e eeeeatbaa s e eeeeeeeeenbaaeeeeas 27

REFERENCES ..ottt e e ettt e e e et e e e ettt e e e eeta e e e etnn s eaeennnsaaasnnnsaanennnaaaes 29

APPENDIX A. DEVELOPED SOFTWARE FOR COOPERATIVE VISUAL SERVO CONTROL.. A-1

A.1 SERVER FOR FIXED CAMERA .......ccoiiitiiiii ettt eeeeeeees A-1

A.2 SERVER FOR THE CAMERA-IN-HAND .....ccciiiiiiiiiiiiiiie ettt A-6

A.3 SHARED MEMORY CLIENT ....ouiiiiiiiiiiiiiie et e et eeeeve e e eeaeeeaaeaeneaaes A-11

A.4 CONTROL PROGRAM ...ttt e e e e e e et e e e e e e e eaaaaaeaeeeaaaeaes A-12
APPENDIX B. DEVELOPED SOFTWARE FOR HOMOGRAPHY-BASED VISUAL SERVO

TRACKING AND REGULATION CONTROL DEMONSTRATIONS ......coootiiiiieeeiireeeiiee, B-1

B.1 DESIRED HOMOGRAPHY COMPUTATION........cotttuiiieiiiiiiiiiiiiiee et ee e B-1

B.2 DESIRED TRAJECTORY GENERATOR.........coitiiiiiiiiieieeceeeeece e B-7

B.3 WMR TRACKING SERVER PROGRAM .......cccciiiiiiiiiiiiiiie e e e eeeans B-17

B.4 WMR TRACKING SHARED MEMORY CLIENT........ccoittiiiiiiiiiiiiieeeeeeeeeiiiiee e e eeeeeens B-35

B.5 WMR TRACKING CONTROL PROGRAM.........ccotiiiiicieeee e eeeeees B-36

B.6 WMR REGULATION CONTROLLER.........ccoiitiiiiiiiiiiiiiie ettt eeeeees B-46

il



v



Figure

(o I e LY o

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

LIST OF FIGURES

Page
Experimental testbed including a Schilling Titan II hydraulic manipulator with a fixed
camera and an in-hand CAMETA.........c..uuveiiiiiiiiiiiiiiiiie et 5
Image-space object trajectory recorded by the fixed camera for a circular motion......... 6
Image-space object trajectory recorded by the fixed camera for a square motion........... 7
Image-space object trajectory recorded by the fixed camera for a “figure 8” motion... 7
Image-space tracking error recorded by the in-hand camera for a circle motion............ 8
Image-space tracking error recorded by the in-hand camera for a square motion........... 8

Image-space tracking error recorded by the in-hand camera for a “figure 8” motion... 9

Euclidean position commands computed by the visual servo controller and sent to the

ALC for the CIrcle trajeCtory ..cc.cciiiiuuiiiiieteeeieiiiiiiteeee e ettt e e e et ee e e e s 9
Euclidean position commands computed by the visual servo controller and sent to the

ALC fOr the SQUATE traJECTOTY....cevvvieenieeeeerreiiiiiiaseeeeeeeettennaaeeeeererrrnnnnaeeeeerersssnnnaaseaeeens 10
Euclidean position commands computed by the visual servo controller and sent to the

ALC for the “figure 87 fraJeCtory. .....cccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiii e 10
Coordinate frame relationShips..........ooooiiiiiiiiiiii 14
WMR coordinate frames.............cccoeeiiiiiiiiiiiiiiiiiiiiii e 14
WIMR ESE DEA. ...ttt e e e e e ettt e e e eeees 19
Desired WMR translation trajectory........ocooiiiiiiiiiiiiiiiiiii 20
Desired WMR 1Otation traJECTOTY ..euuuuuuueeeeeeiiiiiiiiaeeeeeeeetiitiiaaeeeeererrennnnaeeeeereeresnnnaaseseaens 21
WMR translation traCking €ITOT..........euuuiiiriiiieiiiereiiiiiiieieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeene 21
WMR 1rotation traCKiNg ©ITOT ........cuuttiiitiiiititiiiiiitiitiitittteteeteteteeeeeeeeeeeeeeeeeeeeeeeeeaeeeeereeeaanes 22
Parameter eStimate CONVETZOINCR . ..uuuuuuueereerriiriiiiiaaeeeeeeeitiruiaeeeeereerennnnaeeeeereeresnnnnaaaeaeaees 22
Linear and angular velocity CONtrol INPULS .......c.oovieiiiieeiieiiiiiiiiiiieee e e e e 23
Computed drive and StEer MOLOT tOTQUES.....cceeiiiiiiereieiitiieeiiaeeee e 23
WMR translation regUIAtion €ITOTS........ceeiiiiiiiuiiireeeeeeeeiiiiiieeeeeeeeteeaiiieeeeeeeeeeerennnnaeeeaaaans 24
WMR rotation regulation €ITOT .........cuvueeiieriieiereieiirieireieeeteteeeeeeeeeeeeeeeeeeaeeeeeeeeeeneeeeeeeaeeene 25
Depth Tatio @ITOT....cciiiiiiiiiiii i 25
Parameter eStimate CONVETIZOINCR . ..uuuuuuueereerriiiiiiiiaeeeeeeeettariiaaeeeeereerannnaaeseeeeeeresnnnnaaaaeaeees 26
Computed drive and Steer MOLOr tOTQUES.......ccetiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeens 26



Vi



ACKNOWLEDGEMENT

The authors express their gratitude for the support for this research project provided by the U.S.
Department of Energy (DOE) Office of Science (SC) Office of Biological and Environmental Research
(OBER) Environmental Management Sciences Program (EMSP) project ID No. 82797, the DOE SC
Undergraduate Laboratory Internships (SULI) Program, and the Oak Ridge Institute for Science and
Education (ORISE) Higher Education Research Experiences (HERE) Program.

vii



viil



ABSTRACT

There is significant motivation to provide robotic systems with improved autonomy as a means to
significantly accelerate deactivation and decommissioning operations while also reducing the associated
costs, removing human operators from hazardous environments, and reducing the required burden and
skill of human operators. To achieve improved autonomy, fundamental research is focused on the
challenges of developing visual servo controllers. The challenge in developing these controllers is that
a camera provides 2-dimensional image information about the 3-dimensional Euclidean-space through
a perspective (range dependent) projection that can be corrupted by uncertainty in the camera calibration
matrix. Disturbances in this relationship (i.e., corruption in the sensor information) propagate erroneous
information to the feedback controller of the robot, leading to potentially unpredictable task execution.
This technical manual describes 3 proof-of-concept demonstrations of visual servo controllers developed
from fundamental research aimed at these challenges. Specifically, one section describes the
implementation of a cooperative visual servo control scheme with a camera-in-hand and a fixed camera
to track a moving target despite uncertainty in the camera calibration and the unknown constant distance
from the camera to a target where the camera is mounted on the end-effector of a 6 degrees-of-freedom
hydraulic robot manipulator. The next section describes the implementation of 2 homography-based
visual servo tracking and regulation controllers for a mobile robot with a calibrated camera despite an
unknown time-varying distance from the camera to a target.






1. INTRODUCTION

Although a vision system can provide a robot with a unique sense of perception, several technical issues
have impacted the design of robust visual servo controllers. One issue that was initially targeted in this
project was the camera configuration trade-off between pixel resolution and field-of-view (FOV). Vision
systems that utilize a camera mounted in a fixed configuration (i.e., the eye-to-hand configuration) are
typically mounted far enough away from the robot workspace to ensure that the robot and desired target
objects will remain in the camera's FOV. Unfortunately, by mounting the camera in this configuration
the Euclidean-space area that corresponds to a pixel in the image-space can be quite large, resulting in
low-resolution position measurements; hence, the precision and stability of the robot could be adversely
affected. Moreover, many applications are ill-suited for the fixed camera configuration. For example,
a robot may be required to position the camera for close-up tasks (i.e., the camera-in-hand
configuration). For vision systems that utilize a camera mounted in the camera-in-hand configuration,
the camera is naturally close to the workspace, providing for higher resolution measurements due to the
fact that each pixel represents a smaller Euclidean-space area; however, the FOV of the camera is
significantly reduced (i.e., an object may be located in the robot's workspace but be out of the camera's
FOV due to the position of the end-effector).

The implementation of a cooperative visual servo control scheme is described in Section 2 for a camera-
in-hand and a fixed camera configuration where the camera-in-hand is mounted on a Schilling
6[degrees-of-freedom (DOF) Titan II hydraulic robotic manipulator test bed that has played a vital role
in several Department of Energy’s teleoperation-based applications.' The objective of the cooperative
visual servo control scheme is defined as the desire to track a moving target despite uncertainty in the
camera calibration and an unknown constant distance from the camera to a target. To provide for greater
robustness, the controller was developed despite parametric uncertainty in the camera calibration (e.g.,
focal length, image center, scaling factors, and camera position and orientation) and in the parameters
of the dynamic model of the robot manipulator (e.g., mass, inertia, friction coefficients, and additive
bounded disturbances). A nonlinear, Lyapunov-based design approach was utilized to construct a visual
servoing controller for a robot manipulator that ensures uniformly ultimately bounded (UUB) end-
effector tracking performance despite parametric uncertainty throughout the entire robot/camera
system”’ The UUB tracking result exploits information from both a fixed camera and a camera-in-hand,
although both cameras contain parametric uncertainty in the calibration parameters. The advantages of
the cooperative camera configuration are that: the fixed camera can be mounted so that a large robot
workspace is visible; the camera-in-hand is mounted so that a high-resolution, close-up view of an object
is achieved (facilitating the potential for more precise robotic motion); and the fixed camera provides
a mechanism for determining the relative velocity of the robot end-effector withrespect to the object for
the camera-in-hand tracking problem. In comparison to previous work, this controller provides several
enabling capabilities such as object tracking, robustness to disturbances in the projective image-space to
Euclidean-space relationship, and robustness to parametric uncertainty in the robot dynamics (which
includes unmodeled additive bounded disturbances). Despite the advancements of the cooperative visual
servo control efforts, a significant limitation of the approach is that the distance from the camera to the
target is required to remain constant or slowly time-varying.

An analytical method to compensate for a time-varying distance between the camera and the target can
be obtained by using Lyapunov-based methods for control design and analysis in conjunction with
photogrammetry techniques. Specifically, a homographic relationship between multiple images taken



by a single camera can be used to craft translation and rotation error systems that are suitable for
controller development without requiring additional sensors (i.e., the system only requires a single
camera). By utilizing homography-based methods, several visual servo controllers have been developed
for robot manipulator applications.*” However, the error system development, control design, and
stability analysis for these efforts require fundamentally new control approaches for wheeled mobile
robot (WMR) systems, since WMRs are underactuated systems subject to nonholonomic motion
constraints (i.e., a typical feedback linearizing controller developed for holonomic systems can not be
used to solve the problem)." The development of visual servo controllers for WMRs is especially
motivated because the nonholonomic nature of WMR makes the Euclidean position difficult to accurately
obtain. That is, the linear velocity of the WMR must first be numerically differentiated from the encoder
readings (i.e., by the backwards difference algorithm) and then the nonlinear kinematic model must be
numerically integrated to obtain the Euclidean position (i.e., dead reckoning). Since numerical
differentiation/integration errors may accumulate over time, it is well known that navigation by dead
reckoning is relatively inaccurate.

With the combined use of Lyapunov-based methods and the use of homography-based concepts, a visual
servo controller was recently developed to ensure asymptotic regulation of the position/orientation of a
WMR."” By decomposing the homography into separate translation and rotation components, measurable
signals for the orientation and the scaled Euclidean position were obtained. Full Euclidean
reconstruction is not possible due to the lack of depth information from the on-board camera to the
target; hence, the resulting translation error system is unmeasurable. The contribution of this effort is
that Lyapunov techniques are exploited to craft an adaptive controller that enables position and
orientation regulation of the WMR despite the lack of depth information. This result is achieved with a
monocular vision system, and the adaptive control design approach incorporates the full nonlinear
kinematic equations of motion. Motivated by many practical applications that require a robotic system
to move along a predefined or dynamically changing trajectory, a visual servo controller was also
recently developed.” Specifically, a prerecorded image sequence (e.g., a video) of three target points
is used to define a desired trajectory for the WMR. By comparing the target points from a stationary
reference image with the corresponding target points in the live image and the prerecorded sequence of
images, projective geometric relationships are exploited to construct Euclidean homographies. The
information obtained by decomposing the Euclidean homography is used to develop kinematic
controllers that are proven to yield either asymptotic tracking or regulation while actively compensating
for the lack of depth information required for the translationerror system. The implementation of these
visual servo controllers is described in Section 3 for a Cybermotion K2A WMR test bed.



2. COOPERATIVE VISUAL SERVO CONTROL

2.1 OBJECTIVES

The aim of the efforts described in this section is to design control algorithms (realized by a software
module and implemented on a typical robotic system employed for environmental managements tasks),
which can force a robot manipulator to track an object moving with an unknown trajectory. To be
reliably used in field operation, the tracking controller provides robustness to camera calibration errors
and the parametric uncertainty associated with the robotic system. Moreover, camera information is
incorporated from a fixed and an in-hand camera to provide both a large FOV and a high-resolution
view of the robotic task to facilitate field implementation. To quantify this objective, a tracking error is
defined as the difference between the actual Euclidean position of an object and the robot end-effector
as follows:

e(r) = x(1) - x,(1). (1)

In (1), e(t) denotes the planar position tracking error, and x(?),x,(#) denote the unknown Euclidean

position of the camera-in-hand and the object, respectively. Based on (1), the error signal is clearly not
measurable since the Euclidean position of the object is unknown. This fact significantly complicates
the control design since the tracking error cannot be used as a feedback signal.

To achieve the control objective, one of the issues that have been addressed is the use of information
from multiple uncalibrated cameras.”’ To address this problem, the following pinhole lens models were
utilized for a global fixed camera and a local camera-in hand, respectively

Yo=H,Ryxy+p )
y=HRR, (x-Xx,). (3)

In the models given by (2) and (3), y(?),y,(¢) denote the measurable image-space position of a target
object (e.g., door frame, I-beam, bolt, laser point) determined by the in-hand and fixed camera,
respectively. The matrices H(z),H,(z,) givenin (2) and (3) are diagonal, positive-definite matrices that

are functions of the unknown constant focal length of each camera, the unknown constant camera scaling
factors of each camera, and the distance, denoted by z,z,, from the image-plane of each camera to the

object. The matrices R,R, given in (2) and (3) denote constant rotation matrices for each camera that
is a function of the unknown constant camera orientation, R, (g) denotes the rotation matrix for the eye-

in-hand camera that is a function of the manipulator joints (since the orientation of this camera is not
constant), and p is a vector of unknown constants including the projection of the camera’s optical center

on the image plane and the image center that is defined in the frame buffer coordinates. After taking the
time derivative of (2) the following relationships for the fixed camera can be obtained

Yo = HyRyx, Xo = R3'HG'y, - 4)
After taking the time derivative of (3), the following expression can be obtained for the camera-in-hand

¥ = HRJue + HRR (% — %) (5)



where J(g) denotes the manipulator Jacobian and u(#) denotes the joint level control input. Based on
the expressions given in (3)-(5), the following kinematic control input was designed’

u=J"(k+ky(p,(y,)+P,)) Ry y (6)

where k,k, denote known, positive constant control gains, and pl(~), p, denote positive bounding terms

for the Euclidean trajectory. The use of the image-space data from the camera-in-hand provides a
mechanism for incorporating the error feedback as indicated from (1) and (3). To exploit this
characteristic, novel mathematical development was required due to the structure of (3)-(5).

2.2 RESULTS

By using Lyapunov-based stability analysis techniques, the control design given in (6), coupled with a
robust torque control input to reject parametric uncertainties in the robot dynamic model, was
analytically proven to force the end-effector of a robot manipulator to track an object moving in a plane
with an unknown trajectory.’ Specifically, for an object moving in a plane, the task-space tracking error
defined in (1) was analytically proven to be exponentially driven to a small neighborhood about zero
that could be made arbitrarily small by adjusting the control gains (i.e., UUB tracking).

To demonstrate the performance of the developed control strategy, an experimental test bed (see Fig.[l)
was developed that includes: a 6-DOF Schilling Titan II hydraulic manipulator, two Dalsa (CA-D6-
0256W) MotionVision area scan digital cameras that capture 955 frames per second with 8-bit gray scale
at a 256x256 resolution, two Road Runner Model 24 video capture boards, two Pentium IV-based
(1.9GHz) personal computers (PCs) operating under the real-time operating system QNX (a real-time
micro-kernel based operating system), a pan-and-tilt unit (PTU), and a custom Arm Level Controller
(ALC) based on commercial PC104 components. The ALC is part of a telerobotic manipulation system
that has targeted applications in both waste tank remediation and facility deactivation and
decommissioning operations as part of the U.S. Department of Energy’s EM50 Program. The ALC is
controlled at the force/torque level by a linear, quaternion-based Euclidean strategy that operates at a
control frequency of 200Hz. Since the force/torque level controller is a closed (black box) system, the
complete robust torque controller could not be implemented without replacing the existing ALC. Rather
than replacing the existing controller, a plug-and-play retrofit was implemented in which the integral of
the kinematic controller given in (6) was utilized to command desired joint positions. That is, the
position commands that are typically provided through a human operating a master controller are
replaced by desired position commands that are autonomously produced by the visual servo control
scheme.

The uncalibrated fixed camera was mounted on a tripod and placed in the workspace and the camera-in-
hand was mounted on the end-effector such that the yaw and pitch of the camera is coincident with the
camera. For simplicity, the fixed camera was placed in the workspace so that the FOV was twice the size
of the in-hand camera. A laser pointer is mounted on the PTU to project a laser point (to provide an
easily detectable object feature) in the environment with some unknown (by the controller) trajectory.
One of the PCs is connected to the fixed camera and will be utilized to capture the laser point image,
extract the pixel coordinate of the laser point in the fixed camera’s reference frame, and transmit the
pixel coordinates to the shared memory of the second PC over a 100 Mb/sec dedicated Ethernet



connection. The second PC is connected to the camera-in-hand and is utilized to capture the laser point
image, extract the pixel coordinate of the laser point in the in-hand camera’s reference frame, acquire
the pixel coordinates provided by the first PC from a shared memory location, acquire joint information
from a shared memory location provided by the ALC, compute the kinematic control algorithm, and
transmit the computed control to the ALC over a second 100 Mb/sec dedicated Ethernet connection.
Although the cameras can acquire data at a rate of 955 frames per second, the communication interface
between the existing ALC and the plug-and-play vision system was limited to 100z. The ALC is
utilized to perform the real-time I/O from the joint resolvers, transmit the joint positions to the camera-in-
hand PC through shared memory, acquire the kinematic control input from the camera-in-hand PC, and
calculate the joint-level control input. Joint resolvers were used to determine the joint rotation. The joint
rotation signals were utilized to calculate the task-space position of the end-effector through the
manipulator Jacobian. Communication between the PCs and the ALC is achieved through two RS232
serial ports (one port for reading data, one port for writing data).

[T

Fig. 1. Experimentaltestbed including a Schilling Titan Il hydraulic manipulator with a fixed camera
and an in-hand camera.

The source code for the server program that determines the image-space coordinates of the tartet for the
fixed camera and then writes the information to shared memory locations over a TCP/IP connection is
provided in Section A.1 of Appendix A. The source code for the server program that determines the
image-space coordinates of the target for the camera-in-hand and then writes the information directly
into shared memory (the program executes on the resident PC) is provided in Section A.2 of



Appendix[A. The source code for the client program that allocates shared memory locations for the
fixed camera data, receives the fixed camera image-space coordinates of the target, and writes the
information into shared memory is given in Section A.3 of Appendix A. The source code that reads data
from the shared memory locations for the fixed camera and the camera-in-hand, reads robot joint
information from the ALC, computes the visual servo controller, provides real-time plotting and
controller gain adjustment capabilities through the real-time control environment QMotor,"* and writes
the desired trajectory to the ALC is given in Section A.4 of Appendix A.

To illustrate the application of the cooperative visual servoing strategy, several examples were examined.
In the first example, the integral of the controller in (6) was implemented for cases when the laser point
moved in circular, square,and “figure 8 trajectories. These trajectories were programmed into the PTU
to generate the patterns, but knowledge of the pattern was not provided to the controller. The object
trajectories that were recorded by the fixed camera are presentedin Figs.[d—4,and the image-space errors
determined by the in-hand camera are depicted in Figs.3-7. For each case, a straight line path planner
was utilized to position the in-hand camera so that the initial position of the target was in view and that
the image plane of the in-hand camera is parallel to the robot's plane of motion. During this motion the
robot is not under visual servo control, and hence, the image-space errors observed by the in-hand
camera are set to zero (see the first few seconds of Figs.3—7. Once the camera has been positioned, the
rotation of the end-effector is fixed, along with the depth of the manipulator (denoted by the X-axis in
the manipulator workspace), to ensure the robot moves in a planar motion (ensuring that the distance
from the camera to the target remains constant). The desired position commands computed by the visual
servo controller are depicted in Figs.[3-10 (i.e., the signals given in Figs.[8—-10 represent the desired
Euclidean position trajectory computed by the visual servo controller and supplied to the ALC).

120 T

Y-axis [Pixels]

_ L
-60 -40 -20 0 20 40 60 80
X-axis [Pixels]

Fig. 2. Image-space object trajectory recorded by the fixed camera for a circular motion.



80

60 - i

40 -

e

INNENENN

Y-axis [Pixels]

-80 -60 -40 -20 0 20 40 60 80
X-axis [Pixels]

Fig. 3. Image-space object trajectory recorded by the fixed camera for a square motion.

100
80 -
60 -

40 -

Y-axis [Pixels]

207

L 1 L
-100 -50 0 50 100
X-axis [Pixels]

Fig. 4. Image-space object trajectory recorded by the fixed camera for a ‘“figure 8’ motion.



X-axis [Pixels]
N
o

Y-axis [Pixels]
S
3
=<
=
=

I I I I I I I I
10 20 30 40 50 60 70 80 90

X-axis [Pixels]

) =)
—
=

T — _
—
S —
[ E——
S —
_—
— =
i
jﬂ;
R —
J— =
P —
=
P n—

I I
50 100 150

Y-axis [Pixels]
s 8
T T
=
3
{H‘)
A
=
<
=
i)
i J
—

1 L L
50 100 150

Fig. 6. Image-space tracking error recorded by the in-hand camera for a square motion.



X-axis [Pixels]
=
T
=
o
|

10 20 30 40 50 60 70 80 90

i
| W

o
& o0—
| MM MW |
S =10 - ‘ | | 'U E
20 - | .
/
230 | | | | | |
10 20 30 40 50 60 70 80 90
Time [sec]

Fig. 7. Image-space tracking error recorded by the in-hand camera for a “figure 8’ motion.

o o
@ Iy
T
|

o
N
T
|

X-axis [Inches]

(&)
ey

10 20 30 40 50 60 70 80 90

|
|
i
|

~
/
/.

Y-axis [Inches]
l T
o
/
/
/
/

0 1 L 1 1 1 L 1
0 10 20 30 40 50 60 70 80 90
T
10+ i 7
T T ~
g sl 7 ~ |
£ NV I
= S
2 o
0 - A
N‘F N~
_5 1 1 1 1 | L 1
0 10 20 30 40 50 60 70 80 90
Time [sec]

Fig. 8. Euclidean position commands computed by the visual servo controller and sent to the ALC
for the circle trajectory.



54

A
5 531 B
£
Iy
$ 52 -
X
51 | | | | | | |
0 10 20 30 40 50 60 70 80 90
15 T T D PN NN
/ N RN
] / h
5 101 B
£ S s
o N e
X 5R e -
;y \/\J\//
0 1 1 1 | | L 1
0 10 20 30 40 50 60 70 80 90
g — N B S T
= 107 / \ s
Q / \\
= -
]
(=
= S5 \ 7
2} N\
% —~_
N ol o il
| I | I | I I R
0 10 20 30 40 50 60 70 80 90
Time [sec]

Fig. 9. Euclidean position commands computed by the visual servo controller and sent to the ALC

for the square trajectory.

54
A
5 33
£
{2}
x 52
x
51 L L | L L L L
0 10 20 30 40 50 60 70 80 90
20 T T
TN
@ 151 " ™ b
2 .
g 10 ;V 4
g 5r \\\ T
® ~. -
> 0 T~
5 I I I I I I I
0 10 20 30 40 50 60 70 80 90
10 T T
3 Ve T
2 5 .
E v
[72]
2 o . i
© T - —
N \//
_5 | L | L | [ L
0 10 20 30 40 50 60 70 80 90
Time [sec]

Fig. 10. Euclidean position commands computed by the visual servo controller and sent to the ALC

for the “figure 8” trajectory.

10



2.3 DISCUSSION

The application of the cooperative uncalibrated visual control strategy is demonstrated through the results
depicted in Figs.-10. To integrate the novel visual servoing research into an actual field system, a plug-
and-play retrofit strategy was employed in which the kinematic controller was utilized to command
desired joint positions to a linear joint level controller. Unfortunately, due to the restriction that the full
robust controller could not be implemented, many of the robust control terms were omitted from the
implementation, thus reducing the performance of the controller. Other factors that contributed to
reduced tracking performance include: (1) the force/torque level controller is a linear controller (and
hence, perfect tracking cannot be obtained), (2) the visual servo rate was limited to 100z, and more
significantly, (3) the robotic testled is not a precision manipulator by construction (experimental tests
have illustrated the repeatability of the end-effector position to be approximately 0.250hches near its
limits of motion). For the current experiment, an end-effector error of 0.25Ohches corresponds to
approximately 5 pixels by the in-hand camera.

Despite the lack of high-precision tracking, the impact of the research described in this section is the
enabling technology that a manipulator can be used to automatically track an object moving with an
unknown trajectory with multiple uncalibrated cameras. A novel aspect that is demonstrated is the fact
that multiple uncalibrated cameras could be utilized (in a non-stereo vision approach) to enable both a
close-up, higher resolution view and large FOV. In the current experiment, the in-hand camera provided
a resolution of 19.32 pixels/inch and the resolution of the fixed camera was reduced to 9.75 pixels/inch.
The developed cooperative visual servoing approach also solved the relative velocity problem that has
stymied previous visual servo research for tracking object trajectories with an uncalibrated camera. The
main limitation of the approach is that the unknown depth is required to be held constant (i.e., the
manipulator is constrained to planar trajectories).

11



12



3. HOMOGRAPHY-BASED VISUAL SERVO CONTROL

3.1 OBJECTIVES

Photogrammetry methods such as the development of a homographic relationship between multiple
images can be used to develop an adaptive visual servo controller that can compensate for an unknown
time-varying distance from the camera to a target object.”'”'"> An overview of the homography-based
approach is provided in this section along with a description of the results obtained from a proof-of-
concept demonstration for WMR tracking and regulation. Specifically,a homography-based visual servo
control strategy wasrecently developed to force the Euclidean position/orientation of a camera mounted
on a WMR (i.e., the camera-in-hand problem) to track a desired time-varying trajectory defined by a
prerecorded sequence of images or to regulate the WMR to a desired position and orientation."”"” By
comparing the feature points of an object from a reference image to feature points of an object in the
current image and the prerecorded sequence of images, projective geometric relationships are exploited
to enable the reconstruction of the Euclidean coordinates of the target points with respect to the WMR
coordinate frame. The tracking control objective is naturally defined in terms of the Euclidean space;
however, the translation error is unmeasurable. That is, the Euclidean reconstruction is scaled by an
unknown distance from the camera to the target, and while the scaled position is measurable through the
homography, the unscaled position error is unmeasurable. To overcome this obstacle, a Lyapunov-based
control strategy can be employed that provides a framework for the construction of an adaptive update
law to actively compensate for the unknown depth-related scaling constant.™"* In contrast to visual servo
methods that linearize the system equations to facilitate Extended Kalman Filtering methods, the
Lyapunov-based control design in this section is based on the full nonlinear kinematic model of the
vision system and the mobile robot system.

3.2 GEOMETRIC MODEL

To illustrate the underlying homography-based methodology, and to motivate the research activities in
this project, consider Figure 11 which depicts a reference plane, denoted by s, that is defined by four
target points, denoted by O, Vi=1,2,3,4, that are considered to be coplanar and not collinear. If four

coplanar target points are not available then the subsequent development can exploit the classic eight-
points algorithm with no four of the eight target points being coplanar. The coordinate frame F*

depicted in Fig.1 and Fig. 12 defines a reference position and orientation of a camera that corresponds
to a reference image of a target. The coordinate frame F depicted in Fig.0l1 and Fig.2 defines the

current position and orientation of a camera that corresponds to the current image of the target, and the
coordinate frame ‘f - depicted in Fig.0l1 and Fig.002 defines the desired position and orientation of a

camera that corresponds to the prerecorded desired image trajectory of the target (i.e., a video that
describes the desired motion of the camera). The Euclidean coordinates of O, Vi=1,2,3,4 can be
expressed in terms of F, F ., and ", respectively, as follows:

*

w0 =[0 v 0] mO=[.0 y0 .0l @@=k v ] @

13



under the practical assumption that the distances from the origin of the respective coordinate frames to

7 along the focal axis remain positive (i.e., x[(t),x: > ¢ where € denotes an arbitrarily small positive

constant).

Fig. 11. Coordinate frame relationships.

Desired Position &
Orientation Trajectory

AN

F x

A
>
*

Current Position
& Orientation

Reference Position
& Orientation

Fig. 12. WMR coordinate frames.

14



The time-varying translation and rotation from F to F~, are denoted by x F(DE 3and R(r) € SO(3),
respectively, and the time-varying translation and rotation from f - to ", are denoted by x, (1) € 3
and R,(7) € SO(3), respectively. Specifically, m, can be related to m,(¢) and m ,(¢) as follows:

n_1i=xf+Rn_1;‘ n_adi=xfd+Rdn_1i* (8)
where
cosf -sinf O cosf, -sinf, O
R=|sin6 cos@ O R, =|sin6, cosB, 0 9)
0 0 1 0 0 1

for the WMR problem where H(t) denotes the right-handed rotation angle that aligns the rotation of
Fwith F*, and Hd(t) denotes the right-handed rotation angle that aligns F - with F*. Also from the

geometry given in Fig.1, the constant distance d* €  from the origin of F* to s along the unit
normal is given by

d =n"m, (10)

where n* € 3 denotes the constant unit normal to & expressed in F*. Based on (10), the expressions
in (8), can be written in terms of a normalized Euclidean coordinate vector as follows:

mi=ai<R+xhn*T) m; mdi=adi(Rd+xhdn*T) m; . (11)
H H

d

In (11), x,(HE * and x,,(r)E * denote the following scaled translation vectors

=
~

x,, =% (12)

=
B

S
=

m, (1), m,(t), m; € * denote the normalized Euclidean coordinatesof O,,expressedin F,F -, and F~,
respectively, that are defined as follows:

: m oz . m oz
mi i l yl S di= di 1 & di ml= i - 1 y; 1* (13)
x[ xi xi xd[ xd[ xd[ xi xi xi
a(,a, ()€  Vi=1,2,3,4denote invertible depth ratios defined as follows:
x; x;
o (="t o (1) =1 (14)

i di

and H(t),H,(t)€ 3 denote the Euclidean homography matrices that are composed of the actual and
desired rotation and translation components, respectively.

15



3.3. EUCLIDEAN RECONSTRUCTION

The relationship in (11) provides a means to quantify a translation and rotation error between F and
J7 and between T and F*. However, since the Euclidean position of the coordinate frames cannot
be directly measured, a Euclidean reconstruction can be developed by comparing the pixel coordinates
of the target points in the current image to the pixel coordinates of the corresponding target points in
the reference image. In addition to having a Euclidean coordinate, each target point O, will also have
a projected pixel coordinate that is defined as elements of p,(f) € 3(the actual time-varying image
points), p,.(f)E 3(the desired image point trajectory), and p’ € 3 (the constant reference image
points). The normalized Euclidean coordinates of the target points are related to the image data through
the following pinhole lens models

& 3k

p;=Am, Py = Amy; p; =Am,

1

(15)

where AE 33 isa known, constant, and invertible intrinsic camera calibration matrix. To calculate the
Euclidean homography given in (11) from pixel information, the pinhole camera model given in (15)
can be utilized to determine the following relationship

p;=a(AHA) p] Py =u(AH AT p] (16)
%,—/ | N ——
G G,

where G(t) =[g,.j(t)], G,(1) =|:gdij(t):| Vi,j=1,2,3€ 33 denote projective homography matrices.
Provided the camera calibration parameters in A are known, various techniques can be used to determine
the projective homography matrices up to a scalar multiple (e.g., the product «,(1)G(f) can be
determined). From the definition of G(f) and G,(#)given in (16), various techniques can then be
used'”'°to decomposethe homography to obtain o, (1),a,(1),G(1),G,(1),H(1),H (1), and the rotation and

translation signals R(7), R,(?),x,,(H)n", and x,(f)n". To facilitate the development of a visual servo

3

controller, R(#) can be expressed in the axis-angle representation, denoted by E ()€ 7, as follows:"’

E =u(0)0(). (17)

A similar relationship can be developed for R, (¢) . For the representation in (17), u(t)E ° represents

a unit rotation axis, and 6(z) €  denotes the respective rotation angle about u(#) thatis assumed to be
confined to the following region

—T<0(t)<m. (18)

The unit rotation axis and the rotation angle can be obtained from R(¢) as follows:

0=cos"(%(tr(R)—l)) [u] = R-K (19)

16



where tr(R) denotes the trace of R(?). Hence, R(¢), R,(t), x,(t), x,,(t), 0(¢), 0,(t) ,u(t),u,(t)and

the depth ratios «,(7) and «,(¢) are all known signals that can be used for control synthesis.

3.4. TRACKING CONTROL DEVELOPMENT

The tracking control objective is to ensure that the coordinate frame F tracks the time-varying trajectory
of F, (ie., m,; (¢) tracks m,(¢)). Based on the previous development, the translation and rotation

tracking error is defined as follows: "
€ =Xy~ Xy G =X~ Xy, e =0-0, (20)

where x, (1),x,,(t),x,,,(1), and x, ,,(¢) are elements of the x,(f)and x,,(#) translationvectors,and 6(r)
and 6,(r) are introduced in (9). Based on the definition in (20), it can be shown that the control

objective is achieved if the tracking error e(f) =0 making m, (1) = m(1).

Based on (20), the linear and angular velocity kinematic control inputs for the WMR can be designed as
follows: "

v, = ke 2,0, +d*(x,,0, - %,,) (21)
o, =k, ey ~0, %, (22)
where k ,k denote positive, constant control gains, and e,(7) is an auxiliary signal defined as follows:
€y =€~ X185 - (23)
In (21), the parameter update law d *(t) is generated by the following differential equation'

A

d* =vye, (thwc - xhdl) (24)

where y, is a positive, constant adaptation gain.

3.5. REGULATION CONTROL DEVELOPMENT

Due to the implications of Brockett’s Condition, the previous tracking controller can not be used to solve
the regulation control problem; hence, a separate regulation controller has been developed.” The
regulation control objective is to ensure that ‘F is regulated to ‘F”. This objective is naturally defined

in terms of the Euclidean position and orientation of the WMR. Specifically, the translation error
between F and ¥, denoted by e,(7), can be written for any target point as follows:

[x(t)] [cos 6 —sin 6][)&‘}
=177 (25)
y(t)| |cos@  cosO |y*

and the orientation error between F and F”, denoted by e (r), can be written as follows:

e (1)
e, (1)

17



e, () =0(1). (26)

Based on (25) and (26), the regulation control objective is to regulate e, (7) and e (7) to zero. Since e, (1)
is not measurable, an auxiliary error system can be defined as follows:"
e (1) e, (0
r0=[r0 no K] [—eo(r) A ) 27)

*
X X

As written, the last two elements of the vector in (27) do not appear to be measurable; however, after
exploiting several properties from the geometry of the problem, the last two elements can be written as'’

28
() (28)

r2(t)l ———cosé)+m sin@
sin6+m’; cosb

where each element of (28) can be computed through the homography decomposition. Based on the
error system given by (27) and (28), the following linear and angular velocity inputs can be designed
to achieve the regulation control objective'>

v, =—kn+X"r,cost+x’w,r, (29)

c

w, ==k (1, + x) (30)

where k,k,denote positive, constant control gains, and 7(#) is an auxiliary signal defined as follows:

1 =r,—r,sin(f) 31)
and x(7) is an auxiliary signal defined as follows:
X = (n +7, sm(t))( -n sm(t)) (31)
In (29), the parameter update law x*(¢) is generated by the following differential equation
£ =A-rncost—wnr) (32)

where A is a positive, constant adaptation gain."”

3.6. RESULTS

To demonstrate the controller experimentally, the proof-of-concept WMR test bed depicted in Fig.O3
was developed. The WMR testbed consists of the following components: a modified K2A mobile robot
(with an inclusive Pentium 133MHz PC) manufactured by Cybermotion, Inc., a Dalsa (CA-D6-0256W)
MotionVision area scan digital camera that captures 955 frames per second with 8-bit gray scale at a
256x256 resolution, a Road Runner Model 24 video capture board, two Pentium [V-based PCs operating
under the real-time operating system QNX. The camera and image processing PC (operating under
QNX) were mounted on the top of the WMR as depicted in Fig.[13. The internal WMR computer (also
operating under QNX) hosts the control algorithm that was written in “C++”, and implemented using

18



Qmotor 3.0." In addition to the image processing PC, a second PC (operating under the MS Windows
2000 operating system) was used to remotely login to the internal mobile robot PC via the QNX
Phindows application. The remote PC was used to access the graphical user interface of Qmotor for
execution of the control program, gain adjustment, and data management, plotting, and storage. Light-
emitting diodes (LEDs) were rigidly attached to a rigid structure that was used as the target, where the
intensity of the LEDs contrasted sharply with the background. Due to the contrast in intensity, a simple
thresholding algorithm was used to determine the image coordinates of each LED. The mobile robot
is controlled by a torque input applied to a drive and a steer motor. To facilitate a torque controller the
actual linear and angular velocity of the mobile robot is required. To acquire these signals a backwards
difference algorithm was applied to the drive and steering motor encoders. Encoder data acquisition and
the control implementation were performed at a frequency of 1.0Hz using the Quanser MultiQ 1/O
board. For simplicity the electricaland mechanical dynamics of the system were not incorporated in the
control design (i.e., the emphasis of this experiment is to illustrate the visual servo controller). However,
since the developed kinematic controller is differentiable, standard backstepping techniques could be
used to incorporate the mechanical and electrical dynamics. Permanent magnet DC motors provide
steering and drive actuation through a 106:1 and a 96:1 gear coupling, respectively. The modified K2A
mobile robot has an approximate mass of 165Mg, an inertia of approximately 4.643glth’, and a wheel
radius of 0.0100.

Fig. 13. WMR test bed.

To implement the tracking control experiment, the WMR was driven along a desired path as the camera
recorded the trajectory. The program given in Section B.1 of Appendix B was used to capture the
image-space coordinates of the four target points and write the coordinates in a file. One set of four
image-space coordinates was used as the reference image. The program given in Section B.2 of
Appendix B reads the file of image-space coordinates, computes the homography, decomposes the
homography, computes the desired trajectory signals required by the visual servo tracking controller
(i.e., x,,(1), x,,,(1), and 6,(?)), and writes the desired trajectory signals to an output file. The output
file was modified offline to compute the derivative of x,,,(?), x,,,(t), and 6,(¢) and to filter all the
desired trajectory signals to reduce numerical noise artifacts. The filtered desired trajectory signals
X (1) 5 X5, (1),X,,,(1), 0,(1), and éd(t) were then stored in a data file that is read by the subsequent

WMR tracking control program (Section B.5 of Appendix B). Figurel4 and Fig.15 depict the desired

19



translation and rotation signals, respectively. The server program (executing on the image processing PC)
given in Section B.3 of Appendix B determines the image-space coordinates of the target in the live
image, computes the homography, decomposes the homography, computes the current translation and
rotation signals (i.e., x,,(7), x,,(#), and 6 (¢)) and then writes the information to shared memory

locations over a TCP/IP connection. The client program (executing on the internal WMR PC) given in
Section B.4 of Appendix B allocates shared memory locations for the live camera data, receives the
current translation and rotation signals of the target, and writes the information into shared memory. The
control program (executing on the internal WMR PC) given in Section B.5 of Appendix B reads data
from the shared memory locations for the live camera, reads the WMR encoder signals (to enable a high-
gain feedback torque control loop), computes the visual servo controller, provides real-time plotting and
controller gain adjustment capabilities through the real-time control environment QMotor'* (viewed
through the remote PC), and commands a motor voltage signal to the drive and steering motors.

Desired Translation

™
15 \ —
——
= ™
z 1 T
X T
05+ T -
0 I L I L -
0 5 10 15 20 25 30
-0.5 T T ~
A ~ . PN / -
/,/ \\ /f/ e /\\J/"“ e / \( A /Vr N
06 - / i
/
= |
y-07- | -
== |
|
/
08/ A
)
09 | | | |
0 5 10 15 20 25 30

Time [sec]

Fig. 14. Desired WMR translation trajectory.

The control gains were adjusted to reduce the position/orientationtracking error with the adaptation gains
set to zero and the initial adaptive estimate set to zero. Once the position/orientation tracking error
response could not be significantly improved by further adjustments of the feedback gains, the
adaptation gains were adjusted to allow the parameter estimation to reduce the position/orientation
tracking error. The unitless position/orientation tracking errors e¢,(f)and e,(¢), are depicted in Fig.[16
and Fig.[I7, respectively. Figure 18 illustrates that the adaptive estimate for the depth parameter x*(r)
approaches a constant. Figure 19 illustrates the linear and angular velocity of the WMR. The control
torque inputs are presented in Fig.[A0 and represent the torques applied after the gearing mechanism.

20



8,1 [deg]

e,

Desired Rotation

25 :
-30 - ) i
AN s
~~ -~ \\ /A 7 \\rv\/
N [\ /
) / [NV \\/ v J\\
ST ANV / .
V4 W
!A/
!”’
-40 /
/
45 | 4
f
/
’!
-50 - / _
/
{
!”
550 L !
5 10 15 20 25 30
Time [sec]
Fig. 15. Desired WMR rotation trajectory.
Translation Error
0.6 T T
N\\
!
04 N 4
r . AN
02 .»w/ \\ N
f‘// \‘\
- e SN PN i
0 7 s N ~ ]
-0.2 / B
04 [ L L 1 L
0 5 10 15 20 25 30
1.5
\
Vo~ —
1R/ T " i
\\
05f \ J
\\
o+ Vy\mﬂ e e N
-0.5 . L L I L
0 5 10 15 20 25 30
Time [sec]

Fig. 16. WMR translation tracking error.

21



e,(t) [deg]

[m]

Rotation Error

30

20
(\
15
\\
\
|
10~ \\
\\
\/\\
5L "\ e |
\, A o
\ \
\/ q\‘ My /\\ A
| i\ L/ [
V / } Y / Al '\
’ e YN WM A
Y ’L\,r/ L’ﬁwm/ \\/ \ - V
/\w/ '
f\ ’r
5 / | i
J \/
] v I |
0 5 10 15 20 25
Time [sec]
Fig. 17. WMR rotation tracking error.
Parameter Estimate
5 T T
4 /
/\//
/
/
3k ’/ 1
r'/
/
2r- /r’ i
/
//’
J
10 / .
//
=
0f ) / B
o
_1 | | | | [
0 5 10 15 20 25 30

Time [sec]

Fig. 18. Parameter estimate convergence.

22




vc(t) [m/sec]

-0.2
-04

mc(t) [rad/sec]

%, () INm]

©,(t) INm]

Velocity Inputs

0.8

f I r\z i
04} / | [ ) /\ ) A ~
/r ’ \/ J / ’y \ | (\,‘ /\u J \\\J,’\)
A
/

02 F/\ \ ’ | \ /m\_,r“\ N N

30

o
w

o
N

o
N

|
0 5 10 15 20 25
Time [sec]

Fig. 19. Linear and angular velocity control inputs.

Torque Inputs

30

150 T

4
100 A A T
|V ’\/ \J\ ( \/\w\ A ,N\» f
M Vk My
50 / ‘ \m/\ I V A / \qv/“\/\

0 5 10 15 20 25

30

\ I
/ / / N
\ / \ / /\u YA

\\ /\
W o
2 LU ’\ ”r Y f | A
f
i

i
L I
-2 | \/’

/

L
0 5 10 15 20 25
Time [sec]

Fig. 20. Computed drive and steer motor torques.

23

f ™
o A \/ \ / . VA AN
/ /\\/\ J h’r\/\ oS! \\f”’ \,N’A\\/ \/ \Fn N

30



To implement the regulation control experiment, the WMR was driven to a desired position and
orientation and a snaphot was recorded along with the desired image-space coordinates of the feature
points of a target. The WMR was then moved away from the desired location and the goal was to enable
the WMR to return to the same position and orientation under visual servo control. A server program
(executing on the image processing PC) similar to the tracking control problem determines the image-

space coordinates of the target in the live image, computes the homography, decomposes the
homography, computes the control signals 6(¢), m;, and (), and then writes the signals to shared

memory locations over a TCP/IP connection. Another client program (executing on the internal WMR
PC) allocates shared memory locations for the live camera data, receives 6(¢), m (1), and o(?), and

writes the information into shared memory. The control program (executing on the internal WMR PC)
given in Section B.6 of Appendix B reads data from the shared memory locations for the live camera,
reads the WMR encoder signals (to enable a high-gain feedback torque control loop), computes the visual
servo controller, provides real-time plotting and controller gain adjustment capabilities through the real-
time control environment QMotor'* (viewed through the remote PC), and commands a motor voltage
signal to the drive and steering motors. Figure 21 and Fig. 22 illustrate the translation and rotation
regulation errors obtained after adjusting the control gains as described for the tracking controller.
Figure 23 illustrates the depth ratio error (i.e., the desired distance from the camera to the target divided
by the actual distance from the camera to the target), where perfect regulation of the range to the target
would be represented by a ratio of 1. Figure 24 illustrates the convergence of the depth parameter
estimate, and Fig. 25 illustrates the computed drive and steering motor torques.

05/

\
\

‘ \
‘\/\ ‘A\
TN T N T A A

Al
| 7\
o- | /\f [ N
| Y |/ \rﬂ».//\ / \m /\\x AN
TR VAN ea WSV AN} )
| | \ 1 JARWSY \ ~ AA
i \ V,’ V WY VoV \ ’v / n A /«m \/\/FVMV\/ iy \ \/\ﬂ\/
/ v v
v

v

[unitless]
\

-2.5 */\/ b

3 ‘ | | | |
0 5 10 15 20
Time [sec]

Fig. 21. WMR translation regulation errors.

24



[Deg]

[unitless]

0.9+~

0.8~

0.7

o
(o]
T

05~

04-

03

5 10 15
Time [sec]

WMR rotation regulation error.

0.2
0

5 10 15
Time [sec]

20

Fig. 23. Depth ratio error.

25



25

ol ST TITTNPIee _
15 |
2
o
= /
=2
y,
N
1+ \/ :
’/\\/ \Y
|
05 | :
|
|
/\/\/
0 |
0 10 15 20
Time [sec]
Fig. 24. Parameter estimate convergence.
Drive Torque
500
400 N/_\\/’,\\ -
ANy
300 - e N 3
E
Z. 200 - b
100 - b
N
VT
o T T A S
L 1 |
0 10 15 20
Steer Torque
10 T
5+ B
A
—_— \ N
= \ I\ W N S W M
z VM NN A \ AN NN
A\ /o PN
\W / /\/ \/\JA\/
- )\/’ *
-10 L |
0 10 15 20
Time [sec]

Fig. 25. Computed drive and steer motor torques.

26



4. CONCLUSIONS

Autonomous capabilities of a robot manipulator system and a WMR system were demonstrated through
several visual servo controllers. Specifically, the results from three proof-of-concept visual servo
controllers that are based on recent fundamental research results are described. The implementation of
a cooperative visual servo control scheme was described in which a camera-in-hand and a fixed camera
were used to track a moving target despite uncertainty in the camera calibration and the unknown
constant distance from the camera to a target where the camera is mounted on the end-effector of a
6-DOF hydraulic robot manipulator. The implementation of homography-based visual servo tracking
and regulation controllers for a WMR were also described. The results from the three demonstrations
validate recent new advancements in visual servo control theory. With additional applied research and
integration with advanced image-processing methods, the developed control design methods could
impact numerous government, military, and private industries that require autonomous robotic operation.

27



28



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

REFERENCES

M. W. Noakes, L. J. Love, P. D. Lloyd, “Telerobotic Planning and Control for DOE D&D
Operations,” Proceedings of the IEEE Int. Conf. on Robotics and Automation, Washington, DC,
May 11-15, 2002, pp. 3485-3492.

W. E. Dixon, E. Zergeroglu, Y. Fang, and D. M. Dawson, “Object Tracking by a Robot
Manipulator: A Robust Cooperative Visual Servoing Approach,” Proceedings of the IEEE
International Conference on Robotics and Automation, Washington, DC,May 2002, pp. 211-216.
W. E. Dixon and L. J. Love, “Lyapunov-Based Visual Servo Control for Robotic Deactivation and
Decommissioning,” Proceedings of the Biennial ANS International Spectrum Conference, Reno,
Nevada, August 2002.

V. Chitrakaran, D. M. Dawson, W. E. Dixon, and J. Chen, “Identification of a Moving Object’s
Velocity with a Fixed Camera,” Automatica, to appear: see also Proceedings of the IEEE
Conference on Decision and Control, Maui, Hawaii USA, December 2003, pp. 5402-5407.

W. E. Dixon, Y.Fang, D. M. Dawson,and J. Chen, “Adaptive Range Identification for Exponential
Visual Servo Control,” Proceedings of the 2003 IEEE International Symposium on Intelligent
Control, Houston, Texas, October 2003, pp. 46-51.

Y. Fang, A. Behal, W. E. Dixon, and D. M. Dawson, “Adaptive 2.5D Visual Servoing of
Kinematically Redundant Robot Manipulators,” Proceedings of the IEEE Conference on Decision
and Control, Las Vegas, Nevada, December 2002, pp. 2860-2865.

Y. Fang, W. E. Dixon, and D. M. Dawson, “Adaptive 2.5D Visual Servoing of Cartesian Robots,”
Proceedings of the International Conference on Control, Automation, Robotics and Vision
(ICARCYV), Kunming, China, December 6-9, 2004, submitted.

Y. Fang, W. E. Dixon, D. M. Dawson, and J. Chen, “An Exponential Class of Model-Free Visual
Servoing Controllers in the Presence of Uncertain Camera Calibration,” International Journal of
Robotics and Automation, submitted: see also, Proceedings of the IEEE Conference on Decision
and Control, Maui, Hawaii, December 2003, pp. 5390-5395.

J. Chen, A. Behal, D. M. Dawson, and W. E. Dixon, “Adaptive Visual Servoing in the Presence of
Intrinsic Calibration Uncertainty,” Proceedings of the IEEE Conference on Decision and Control,
Maui, Hawaii, December 2003, pp. 5396-5401.

W. E.Dixon, “Teach by Zooming: A Camera Independent Alternativeto Teach By Showing Visual
Servo Control,” Proceedings of the IEEE International Conference on Intelligent Robots and
Systems, Las Vegas, Nevada, October 2003, pp. 749-754.

W. E. Dixon, D. M. Dawson, E. Zergeroglu, and A. Behal, Nonlinear Control of Wheeled Mobile
Robots, Springer-Verlag London Ltd, 2000.

Y. Fang, W. E. Dixon, D. M. Dawson, and P. Chawda, “Homography-Based Visual Servoing of
Wheeled Mobile Robots,” IEEE Transactions on Systems, Man, and Cybernetics -Part B:
Cybernetics, submitted: see also, Proceedings of the IEEE Conference on Decision and Control,
LasVegas, Nevada, December 2002, pp. 2866-2871.

J. Chen, W. E. Dixon, D. M. Dawson, and M. Mclntyre, “Homography-Based Visual Servo
Tracking Control of a Wheeled Mobile Robot,” IEEE Transactions on Robotics and Automation,
submitted: see also, Proceedings of the IEEE International Conference on Intelligent Robots and
Systems, Las Vegas, Nevada, October 2003, pp. 1814-1819.

M. S. Loffler, N. P. Costescu, and D. M. Dawson, “QMotor 3.0 and the QMotor Robotic Toolkit:
A PC-Based Control Platform,” IEEE Trans. Control Systems Magazine 22(3), 12-26, (2002).
O. Faugeras, Three-Dimensional Computer Vision, The MIT Press, Cambridge, Massachusetts,2001.
Z. Zhang and A. R. Hanson, “Scaled Euclidean 3D Reconstruction Based on Externally
Uncalibrated Cameras,” Proccedings of the IEEE Symp. on Comp. Vision, 1995, pp. 37-42.

M. W. Spong and M. Vidyasagar, Robot Dynamic and Control, John Wiley and Sons, Inc:
NewlYork, New York, 1989.

29



30



APPENDIX A. DEVELOPED SOFTWARE FOR COOPERATIVE
VISUAL SERVO CONTROL

A.1 SERVER FOR FIXED CAMERA

/17

/// File: fixedserver.cpp

/// Description: Writes the bright spot pixel information from the fixed cam
/// into shared memory locations xPosfix, yPosfix created by the
/17 netclient.

/77 Error Codes:

/// -1 FIFO Overflow

/17 -2 Missed frame (not enough computing power)

/17 -3 No pixels brighter than the threshhold

/// -4 Hardware exception interrupt

/17 -5 Server exited

/77

#include "RoadRunner.hpp"
#include "DmaBuffer.hpp"
#include "SharedMemory.hpp"
#include "CmdLineArgs.hpp"
#include <sys/types.h>
#include <sys/sched.h>
#include <unistd.h>
#include <sys/stat.h>
#include <iostream.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <stdlib.h>
#include <signal.h>
#include <math.h>

#include <sys/types.h>
#include <sys/gnx_glob.h>

// Global variables needed by cleanup functions
RoadRunner *rr = 0;

DmaBuffer *frameBufferO;

DmaBuffer *frameBufferl;

int *xPosfix;

int *yPosfix;

// Function prototypes
void signalHandler (int) ;
void cleanUpAndExit (void) ;

///

/// Name: main

/// Description: The main program function
///

int main(int argc, char *argv[])

{
// Command line parameter stuff
CmdLineArgs args (argc, argv);
const char *cameraFile;
int board;

// Camera/image parameters

int xSize = 0;

int ySize = 0;

int bytesPerPixel = 0;

int imageSize;

// DMA buffer and bright spot stuff
char *buffer[2];



char *currentPixel;
int x;

int y;

int brightX;

int brightY;

int tap;

int pixel;

int brightValue;
int bank;

// Shared memory stuff
SharedMemory xPosfixShm;
SharedMemory yPosfixShm;

// Get command line parameters
cameraFile = args.getStringOption ("camera", "DaCad256E4Raw.cam");
board = args.getIntegerOption ("board", 0);
if (args.d status.isStatusError())
{
cerr << "server: Error parsing command line" << endl;
cerr << args.d status.getMessageText () ;
exit (0);
}

// Create the shared memories

xPosfix = (int *)xPosfixShm.create ("xPosfix", sizeof (int));

if (xPosfixShm.isStatusError ())

{
cerr << "Error creating xPosfix shared memory" << endl;
exit (0);

}

yPosfix = (int *)yPosfixShm.create ("yPosfix", sizeof (int));

if (yPosfixShm.isStatusError())

{

cerr << "Error creating yPosfix shared memory" << endl;

exit (0);
}
*xPosfix = -3;
*yPosfix = -3;

// Find the board

rr = new RoadRunner (board) ;

if (rr->d_status.isStatusError())

{
cerr << "server: Error locating RoadRunner" << endl;
cerr << rr—>d_status.getMessageText();
exit (-1);

}

// attach the signal handler to shut down the board when we exit by:
signal (SIGTERM, signalHandler); // the slay utility
signal (SIGINT, signalHandler); // or by pressing CNTL-C

// Print out info about the board
rr->printBoardInfo (255) ;

// Set up the board

rr->initialize (cameraFile);

if (rr->d_status.isStatusError())

{
cerr << "server: Error initializing board" << endl;
cerr << rr—>d status.getMessageText () ;
cleanUpAndExit () ;

A-2



// Get info

xSize = rr->getXSize();

ySize = rr->get¥Size();

bytesPerPixel = (int)ceil( (double)rr->getBitsPerPixel() / (double)8);
imageSize = xSize * ySize * bytesPerPixel;

// Allocate the DMA buffers

frameBuffer0 = new DmaBuffer (imageSize);

if (frameBuffer0O->d status.isStatusError())

{
cerr << "server: Error allocating frame buffer 0" << endl;
cerr << frameBuffer(0->d status.getMessageText ()
cleanUpAndExit () ;

}

buffer[0] = (char *)frameBuffer(O->getVirtualAddress();

frameBufferl = new DmaBuffer (imageSize);

if (frameBufferl->d status.isStatusError())

{
cerr << "server: Error allocating frame buffer 1" << endl;
cerr << frameBuffer(0->d status.getMessageText ();
cleanUpAndExit () ;

}

buffer[l] = (char *)frameBufferl->getVirtualAddress();

// Set up the DMA descriptors

if (rr->loadQtab (frameBuffer0->getPhysicalAddress (), 0, -1))

{
cerr << "server: Error loading QTAB bank 0" << endl;
cerr << rr—>d status.getMessageText () ;
cleanUpAndExit () ;

}

if (rr->loadQtab (frameBufferl->getPhysicalAddress (), 1, -1))

{
cerr << "server: Error loading QTAB bank 1" << endl;
cerr << rr—>d status.getMessageText () ;
cleanUpAndExit () ;

}

// Enable interrupts
rr->enableDmalnterrupt () ;
rr->enableFifoInterrupt () ;
rr->enableHwInterrupt () ;

// Start out by aquiring into buffer 0
rr->setNextBank (0) ;
bank = 0;

if (rr->startDma())
{

cerr << "server: Error starting DMA transfer" << endl;
cerr << rr—>d_status.getMessageText();
cleanUpAndExit () ;

}

cout << "Processing frames...." << endl;

// Run at high priority
gnx_spawn_options.priority = 28;

// Start acquiring
rr->grab () ;



// Just keep them frames comin'

for(;;)

{

// If we are filling buffer 0, we'll next fill buffer 1 (but we'll
// continue processing buffer 0)
if (bank)

else

rr->setNextBank (0) ;

rr->setNextBank (1) ;

// Wait for an interrupt
switch (rr->waitForAnyInterrupt (0))

{

case RoadRunner::e dmalnt:
// The buffer has been filled.
// Check to see if we've missed frames

if (rr->checkForInterrupt (RoadRunner::e dmaInt) != -1)
{

*xPosfix = -2;

break;

}

// Find the bright spot.
brightX = -3;
brightY = -3;
//brightvValue = 48;
brightValue = 0;
currentPixel = buffer[bank];
for(y = 0; y < ySize; y++)
{
for(x = 0, tap = 0; tap < 4; tapt+)
{
for (pixel = 0; pixel < 65; pixel++, x++)
{
if (*currentPixel > brightValue)
{
// Remember the brightest spot
brightX = x;
brightY = y;
brightValue = *currentPixel;
}
currentPixel = currentPixel + 4;
}
currentPixel = currentPixel - 259;
}
currentPixel = currentPixel + 268;
}
*xPosfix brightX;
*yPosfix = brightY;

break;
case RoadRunner::e fifolnt:
// FIFO overflow. Indicate error
*xPosfix = -1;
*yPosfix = -1;
cout << "o";

// Recover
rr->reset () ;
if (rr->d status.isStatusError())
{
cerr << "server: Error resetting after overflow"
<< endl;

A-4



cerr << rr—>d status.getMessageText () ;
rr->shutdown () ;
cleanUpAndExit () ;

}

// Aquire into bank 0 first

rr->setNextBank (0) ;

bank = 0;

// Start acquiring again

rr->grab () ;

// Set up to aquire into bank 1 next.

break;

case RoadRunner::e hwiInt:

// HW exception!

*xPosfix = -4;

*yPosfix = -4;

cout << "h";

// Recover

if (rr->reset())

{
cerr << "server: Error resetting after hardware
exception!" << endl;
cerr << rr->d status.getMessageText () ;
rr->shutdown () ;
cleanUpAndExit () ;

}

// Aquire into bank 0 first

rr->setNextBank (0) ;

bank = 0;

// Start acquiring again

rr->grab () ;

// Set up to aquire into bank 1 next.

break;

default:
cerr << "server: Unknown interrupt or error!" << endl;
cleanUpAndExit () ;
}
// OK, that frame is done. Switch to the other bank.

bank "= 1;
}

}
/17
/// Name: signalHandler
/// Description: Catches signals in order to shut down to board before
/17 exiting.
/17

void signalHandler (int)
{

cleanUpAndExit () ;
}

/17

/// Name: cleanUpAndExit

/// Description: Cleans up and exits
/17

void cleanUpAndExit (void)
{

if (xPosfix)

*xPosfix = -5;
if (yPosfix)
*yPosfix = -5;

if (rr)

A-5



// Check for error so if we didn't map the registers we dodn't get
// SIGSEG
if (rr->d_status.isStatusOk())
rr->shutdown () ;
delete rr;

}

if (frameBuffer0)
delete frameBuffer0;

if (frameBufferl)
delete frameBufferl;

exit (0);

A.2 SERVER FOR THE CAMERA-IN-HAND

/17

/// File: handserver.cpp

/// Description: Writes the bright spot pixel information from the in-hand
/17 into shared memory locations xPoshand, yPoshand.

/17 Error Codes:

/77 -1 FIFO Overflow

/// -2 Missed frame (not enough computing power)

/17 -3 No pixels brighter than the threshhold

/77 -4 Hardware exception interrupt

/// -5 Server exited

/// History:
/// 04/17/02 WED Created
/// 06/12/02 WED & TJF got acceptable in-hand data from this server!

#include "RoadRunner.hpp"
#include "DmaBuffer.hpp"
#include "SharedMemory.hpp"
#include "CmdLineArgs.hpp"
#include <sys/types.h>
#include <sys/sched.h>
#include <unistd.h>
#include <sys/stat.h>
#include <iostream.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <stdlib.h>
#include <signal.h>
#include <math.h>

// Global variables needed by cleanup functions
RoadRunner *rr = 0;

DmaBuffer *frameBufferO;

DmaBuffer *frameBufferl;

int *xPosfix;

int *yPosfix;

// Function prototypes
void signalHandler (int) ;
void cleanUpAndExit (void) ;

/77

/// Name: main

/// Description: The main program function
/77

int main(int argc, char *argvl(])

{

A-6



// Command line parameter stuff
CmdLineArgs args (argc, argv);
const char *cameraFile;

int board;

// Camera/image parameters
int xSize = 0;

int ySize = 0;

int bytesPerPixel = 0;

int imageSize;

// DMA buffer and bright spot stuff
char *buffer[2];
char *currentPixel;
int x;

int y;

int brightX;

int brightY;

int tap;

int pixel;

int brightValue;
int bank;

// Shared memory stuff
SharedMemory xPosfixShm;
SharedMemory yPosfixShm;

// Get command line parameters
cameraFile = args.getStringOption ("camera", "DaCad256E4Raw.cam");
board = args.getIntegerOption ("board", 0);
if (args.d status.isStatusError())
{
cerr << "server: Error parsing command line" << endl;
cerr << args.d status.getMessageText () ;
exit (0);
}

// Create the shared memories

xPosfix = (int *)xPosfixShm.create ("xPosfix", sizeof (int));

if (xPosfixShm.isStatusError())

{
cerr << "Error creating xPosfix shared memory" << endl;
exit (0);

}

yPosfix = (int *)yPosfixShm.create ("yPosfix", sizeof (int));

if (yPosfixShm.isStatusError())

{

cerr << "Error creating yPosfix shared memory" << endl;

exit (0);
}
*xPosfix = -3;
*yPosfix = -3;

// Find the board

rr = new RoadRunner (board) ;

if (rr->d _status.isStatusError())

{
cerr << "server: Error locating RoadRunner" << endl;
cerr << rr->d status.getMessageText();
exit (-1);

}

// attach the signal handler to shut down the board when we exit by:
signal (SIGTERM, signalHandler); // the slay utility
signal (SIGINT, signalHandler); // or by pressing CNTL-C

A-7



// Print out info about the board
rr->printBoardInfo (255) ;

// Set up the board

rr->initialize (cameraFile);

if (rr->d status.isStatusError())

{
cerr << "server: Error initializing board" << endl;
cerr << rr—>d status.getMessageText () ;
cleanUpAndExit () ;

}

// Get info

xSize = rr->getXSize();

ySize = rr->get¥Size();

bytesPerPixel = (int)ceil( (double)rr->getBitsPerPixel() / (double)8);
imageSize = xSize * ySize * bytesPerPixel;

// Allocate the DMA buffers

frameBuffer0 = new DmaBuffer (imageSize) ;

if (frameBuffer0->d status.isStatusError())

{
cerr << "server: Error allocating frame buffer 0" << endl;
cerr << frameBuffer(0->d status.getMessageText ()
cleanUpAndExit () ;

}

buffer[0] = (char *)frameBuffer(O->getVirtualAddress();

frameBufferl = new DmaBuffer (imageSize) ;

if (frameBufferl->d status.isStatusError())

{
cerr << "server: Error allocating frame buffer 1" << endl;
cerr << frameBuffer(0->d status.getMessageText ();
cleanUpAndExit () ;

}

buffer[l] = (char *)frameBufferl->getVirtualAddress();

// Set up the DMA descriptors

if (rr->loadQtab (frameBufferO->getPhysicalAddress (), 0, -1))

{
cerr << "server: Error loading QTAB bank 0" << endl;
cerr << rr->d status.getMessageText ();
cleanUpAndExit () ;

}

if (rr->loadQtab (frameBufferl->getPhysicalAddress (), 1, -1))

{
cerr << "server: Error loading QTAB bank 1" << endl;
cerr << rr->d status.getMessageText();
cleanUpAndExit () ;

}

// Enable interrupts
rr->enableDmalnterrupt () ;
rr->enableFifoInterrupt () ;
rr->enableHwInterrupt () ;

// Start out by aquiring into buffer 0
rr->setNextBank (0) ;
bank = 0;

if (rr->startDma ())

{
cerr << "server: Error starting DMA transfer" << endl;
cerr << rr—>d status.getMessageText () ;

A-8



cleanUpAndExit () ;
}

cout << "Processing frames...." << endl;

// Run at high priority
gnx_scheduler (0, 0, SCHED FIFO, 28, 0);

// Start acquiring
rr->grab () ;

// Just keep them frames comin'
for(;;)
{
// If we are filling buffer 0, we'll next fill buffer 1 (but we'll
// continue processing buffer 0)
if (bank)
rr->setNextBank (0) ;
else
rr->setNextBank (1) ;

// Wait for an interrupt
switch (rr->waitForAnyInterrupt (0))
{
case RoadRunner::e dmalnt:
// The buffer has been filled.
// Check to see if we've missed frames

if (rr->checkForInterrupt (RoadRunner::e dmalnt) != -1)
{

*xPosfix = -2;

break;

}

// Find the bright spot.
brightX = -3;
brightY = -3;
//brightvValue = 48;
brightValue = 0;
currentPixel = buffer[bank];
for(y = 0; y < ySize; y++)
{
for(x = 0, tap = 0; tap < 4; tapt+)
{
for (pixel = 0; pixel < 65; pixel++, x++)
{
if (*currentPixel > brightValue)
{
// Remember the brightest spot
brightX = x;
brightY = y;
brightValue = *currentPixel;
}
currentPixel = currentPixel + 4;
}
currentPixel = currentPixel - 259;
}
currentPixel = currentPixel + 268;
}
*xPosfix brightX;
*yPosfix = brightY;

break;

case RoadRunner::e fifolInt:
// FIFO overflow. Indicate error
*xPosfix = -1;

A-9



*yPosfix = -1;
cout << "o";

// Recover

rr->reset () ;

if (rr->d_status.isStatusError())

{
cerr << "server: Error resetting after overflow" << endl;
cerr << rr—>d status.getMessageText () ;
rr->shutdown () ;
cleanUpAndExit () ;

}

// Aguire into bank 0 first

rr->setNextBank (0) ;

bank = 0;

// Start acquiring again

rr->grab () ;

// Set up to aquire into bank 1 next.

break;

case RoadRunner::e hwlnt:

// HW exception!

*xPosfix = -4;

*yPosfix = -4;

cout << "h";

// Aquire into bank 0 first
rr->setNextBank (0) ;
bank = 0;
// Start acquiring again
rr->grab () ;
// Set up to aquire into bank 1 next.
break;
default:
cerr << "server: Unknown interrupt or error!" << endl;
cleanUpAndExit () ;

}
// OK, that frame is done. Switch to the other bank.

bank "= 1;
}

}
/17
/// Name: signalHandler
/// Description: Catches signals in order to shut down to board before
/17 exiting.
/17

void signalHandler (int)

{
cleanUpAndExit () ;

}

/77

/// Name: cleanUpAndExit

/// Description: Cleans up and exits
/77

void cleanUpAndExit (void)
{

if (xPosfix)
*xPosfix = -5;

if (yPosfix)
*yPosfix = -5;

if (rr)

{



// Check for error so if we didn't map the registers we dodn't get
// SIGSEG
if (rr->d_status.isStatusOk())
rr->shutdown () ;
delete rr;

}

if (frameBuffer0)
delete frameBuffer0(;

if (frameBufferl)
delete frameBufferl;

exit (0);

A.3 SHARED MEMORY CLIENT

/17

/// File: netClient.cpp

/// Description: Sets up the server side of a TCP/IP socket and reads bright
/77 spot values from the netServer into shared memory.

/77

#include "CSocket.hpp"
#include "SharedMemory.hpp"
#include "CmdLineArgs.hpp"
#include <iostream.h>
#include <sys/sched.h>
#include <stdlib.h>

/77

/// Name: main

/// Description: The main program function
/77

void main(int argc, char *argvl])

{
CmdLineArgs args (argc, argv);
Socket serverSocket;
int socketPortNumber;
SharedMemory xPoshandShm;
SharedMemory yPoshandShm;
int *xPoshand;
int *yPoshand;
int position([2];

// Get command line parameters
socketPortNumber = args.getIntegerOption ("port", 10000);
if (args.d status.isStatusError())
{
cerr << "netClient: Error parsing command line" << endl;
cerr << args.d status.getMessageText () ;
exit (-1);
}
// Create shared memory locations
xPoshand = (int *) xPoshandShm.create ("xPoshand", sizeof (int));
yPoshand = (int *) yPoshandShm.create ("yPoshand", sizeof (int));

// Set up the socket
cout << "Waiting for data on port " << socketPortNumber << endl;
serverSocket.initServerSocket (socketPortNumber) ;

// Go to high priority for a more deterministic response
gnx scheduler (0, 0, SCHED FIFO, 27, 0);
for (i)



}

serverSocket.receive (position,
*xPoshand = position([0];
*yPoshand = position([1];

if (*xPoshan -5)

{

cout << "Video Server exited.
break;

}

serverSocket.close();

2*sizeof (int));

Quitting." << endl;

A.4 CONTROL PROGRAM

//

// Control Program : CompVis.cpp

// Description In-hand and fixed, robust hydraulic arm control
// : Omotor program is for kinematic level control
// Author : Warren Dixon, John Rowe, Lonnie Love, T.J. Flynn
// Start Date : Mon Feb 18 3:30 2002

//

/] ————= QORTS libraries —--———

#include "ControlProgram.hpp"

#include "IOBoardClient.hpp"

#include "SharedMemory.hpp"

#include "CSocket.hpp"

#include "CmdLineArgs.hpp"

#include "TitanT2.h" // change to a .hpp file and put into /usr/grts/include
#include "Vector.hpp"

#include "Matrix.h" // put Matrix.hpp in /usr/grts/include

#include "StraightLinePathPlanner.hpp"

#include "TitanIIStraightLinePathPlanner.hpp"

#include "ButterworthFilter.hpp"

/] —==== C standard libraries -----

#include <unistd.h>

#include <math.h>

#include <sys/sched.h>

#include <iostream.h>

#include <conio.h>

#include <errno.h>

#include <stdlib.h>

#include <stdio.h>

#include <netdb.h>

#include <arpa/inet.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include "alc defs.h"

#define ALC IP "192.168.20.2"

!/

// Class
//

definition of the CompVis class

class CompVis

{

: public ControlProgram

protected:
/] —==== Log Variables -----
double g0; //Quaternion variables

A-12



double gl;

double g2;

double g3;

double j1; //individual joint positions

double j2;

double j3;

double j4;

double j5;

double j6;

double dx d; //desired task-space (x) velocity

double dy d; //desired task-space (y) velocity

double x_t; //desired task-space (x) position

double y t; //desired task-space (y) position

double z_t; //desired task-space (z) position

double x hand; //pixel-space x-coordinate from in-hand camera
double y hand; //pixel-space y-coordinate from in-hand camera
double x handPrev; // previous control cycle x-hand pixel data
double y handPrev; // previous control cycle y-hand pixel data
double x fixed; //pixel-space x-coordinate from fixed camera
double y fixed; //pixel-space y-coordinate from fixed camera
double R[3][3]; //quaternion matrix which forms roation matrix
double RT[3][3]; //stores transpose of quaternion matrix R
double y[3][1]; // multiplies RT to form rotation matrix
double rotMatrix[3][1]; //rotation matrix formed from RT * y
double xDot[3][1]; // cartesian positions differentiated
double xDotx0ld; // stores x-component of xDot

double xDotyOld; // stores y-component of xDot

double xAreaSum; // running sum of area under curve wrt x
double yAreaSum; // running sum of area under curve wrt y

int homeFlag; // indicates whether arm is at "home" position

int pathNeededFlag; // flag to determine if SLPP is needed
double x h, y h, z h; // cartesian/translation "home" variables

double g0 _h, gl _h, g2 h, g3 _h; // "home" orientation/rotation
double temp; // temporary storage during matrix multiplication
int row; // used for looping during matrix multiplication
int col; // used for looping during matrix multiplication
TitanT2 theTitanT2; // the TitanT2 object used to calculate
// forward/inverse kinematics
ColVector currentTipPosition; // current x, y, and z cartesian
// coordinates of the end-effector
ColVector currentTipQuaternion; // 4 quaternions representing the
// current orientation of the tip
ColVector homeyTipPosition; // x, y, and z cartesian "home"
// coordinates of the tip
ColVector homeyTipQuaternion; // "home" orientation
ColVector desiredTipPosition; // stores desired cartesian x, vy,
// z position of tip

// straight line path planner object for the T2
TitanIIStraightLinePathPlanner theTitanTIISLPP;

ColVector desiredJointPosition; // holds 6 desired joint positions
ColVector currentJointPosition; // holds 6 current joint positions
ColVector homeJoint; // 6 "home" joint positions

float maxTranslationalVelocity;

float maxRotationalVelocity;

float translationalAccel;

float rotationalAccel;

int numIterations; // number of points iterated

double x d, y d, z d;

double g0 d, 9l d, g2 d, g3 d;

double jd 1, jd 2, jd 3, jd 4, jd 5, jd 6;

double errorflag;

double initflag;



double x offset, y offset;
double R11, R12, R21, R22;
double rotMatrix10, rotMatrix20;
double controlPeriod;

double xFixedDot, yFixedDot;
double yFixedPrev, xFixedPrev;

/] ———— Control Parameters —---——-—

double kpl, kp2; // Control Gain

double kn;

double rho sqg; // rho”2

double rhoControlGain; //control gain for rho sqg

double pixelThreshold; // allowable amount of x/y pixel
// displacement between cycles

// === Ethernet Comm Variables
outPKT alcPkt;

outPKT *pAlcPkt;

int sock;

struct sockaddr in server;

char buf[1024];

int status;

h1cPACKET *pInPkt;

int first, cntr;

// === Other Variables -----

SharedMemory xPoshandShm; //Shared Memory Setup

SharedMemory yPoshandShm;

SharedMemory xPosfixShm;

SharedMemory yPosfixShm;

int *xPoshand; //interger pointer to shared memory
int *yPoshand;

int *xPosfix;

int *yPosfix;

ButterworthFilter<double> filter;

public:

// Constructor.

CompVis (int argc, char *argv[]) : ControlProgram (argc, argv),
currentTipPosition (3),
currentTipQuaternion (4),
homeyTipPosition (3),
homeyTipQuaternion (4),
desiredTipPosition(3),
currentJointPosition (6),
desiredJointPosition (6),
theTitanTIISLPP (),
homeJoint (6)

{};

// Destructor. Usually no need to make changes here
~CompVis () {};

virtual int enterControl();
virtual int startControl () ;
virtual int control();

virtual int stopControl ();
virtual int exitControl ();

i

//

// CompVis::enterControl




// This function is called when the control program is loaded. In standalone
// mode, this happens immediately. When using the GUI, it happens when the
// user loads the control program.

//

int CompVis::enterControl ()

{
/] ————= Log Variables ————-

registerLogVariable (&x hand, "x hand", "X hand");
registerLogVariable (&y hand, "y hand", "Y hand");
registerLogVariable '
registerLogVariable
registerLogVariable
registerLogVariable
registerLogVariable
registerLogVariable

&j1l, "joint 1", "Joint 1
&j2, "joint 2", "Joint 2
&j3, "joint 3", "Joint 3
4
5
6

v .

’
"y .
’

)
)
')
)
)
)

&j4, "joint 4", "Joint ;
&j5, "joint 5", "Joint

&j6, "joint 6", "Joint

’

v

’

registerLogVariable (&x fixed, "x fixed", "X fixed");
registerLogVariable (&y fixed, "y fixed", "Y fixed");

registerLogVariable (&x d, "x d", "x d");

registerLogVariable(&y d, "y d", "y d");

registerLogVariable (&z d, "z:d", "z:d");

registerLogVariable
registerLogVariable
registerLogVariable
registerLogVariable

&qo_d, nqo_d" , nqo_dn) ;
&ql_d, "ql_d" , "ql_d" ) ;
&q27d, "C_[27d" , vlqzid") ;
&q3_d, "q3_d", "q3_d") ;

registerLogVariable
registerLogVariable
registerLogVariable
registerLogVariable

&jd 1, "jd 1", "Joint 1 des");
&jd 2, "jd 2", "Joint 2 des");
&jd 3, "jd 3", "Joint 3 des");
&jd 4, "jd 4", "Joint 4 des");
registerLogVariable (&jd 5, "jd 5", "Joint 5 des");
registerLogVariable (&jd 6, "jd 6", "Joint 6 des");
registerLogVariable (¢homeFlag, "homeflag", "homeflag");
registerLogVariable (&errorflag, "errorflag", "errorflag");

registerLogVariable (&initflag,

"initflag",

registerLogVariable (&R11,

registerLogVariable (&R21,

"R11" ,

"ROM ,

"R11" ;

’

"R21M

"initflag");

( )
registerLogVariable (&R12, "R12", "R12");

( )

( )

’

registerLogVariable (&R22, "R22", "R22"

registerLogVariable
registerLogVariable
registerLogVariable
registerLogVariable

&rotMatrix10, "rotMatrixl10", "rotMatrixlQ");
&rotMatrix20, "rotMatrix20", "rotMatrix20");
&xFixedDot, "xfd", "xfd");
&yFixedDot, "yfd", "yfd");

registerLogVariable (&controlPeriod, "controlPeriod", "control period");
// ———— Control Parameters —--—--—

registerControlParameter (&¢kpl, "kpl", "Proportional Gain");

registerControlParameter (&kp2, "kp2", "Proportional Gain");
registerControlParameter (&kn, "kn", "Damping Gain");
registerControlParameter (&rhoControlGain, "rhoControlGain", "Rho Squared
registerControlParameter (&pixelThreshold, "pixelThreshold", "Max. pixel
displacement") ;

// Set all control parameters initially to zero
clearAllControlParameters () ;

gnx scheduler (0, 0, SCHED FIFO, 27, 0);

A-15

Gain") ;



// initialize ethernet comm
PAlcPkt = &alcPkt;
pInPkt = (hlcPACKET *)&buf[0];

// initialize packet to ALC
for( int i=0; i<7; i++ )
alcPkt.rightArmPos[i] = (float)O;

alcPkt.mode = GUI NONE;
alcPkt.armSwitch = 0;
alcPkt.panelSwitch = 0;

// Create socket
sock = socket ( AF INET, SOCK STREAM, 0 );

if( sock < 0 )

{
perror ("Opening stream socket" );
return (-1);

}

// Connect socket

server.sin family = AF INET;

server.sin addr.s addr = inet addr( ALC IP );
server.sin port = htons ( 9000 );

if ( connect( sock, (struct sockaddr*)&server, sizeof (server) ) < 0 )

{
perror ( "connecting stream socket" );
return (-1);

}

return 0;

}

//
// CompVis::startControl
/o
// Called each time a control run is started. If running from the GUI, this
// will be called each time the START button is pushed.

//

int CompVis::startControl ()

{

printf ("Start Control\n");
clearAllLogVariables () ;
/] === Initialize your clients here -----

filter.setCutOffFrequency (10);

filter.setSamplingTime (d controlPeriod) ;
filter.setDampingRatio (1.0);
filter.setAutoInit () ;

homeFlag = 0;
pathNeededFlag = 1;
temp = 0;
numlterations = 0;
initflag = 0;

// initial values to indicate no in-hand pixel data has been read
x _handPrev = 9999;
y handPrev = 9999;
xFixedPrev = 9999;
yFixedPrev = 9999;



// "home" joint column vector

homeJoint [0]
homeJoint [1]
homeJoint [2]
homeJoint [3]
homeJoint [4]
homeJoint [5]

0.14;
0.46;
-1.69;
1.23;
0.01;

= -0.15;

// use "home" joint info to get homey tip and homey quaternion

theTitanT2.CalcForwardKinematics (homeJoint) ;

homeyTipQuaternion = theTitanT2.GetTipQuarternion () ;

homeyTipPosition = theTitanT2.GetTipPosition() ;

// "home" path parameters
maxTranslationalVelocity = 5;
maxRotationalVelocity = 45;
translationalAccel = 4.83;
rotationalAccel = 180;

pPAlcPkt->mode

= GUI_NONE;

// Read the 6 joint positions from ALC

cntr = 0;
do
{

if( send( sock, pAlcPkt,

{

}

status

{

}

sizeof (alcPkt),

perror( "writing to stream socket" );

return (-1);

= recv( sock, &buf[0], sizeof(buf), 0 );
if( status < 0 )

perror( "recv called" );
return(-1);

1f ( pInPkt->mode == AM ERRCR )

else

cntr++;
if( cntr > 5 )

{

}

pAlcPkt->mode = GUI CLEAR ERROR;

pAlcPkt->mode = GUI ENABLE;

0) <0)

printf ("Start Control count exceeded\n");

return (-1);

sleep(l);
} while( (pInPkt->mode != AM SERVO)

(GRS
DSw N
([

.
(€]
Il

double)pInPkt->armPos[0];
double) pInPkt->armPos[1];
double)pInPkt->armPos[2];
double)pInPkt->armPos[3];
double) pInPkt->armPos[4];
double) pInPkt->armPos[5];

(status

first = 1; // variable to alter first loop in control

sleep(1l);

if( send( sock, pAlcPkt, sizeof(alcPkt), 0 ) < 0 )

A-17

= sizeof (h1cPACKET))

)7



perror ( "writing to stream socket" );
return(-1);

}

return 0;

// CompVis::control

// Called each control cycle. Do your input, control computations, and output
// here. If you return 0, the control will continue to execute. If you return
// nonzero, the control will abort. You may want to abort if some error

// condition occurs (excessive velocity, etc.)

int CompVis::control ()

{

pAlcPkt->mode = GUI TR;

if (homeFlag != 1)
{
// read in 6 current Jjoint positions
status = recv( sock, &buf[0], sizeof (buf), 0 );

if( status < 0 )

{
perror( "recv called" );
return(-1);

jl = (double)pInPkt->armPos[0];
j2 = (double)pInPkt->armPos[1];
33 = (double)pInPkt->armPos[2];
j4 = (double)pInPkt->armPos[3];
j5 = (double)pInPkt->armPos[4];
j6 = (double)pInPkt->armPos[5];

// store newly read joint positions in column vector
currentJointPosition[0] = j1;

currentJointPosition[l] = j2;
currentJointPosition[2] = j3;
currentJointPosition[3] = j4;
currentJointPosition[4] = j5;
currentJointPosition[5] = j6;

// use current joint positions to get corresponding current
// cartesian points and current quaternion
theTitanT2.CalcForwardKinematics (currentJointPosition) ;

// store newly calculated tip %, y, and z positions
currentTipPosition = theTitanT2.GetTipPosition();

// store newly calculated tip orientation
currentTipQuaternion = theTitanT2.GetTipQuarternion() ;

// create a straight line path plan if not already made
if (pathNeededFlag == 1)

{

theTitanTIISLPP.ResetPathPlanner (currentTipPosition,
homeyTipPosition,



currentTipQuaternion,
homeyTipQuaternion,
maxTranslationalVelocity,
translationalAccel,
maxRotationalVelocity,
rotationalAccel,

d controlPeriod) ;

// ensure that only 1 SLPP is created while moving arm to "home"
pathNeededFlag = 0;
}

// iterate x, y, and z tip positions and quaternion to next point
theTitanTIISLPP.iteratePathPlanner () ;
numIterations = numIterations + 1;

// get 6 new joint positions based on iterated Cartesian points
// and quaternion

theTitanT2.CalcInverseKinematics (theTitanTIISLPP.GetPositionVector(),
theTitanTIISLPP.GetQuaternion());

// send new desired joint position data to ALC to move arm
desiredJointPosition = theTitanT2.GetJointPosition () ;

PAlcPkt->rightArmPos[0] = desiredJointPosition[0];
PAlcPkt->rightArmPos[1l] = desiredJointPosition[1];
pPAlcPkt->rightArmPos[2] = desiredJointPosition[2];
PAlcPkt->rightArmPos[3] = desiredJointPosition[3];
PAlcPkt->rightArmPos[4] = desiredJointPosition[4];
PAlcPkt->rightArmPos[5] = desiredJointPosition[5];

if( send( sock, pAlcPkt, sizeof(alcPkt), 0 ) < 0 )
{
perror ( "writing to stream socket" );
return (-1);

x d = homeyTipPosition[0];
y d = homeyTipPosition[1];
z d = homeyTipPosition[2];

g0 d = homeyTipQuaternion[0];
gl d = homeyTipQuaternion[1l];
g2 d = homeyTipQuaternion[2];
g3 d = homeyTipQuaternion[3];

jd 1 = desiredJointPosition[0];
jd 2 = desiredJointPosition[1];
jd 3 = desiredJointPosition[2];
jd 4 = desiredJointPosition[3];
jd 5 = desiredJointPosition[4];
jd 6 = desiredJointPosition[5];

// Must initialize the trapazoidal rule for homey position

xDotx0ld = y d;
xDotyOld = z d;
xAreaSum = xDotx0ld;
yAreaSum = xDotyOld;

if (numIterations >= theTitanTIISLPP.GetNumberOfPathPoints())
{

homeFlag = 1; // now at (or close enough to) the "home"
return 0; }



else
return 0; // otherwise just keep iterating to "home"

/] —— Begin actual kinematic control of the arm for tracking —----—-

// Read in joint positions at beginning of every control cycle
status = recv( sock, &buf[0], sizeof (buf), 0 );
if ( status < 0 )
{
perror ( "recv called" );
return (-1);

double) pInPkt->armPos[0];
double) pInPkt->armPos[1];
double)pInPkt->armPos([2];
double) pInPkt->armPos[3];
double) pInPkt->armPos[4];
double)pInPkt->armPos([5];

[N
w N
I

.
IS
Il

currentJointPosition
currentJointPosition
currentJointPosition
currentJointPosition
currentJointPosition
currentJointPosition

=31
= J2;
= 33;
= J4;
= 3s;
= j6;

theTitanT2.CalcForwardKinematics (currentJointPosition) ;
currentTipQuaternion = theTitanT2.GetTipQuarternion () ;
//currentTipPosition = theTitanT2.GetTipPosition();

// read x & y IN-HAND data from shared memory

xPoshand = (int *)xPoshandShm.attach ("xPoshand", sizeof (int));
if (xPoshandShm.isStatusError ())
{
cerr << "Error opening shared memory \"xPoshand\": ";
cerr << strerror (errno) << endl;
return 0;

}

yPoshand = (int *)yPoshandShm.attach ("yPoshand", sizeof (int));
if (yPoshandShm.isStatusError())
{
cerr << "Error opening shared memory \"yPoshand\": ";
cerr << strerror (errno) << endl;
return 0;
}
if (initflag != 1)
{
x offset = *xPoshand - (double)128;
y offset = (double)128 - *yPoshand;
initflag 1;
}

x hand = *xPoshand - (double)128 - x offset;
y hand = (double)128 - *yPoshand - y offset;

// check amount of x/y pixel displacement between successive cycles

A-20



// and abort if too large

// check if first cycle of pixel data
if (x_handPrev == 9999 && y handPrev == 9999)
{
x _handPrev = x hand;
y handPrev = y hand;
}

if (fabs (x_hand - x handPrev) > pixelThreshold)
{

errorflag = 5;

x _hand = x handPrev;

}

if (fabs(y hand - y handPrev) > pixelThreshold)
{

errorflag = 5;

y hand = y handPrev;
}

x _handPrev = x hand;
y handPrev = y hand;

// read x & y FIXED data from shared memory

xPosfix = (int *)xPosfixShm.attach ("xPosfix", sizeof (int));
if (xPosfixShm.isStatusError())
{
cerr << "Error opening shared memory \"xPosfix\" : ";
cerr << strerror (errno) << endl;
return 0;

}

yPosfix = (int *)yPosfixShm.attach ("yPosfix", sizeof (int));
if (yPosfixShm.isStatusError())
{
cerr << "Error opening shared memory \"yPosfix\": ";
cerr << strerror (errno) << endl;
return 0;

}

x fixed = *xPosfix - (double)128;
y fixed = (double)128 - *yPosfix;

// check if first cycle of pixel data
if (xFixedPrev == 9999 && yFixedPrev == 9999)
{
xFixedPrev = x fixed;
yFixedPrev = y fixed;
}

xFixedDot = filter.filter ((x fixed - xFixedPrev) / d controlPeriod);
yFixedDot = filter.filter((y fixed - yFixedPrev) / d controlPeriod);

xFixedPrev = x fixed;
yFixedPrev = y fixed;

//do rho-squared calculation
rho sq = rhoControlGain * (pow(x fixed, 2) + pow(y fixed, 2));

//do rotation matrix calculation
//first initialize the matrix R

// g0 - g3 replaced by currentTipQuaternion[0] - [3]

A-21



R[O][0] = 1;
R[O][1] = R[O][2] = R[1][0] = R[2][0] = O;
R[1][1] = R11 =1 - (2 * (pow(currentTipQuaternion[l], 2) +

pow (currentTipQuaternion([3], 2)));

R[1][2] = Rl12 = 2 * ((currentTipQuaternion[2] * currentTipQuaternion([3])
- (currentTipQuaternion[0] *currentTipQuaternion[l]));

R[2][1] = R21 = 2 * ((currentTipQuaternion[2] * currentTipQuaternion([3])
(1))

+ (currentTipQuaternion[0] *currentTipQuaternion[l]
R[2][2] = R22 =1 - (2 * (pow(currentTipQuaternion[l], 2)
+ pow (currentTipQuaternion([2], 2)));

// take transpose of matrix R to form RT

RT[0][0] = 1;
RT[0][1] = RT[0][2] = RT[1][0] = RT[2][0] = O;
RT[1][1] =1 - (2 * (pow(currentTipQuaternion[l], 2) + pow(currentTipQuaternion[3],
2)));
RT[1][2] = 2 * ((currentTipQuaternion[2] * currentTipQuaternion[3])

+ (currentTipQuaternion[0] *currentTipQuaternion[l]));
RT[2][1] = 2 * ((currentTipQuaternion[2] * currentTipQuaternion[3])

- (currentTipQuaternion[0] *currentTipQuaternion[1l]));
RT[2][2] = 1 - (2 * (pow(currentTipQuaternion[l], 2) + pow(currentTipQuaternion[2],
2)));

// finally form rotation matrix rotMatrix = RT * y
// after initializing y

yl0][0] = 0;
y[1][0] x_hand;
y[2][0] = y hand;

for(row = 0; row < 3; rowt+)

{

for(col = 0; col < 3; col++)
temp = temp + (RT[row] [col] * y[col][0]);
rotMatrix[row] [0] = temp;
temp = 0;
}

rotMatrixl0 = rotMatrix[1][0];
rotMatrix20 = rotMatrix[2][0];

controlPeriod = d controlPeriod;

// now calculate xDot (also known as U)
xDot [1][0] = - (kpl + (kn * (xFixedDot * xFixedDot))) * rotMatrix([1][0];
xDot [2] [0] = (kp2 + (kn * (yFixedDot * yFixedDot))) * rotMatrix([2][0];

// numerically integrate xDot to get x-desired and y-desired by
// Trapezoidal Rule

xAreaSum += d controlPeriod * ((xDotxOld + xDot[1][0]) / 2);
yAreaSum += d_controlPeriod * ((xDotyOld + xDot[2][0]) / 2);

// save old integration endpoints for next iteration
xDotx0ld = xDot[1][0];
xDotyOld = xDot[2][0];

x t = xAreaSum;
y t = yAreaSum;

// save DESIRED x, y, and z cartesian positions
desiredTipPosition[0] homeyTipPosition[0];
desiredTipPosition[l] = x t;
desiredTipPosition[2] =y t;

A-22



// calculate desired joint positions from corresponding desired
// cartesian positions and desired quaternion
theTitanT2.CalcInverseKinematics (desiredTipPosition, homeyTipQuaternion) ;

// get and send desired joint positioning data to ALC
desiredJointPosition = theTitanT2.GetJointPosition();

PAlcPkt->rightArmPos[0] = desiredJointPosition[0];
PAlcPkt->rightArmPos[1l] = desiredJointPosition[1];
pPAlcPkt->rightArmPos[2] = desiredJointPosition([2];
PAlcPkt->rightArmPos[3] = desiredJointPosition[3];
PAlcPkt->rightArmPos[4] = desiredJointPosition[4];
pPAlcPkt->rightArmPos[5] = desiredJointPosition[5];

if ( send( sock, pAlcPkt, sizeof(alcPkt), 0 ) < 0 )
{
perror( "writing to stream socket" );
return(-1);

y d=xt;

z d =y t;

x d = homeyTipPosition[0];
g0 _d = homeyTipQuaternion[0];
gl d = homeyTipQuaternion[1];
g2_d = homeyTipQuaternion[2];
g3 d = homeyTipQuaternion[3];

jd 1 = desiredJointPosition[0];
jd 2 = desiredJointPosition[1];
jd 3 = desiredJointPosition[2];
jd 4 = desiredJointPosition[3];
jd 5 = desiredJointPosition[4];
jd 6 = desiredJointPosition[5