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ABSTRACT

The monocular passive ranging (MPR) problem in remote sensing consists of identifying the
precise range of an airborne target (missile, plane, etc.) from its observed radiance. This
inverse problem may be set as a global optimization problem (GOP) whereby the difference
between the observed and model predicted radiances is minimized over the possible ranges
and atmospheric conditions. Using additional information about the error function between
the predicted and observed radiances of the target, we developed GMG, a new algorithm
to find the Global Minimum with a Guarantee. The new algorithm transforms the original
continuous GOP into a discrete search problem, thereby guaranteeing to find the position
of the global minimum in a reasonably short time. The algorithm is first applied to the
golf course problem, which serves as a litmus test for its performance in the presence of
both complete and degraded additional information. GMG is further assessed on a set of
standard benchmark functions and then applied to various realizations of the MPR problem.
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1 INTRODUCTION - THE GLOBAL OPTIMIZATION PROBLEM

The Global Optimization Problem (GOP) sounds deceptively simple: find the absolute
minimum of a given function - called the objective function - over the allowed range of its
variables.

The primary difficulty in solving GOPs stems from the fact that the condition for de-
termining minima, namely annulment of the gradient of the objective function, is only
necessary i.e., as it may indicate another type of critical point, and local, as it does not
distinguish between local and global minima. Since, in general, the number of local minima
grows exponentially with dimensionality, solving the GOP turns out to be a computationally
hard problem [1].

The generic strategy to find the global minimum involves two main operations, namely:
(i) descent to a local minimum, and (ii) search for a new descent region, which are alter-
natively repeated. Since each function evaluation may involve an expensive computational
process, the number of function evaluations needs to be kept to a minimum. It is not
surprising that, together with accuracy, this number provides the paramount criterion in
comparing the efficiency of competing optimization algorithms. However, as the dimension-
ality of the problem increases, the search phase becomes the most time-consuming part of
the algorithm. As a result, in general, conventional strategies offer no guarantee and little
hope that the global minimum could be found in a reasonable time.

To guarantee finding the location of the global minimum while maintaining the search at
an affordable cost, additional information about the objective function has to be provided
and used. Traditionally this information has been mostly related to various smoothness
properties of the objective function, such as global uniform bounds on its first and/or
second partial derivatives with respect to the independent variables. If such information
is available, it can be used to construct a domain covering which is then exhaustively or
selectively searched. For a good review on covering methods, the interested reader is referred
to the book of Térn and Zilinkas [2].

The method presented here belongs to the same general framework. Its novelty consists
in the type of information that is used to reduce the complexity of the GOP. The relevance
of our method is threefold: (i) it does not require information on smoothness, which often
is difficult to obtain; (ii) whenever information on smoothness is available, our information
complements it; and (iii) it ensures that the resulting covering is the minimal one needed
to guarantee finding the global minimum.

Interest in developing efficient and reliable methods for the GOP has grown together with
the number of its practical applications [3], which range from logistics and transportation to
pattern recognition for biometric identification and protein folding in computational biology.
In the following, we focus on the specific GOP that arises when solving the monocular
passive ranging (MPR) problem [4, 5] for remote sensing in the atmosphere.






2 MONOCULAR PASSIVE RANGING

Remote sensing in the atmosphere is an important field of research that is directly relevant
to National Defense. For example, a recent American Physical Society study investigates the
challenges of boost-phase defense against intercontinental ballistic missiles [6], pointing out
the importance of being able to detect, identify, and track missiles as early and as precisely
as possible. Thus, solving the MPR efficiently and accurately represents the technical
foundation for critical defense decisions (e.g., in missile defense), whence the importance of
a global opptimization algorithm that guarantees the optimal solution in a reasonable time.

The goal of MPR is to enable accurate target range estimation when active measure-
ments (e.g., radar) or multiple views of the same target are unavailable. Therefore the
instantaneous range to a target is determined using a single sensor. If the sensor is fitted
on an aircraft operating at cruising altitude, then two measurement scenarios are possible:
uplooking, when the target is at a higher altitude (see Fig. 1), and downlooking, when the
target is at a lower altitude.

As electromagnetic radiation travels through the atmosphere, it interacts with molecules
of various gases and larger particles, and is either transmitted, absorbed, or scattered. The
result of the absorption and scattering processes is an effective extinction of the radiation
at a rate that depends on wavelength, temperature, density, aerosol composition, and the
absorption coefficient for each gas or particle, which in turn depends on the atomic and
molecular structure. In general, the target range in MPR depends on the cumulative effect
that many different atmospheric variables have on the propagation of the radiation detected
by the sensor. The calculation of the radiance at the sensor is sensitive in a nonlinear way
to various uncertainties. Therefore, determining the target range amounts to defining and
solving a quite complex inverse problem that poses a formidable computational challenge.

Modeling the absorption and scattering processes to calculate the radiance of a target
can be achieved using MODTRAN. MODerate resolution TRANsmission is a computational
model [7, 8] developed by the Air Force Research Lab / Space Vehicles Directorate and
Spectral Sciences Inc., for predicting atmospheric radiation transmission, radiance, and flux
for targets at different ranges. It is an authoritative benchmark for calculating the radiance
received at an airborne or spaceborne sensor, across a full spectral range, for arbitrary
refracted paths above the curved earth, and allows the user to create rich descriptions of
the atmosphere, including vertical profiles of the water vapor, ozone, aerosols, etc.

The computational techniques used in MPR have progressed from basic approximations
[5] that make ad-hoc assumptions about atmospheric conditions and the target radiance to
advanced methods [4], based on continuum interpolation or parameter estimation.

To date, the most sophisticated method for MPR [4] is parameter estimation, which
uses an error function between the actual sensor-measured radiance of a target, and the
radiance calculated by MODTRAN for different ranges and atmospheric conditions. The
range is obtained by minimizing the error function in the least squares sense, starting from
an educated guess for the initial values of the relevant parameters. The computational com-
plexity of this multi-dimensional nonlinear optimization problem is simplified by linearizing
the MODTRAN model, and retaining only the first term of its Taylor expansion, which is
generated by an automatic differentiation process [9].

Our approach to solving the MPR also employs an optimization of the error function
defined as the square of the difference between the actual observed radiance of a target and
the radiance calculated by MODTRAN. However, here we consider the original problem (as
opposed to its linearization) and we aim to guarantee finding the global minimum of the error
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Figure 1: Baseline uplooking MPR scenario for an airborne sensor.

function. To illustrate our approach, we restrict ourselves to a very simple MPR problem,
namely: determine the range from one sensor measurement, for density fluctuations of only
one type of absorbing gas.

This MPR problem can be cast as a GOP using the following steps:

1. Obtain a sensor measurement, S, of the radiance of a target, which is at an (yet to
be determined) range xy from the sensor.

2. Find the global minimum of the error function, £(¢), between the observed radiance,
S, and the model-calculated radiances, R(¢), over the entire domain ¢,

min £(¢) = min [S — R(Q)][* (1)
to determine the actual range xg.

3. Use MODTRAN to calculate the radiances, R((), at the sensor, for various realizations
of the ”variable” ( = {z, p(r)}, where z is the range and p(r) is a function that depends
on the atmospheric altitude, r, and is assumed to describe all the pertinent features
of the atmosphere.

Since measured radiances are known to be most sensitive to fluctuations in the ozone
density, we restrict ourselves to a situation where the function p(r) represents only the
ozone density, at the altitude r. We note that, in general, the ozone profile depends on



various factors such as latitude, calendar month, proximity to built-up areas, etc. We can
take advantage of measurements available for ozone profiles in different scenarios to further
reduce the complexity of the problem. This additional information is used by considering
small variations, dp(r), about a known standard mean ozone profile, po(r), in the form:

p(r) = po(r) + op(r). (2)

The variations dp(r) are functions that belong to an infinite dimensional set. We dis-
cretize dp(r) by k independent variables, dp1,dp2, ..., dpg, corresponding to k atmospheric
layers, [y,...,lx. This results in an approximate GOP, whereby we minimize the error
function:

E(y) = HS - R(3775/)175P2: cee 75p1€)”27 (3)

over a bounded (k+1)-dimensional vector y = {x,dp; }. Henceforth, we consider the solution
to the problem in Eq. 3 to be “exact”, and therefore all further errors would correspond to
deviations from the solution to this problem.

To assess the results of our algorithm, we do not use a measured radiance S. Instead,
we use MODTRAN to compute a response for a given set of known parameter vector y* =
{zos,0p15,9p25,---,0prs}. This response is used as S, and at the end of the optimization
process we expect to recover the known parameter vector y*.

Indeed, when the parameters used in the model yield a radiance that coincides exactly
with the measured radiance from the target, the global minimum is attained, since the
value of the global minimum for a perfect fit is zero. Assuming that the optimal solution is
unique, all the other minima of the error function, Eq. 3, have positive values.






3 A GLOBAL OPTIMIZATION ALGORITHM WITH A GUARANTEE:
GMG

To guarantee finding the global minimum in a timely manner, additional information has
to be used to reduce the complexity of the GOP. Additional information about the error
function, E(y), may include the size of the basin of attraction for the global minimum, the
separation between the global minimum and the next lowest local minimum, the value of
the global minimum (e.g., in the example above it is zero), the Lipschitz constants, the
general shape of the error function, and information about the uncertainties inherent in the
sensor measurement. We note that while some amount of information is usually available in
many applications, existing optimization algorithms do mot and sometimes cannot exploit
this information. As a result, they cannot offer any guarantee that the global minimum has
been found.

The additional information about the objective function enables us to map the contin-
uous GOP onto a discrete search, whereby: (i) all basins of attraction, except that of the
global minimum, are eliminated, and (ii) the number of function evaluations in the search
process is kept at the minimum number necessary to guarantee the optimal solution. Below,
we present a specific set of such conditions. Further on, we demonstrate that these assump-
tions may be relaxed, and consider the effect of incomplete information on the performance
and guarantee of the algorithm.

3.1 SUFFICIENT ADDITIONAL INFORMATION

Consider an error function in MPR for d = k+1 variables, E(y), that has a certain degree of
smoothness. Without restricting generality, we can assume that E is defined on the domain
[0,1]¢ and takes values in the range [0, 1]. Different (bounded) domains and ranges can be
accommodated by appropriate scalings.

The following conditions constitute sufficient additional information about the error
function, for our algorithm to find the global minimum with a guarantee:

1. there is a unique global minimum and its value is zero, E,;, = O;

2. there are no local minima whose value is infinitesimally close to zero; i.e., the values
of the other minima are larger than a constant é > 0, and

3. the size of the basin of attraction for the global minimum, measured at height ¢, is
known.

The threshold value ¢ identifies the values of the error function that are smaller than §
and belong exclusively to the basin of attraction of the global minimum, thereby enabling
its identification.

The domain of the error function is discretized, by uniformly dividing [0, 1]¢ into a
grid of M9 small d-dimensional hypercubes, which provides a complete covering [2]. The
information about the size of the basin of attraction of the global minimum specifies the
necessary resolution of the discretization grid [15]. The error function is evaluated at M + 1
points in each dimension, in order to guarantee that only one of the N = (M + 1)¢ points
belongs to the basin of attraction of the global minimum.

Then, the error function is shifted upwards by the known value 1 — §, and its integer
part,

e(y;) = INT[E(y;) + (1 - )], (4)



is evaluated at a series of points y,; (i =1...N).

Thus the range of e(y) is limited to the values zero and one, mapping the original
continuous GOP onto a discrete, unsorted search problem. This transformed error function
is known to be equal to one for all inputs, except for y = y*, where e(y*) = 0. We note that
searching for the value y*, which identifies the basin of attraction of the global minimum,
is equivalent to searching for the golf-hole in the notoriously difficult golf-course problem
(see below). Once y* is found, an appropriate descent method is applied to the original
function to reach the global minimum, and consequently determine the exact range, xg, of
the target from the sensor.

Thus finding the Global Minimum is Guaranteed in a finite time, as long as the number
of function calls used in the discrete search phase is finite. For this reason we call our
algorithm GMG. For a small number N of error function evaluations, there are simple and
straightforward algorithms for the discrete, unsorted search that can be run on a single
processor in a reasonable time. However, for GOPs that require high-density grids, or have
a large number of dimensions, this search has to be implemented on high-performance com-
puters. Parallel algorithms for the discrete, unsorted search are “embarrassingly parallel”,
thus they can utilize the full power of available machines with large numbers of processors.

Further reductions in complexity are offered by quantum computing [10], or an exponen-
tially large number of processors [11]. We note that while the original curse of dimensionality
is not eliminated by our algorithm, it is nevertheless mitigated by bringing the number of
function evaluations to the absolute minimum necessary to guarantee the optimal result.

To validate the algorithm we applied it to the golf-course problem, which offers all the
additional information listed above. The one-dimensional version of the golf-course problem
can be written as:

) O0fora—po/2<x<a+ /2
f(x){1forngSa—ﬁo/Qanda+ﬂ0/2§x§1 ’ (5)

where a is any point in the interval (£y/2,1 — (y/2), but is otherwise unknown.

For this function, the size §y of the basin of attraction is known exactly. To ensure that
there is a unique global minimum located in the interval a — 8y/2 < z < a + (§y/2, the grid
size for the discretization of the domain of f(z) is set to 5 = By. Thus, for the golf-course
problem, all of the sufficient additional information discussed in Section 3.1 is available, and
finding the global minimum with a guarantee is equivalent to the discrete search problem
for the error function e(y) in Eq. (4).

The d-dimensional version of the golf-course problem can be written as:

, (6)

o) = 0 for a; — Bo/2 < x; < a;+ [p/2, foralli=1...d
T1) =\ 1 otherwise

where a1, ..., aq are the coordinates of the center of the d-dimensional hypercubic golf-hole.

3.2 INCOMPLETE ADDITIONAL INFORMATION

The set of conditions listed in the previous section illustrate the type and amount of ad-
ditional information that is sufficient to guarantee that our algorithm will find the global
minimum. However, in general, these conditions are satisfied only to a certain extent, due
both to incomplete knowledge and noise inherent in measurements. Missing or corrupted
information results in the following relaxations of the sufficient conditions:
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1. Theoretically, the error function E(y) should be zero when the predicted radiance is
exactly equal to the observed target radiance. However, the global minimum of the
error function may have a value greater than zero, due to measurement noise.

2. The value § separating the global minimum from the next-lowest minimum may be
inaccurate or completely unknown. Still, if the total number of minima is finite, which
is a very reasonable assumption for a real-world problem, then such a finite § does
exist.

3. Finally, we often have only a rough estimate or an upper bound for the size of the
basin of attraction of the global minimum. Of course, one may attempt to estimate
this size from previous samplings of E(y), whenever available.

We report the performance of GMG under the effect of insufficient and/or corrupted
information, as described in the conditions 1-3 above.

1. The global minimum of the error function can still be found after the addition of
noise as long as it retains its ”global minimum” status. Typically, this means that in solving
the MPR problem, we can guarantee to find the noise-free global minimum if the noise level
is relatively small (< 6). In general, if the ordering of the j lowest minima in the error
function is scrambled, our algorithm can find all of these minima, but then offers no help
in sorting them out correctly using only a single measurement.

2. Finding the noise-free global minimum is straightforward if we know the value of
0. Otherwise, we have to iterate the transformation in Eq. 4 for the error function. We
start with 6 = 1/2, which is likely to produce many zero values in the transformed error
function, and keep refining § by a halving procedure until exactly one zero value is found in
the output of e(y). The corresponding point is guaranteed to be in the basin of attraction
of the global minimum, assuming that the size of the basin of attraction is known.

The estimation of the threshold § requires no additional evaluations of the error func-
tion, and only a logarithmic number of iterative steps O(log{1/0}) to identify the basin of
attraction. Thus our algorithm can deal successfully with these types of missing informa-
tion, at the same time, given that the ordering of the minima is unchanged in the presence
of noise.

3. Information about the size of the basin of attraction is more consequential, since it
controls the minimum grid density, i.e., the required number of error function evaluations,
which can be expensive. This also explains why we do not start with a very small value of
0, which would entail a grid density greater than the required minimum. The discretiza-
tion grid in Eq. 4 has to be sufficiently dense though to ensure that the global minimum
maintains its absolute minimum status in the process of sampling the error function. If the
function evaluations required by the grid can be computed in a reasonable time, then it is
straightforward to iterate the estimate of the shift 1 — § for the error function, until exactly
one zero value is found in the output of e(y).

For the simplest case of a one-dimensional objective function, where the smallest grid
size available for a fixed running time is 3, and the actual size of the basin of attraction is
Bo, our algorithm’s outcomes can be summarized as follows:

1. if By is known exactly, and

(a) B < Bo: the algorithm is guaranteed to find the global minimum;
(b) B> Bp: the algorithm has only a small chance to find the global minimum;

10



2. if By is completely unknown: use 3 for the grid size, and

(a) if B < (p: the algorithm will find the global minimum;
(b) else the algorithm will most likely NOT find the global minimum,;

3. if a probability distribution has been calculated, measured, or inferred for 5y (e.g., an
upper bound) then the cumulative probability for 5y > ( determines how likely it is
that the algorithm will find the global minimum.

The performance of GMG under these relaxed conditions has been again verified on
suitably modified golf-course problems. We assume that the “uncertain” golf-course function
maintains the same shape, however the size of the basin of attraction varies from 31 to 32,
within a well-defined uniform probability distribution.

The results of our numerical tests for the golf-course problem with precise and imprecise
additional information are summarized in Figures 2-5. Figures 2 and 3 show a comparison
of the time required to find the global minimum with a guarantee, after averaging over a
hundred GOP searches with random values of a. The results for both cases are almost
identical, since By and 31 have been set equal for the comparison. Figures 4 and 5 show
a comparison of the probability to find the global minimum, for averages over a thousand
GOP searches with random values of a.

Both types of golf-course functions lead to the same conclusions about the performance
and time scaling of our algorithm:

1. The time taken to find a solution grows exponentially with the number of dimensions
- this is a direct and, in general, unavoidable consequence of the dimensionality curse.

2. The time taken to find a solution grows as an inverse power of the size of the basin of
attraction ¢ o< 3y 4 for a fixed number of dimensions d. As expected, the denser the
grid, the more error function evaluations are required.

3. Finding the global minimum is certain if the minimum size of the basin of attraction
is greater than the grid size used to discretize the function.

4. Finding the global minimum in a fixed time T is certain if the minimum grid size that
can be achieved in that time is less than or equal to the size of the basin of attraction.

11






4 GMG ASSESSMENT ON BENCHMARK FUNCTIONS

The performance of global optimization algorithms is traditionally benchmarked by compar-
ing the number of function evaluations required to find the global minimum, for a standard
set of objective functions.

We have assessed GMG’s performance versus that of the TRUST algorithm [12], for
seven standard benchmark functions, which are defined in Table 1. The TRUST algo-
rithm uses non-Lipschitzian terminal repellers and subenergy tunneling to provide a deter-
ministic global optimization algorithm that, on the standard benchmark functions, proved
significantly faster and more accurate than other previously reported global optimization
techniques.

The number of function evaluations reported for TRUST is an average over the complete
set of initial starting points, which consists of all the corners of the domain, for locating
one global minimum to approximately 4-digit accuracy. The total number of function
evaluations for GMG to find one global minimum is the sum of the minimum number
of function evaluations that consistently identifies the basin of attraction of the global
minimum and the number of iterations required to descend to this global minimum to
approximately 4-digit accuracy, using a steepest descent algorithm.

For the Rastrigin function [13], we note that the minimum number of function evalua-
tions depends critically on the symmetry of the problem. This global minimum is co-located
with a grid point of a relatively spare covering grid, resulting in a very small number of
required function evaluations, and is a consequence of the highly symmetric domain of this
benchmark function. If the global minimum were not located at the origin, or if the domain
boundaries were not symmetric with respect to the origin, then the grid density for the
GMG search would be greately increased (e.g., to at least 12 x 12), and the GMG algorithm
would perform significantly worse than TRUST.

For the Hartman function, the steepest descent algorithm converges very slowly for one
of the dimensions. Finding the global minimum by starting the TRUST algorithm from
the point identified by GMG requires far fewer function evaluations, so this method was
substituted for steepest descent when calculating the total number of function evaluations.

The results in Table 2 show that in four out of seven cases, GMG finds the global
minimum using fewer total function evaluations than TRUST. On the other had in the
remaining three cases GMG requires a significantly larger number of function evaluations
than TRUST. The results of this comparison, which was performed mostly for complete-
ness’s sake, cannot be interpreted in a conclusive manner. Indeed, GMG is fundamentally
different from many widely used approaches, including TRUST, in that it uses available ad-
ditional information in the intrinsic design of the algorithm, provides an a priori estimate
of the effort needed to obtain the solution, and guarantees finding the global minimum.
Knowledge of the value of the global minimum may be used by TRUST and other global
optimization algorithms to provide a stopping criterium for benchmarks and other informed
cases, but is otherwise irresponsive to predict whether these other algorithms will find the
global minimum in a finite time.

We note other differences as well. First, some of the benchmark objective functions
are degenerate, i.e., they have multiple (equal) global minima. Our approach has been
developed to solve parameter identification problems with unique solutions, but it can be
easily adapted to find several global minima. This is typically achieved with only a small
increase in the required number of function evaluations.

As the dimensionality of the objective function grows, the number of function evaluations

13
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(6o = 0.1; solid dots) and “uncertain” (8; = 0.1, B2 = 0.2; hollow dots) one-dimensional
golf-course functions.
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Figure 5: Probability to find the global minimum vs. a fixed running time, for exactly-known
(6o = 0.1; solid dots) and “uncertain” (8; = 0.1, f2 = 0.2; hollow dots) one-dimensional
golf-course functions.
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Table 1: Benchmark objective functions.

Function \ Definition of objective function
Brani f( ) =( _ ol 2—1——5 —6)2+(10——5 )cos[z1] + 10
ranin r1,T T x T T
1, T2 2~ a7 1 . 1

4

Camelback | f(z1,z2) = 22(4 — 2.123 + %) + 2129 + 423 (23 — 1)
Goldstein- | f(x1,29) = {1+ (1 + 1 +22)%(19 — 141 + 327 — 142 + 62122 + 323)} ¥
{30 + (221 — 3x2)%(18 — 32z1 + 1227 + 48x9 — 36z 29 + 2723)}
Price
Rastrigin f(z1,22) = 27 4+ 23 — cos[18z1] — cos[18z2]
5 5
Shubert f(x1,m9) = {Zz cos[(i + 1)x1 + z]} X {Zz cos[(i + 1)x2 + z]}
i=1 =1
4 3
Hartman f(x1, e, 3) = — Z Ci exp{ — Z Ajj(z; — Bij) ¢,
i=1 j=1
3.0 10 30 0.36890 0.1170 0.2673 1.0
A — 0.1 10 35 B — 0.46990 0.4387 0.7470 = 1.2
N 3.0 10 30 N 0.10910 0.8732 0.5547 - 3.0
0.1 10 35 0.03815 0.5743 0.8828 3.2
11627 +5 34— 1623 +5 >
Styblinski | f(z1,...,5) = 92”1 Ton 1 ‘7252 T2 S (- 1)?
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Table 2: Benchmark performance comparison.

GOP Number of TRUST GMG
objective function global average # of total # of
(# dimensions) minima | fn evaluations | fn evaluations
Branin (2) 3 55 46
Camelback (2) 2 31 30
Goldstein- 1 103 69
Price (2)
Rastrigin (2) 1 59 51
Shubert (2) 18 72 2307
Hartman (3) 1 58 104
Styblinski (5) 1 89 1068

for GMG increases exponentially. This is a manifestation of the dimensionality curse, since
the size of the grid grows exponentially with the number of dimensions. While this feature
of GMG is expected to be general, the number of evaluations required by TRUST with
respect to the number of dimensions is difficult to quantify precisely. When sufficient
additional information is available, finding the global minimum using GMG is guaranteed.
This is something that most global optimization algorithms used in practise cannot achieve
in principle.
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Figure 10: The Shubert objective function.
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Figure 11: The Hartman objective function.
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9 SOLVING THE MPR PROBLEM

The first challenge in implementing GMG for the MPR problem, was to generate the error
function, E(y). The standard mean profile py(r) used throughout this paper was taken
from high-quality measurements by NASA [16] for mid-latitudes in summer, and is defined
from the ground to 50 km, as shown in Fig. 12.

40 -
35 -
30 -
25 -

20 A

O; density (DU)

15
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0 T T T T T T T T T 1
0 5 10 15 20 25 30 35 40 45 50

Altitude (km)

Figure 12: Standard mean ozone profile for mid-latitudes in summer. The ozone density
unit used in the graph is the Dobson Unit (1 DU = 2.14 x 10~% kg/m?).

In order to resolve salient features of the ozone profile, MODTRAN needs a resolution of
1 km for the standard mean ozone profile. However, we do not have the computational capa-
bility to search for variations of the ozone profile among 50 dimensions (1-50 km), since the
cost of evaluating even one value of the error function using MODTRAN is relatively high.
Hence, only a small number (k = 3,4, 5) of variations in the ozone profile, dp1,dp2, ..., dpk,
were used in the evaluation of the error function. Each variation acts independently on the
ozone profile, across an atmospheric layer covering specific altitudes. The magnitude of the
variations is restricted to within £1% of the corresponding standard mean ozone profile.
The partitioning of the atmospheric layers has a significant impact on the target radiance,
as discussed below (see Table 3).

As mentioned in Section 2, MODTRAN was used to calculate a proxy for the single
sensor measurement, S, of the radiance from a target at a known range, for a specific ozone
profile. The target range, xg, was chosen at random from values between 120 and 130 km,
corresponding to typical baseline MPR scenarios for an airborne sensor. The variations in
the ozone profile, dp;s(r), were also chosen randomly.
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Table 3: Percentage error in the target radiance vs. the number of ozone layers.

# 03 | Layer | Layer | Layer | Layer | Layer Layer Deviation (%)
layers | 1 (km) | 2 (km) | 3 (km) | 4 (km) | 5 (km) | partition
7
f' \\\
2 13-22 22-30 - - - ~] ] \\, 41.6 £0.1
3 | 1319 | 1925 | 2530 | - N e ) x 108
,»‘/ .\\
4 | 1319 | 1923 | 2325 | 25-30 I N WES R RS T
J‘/’ \\\
4 13-19 19-22 22-25 25-30 - =P 6.79 + 0.03
/5‘ \
| \
) 13-19 19-21 21-23 23-25 25-30 | 7l \\ 0.0

Next, the radiance R(x,dp1,dp2,...,0pr) at the sensor was calculated using MOD-
TRAN, for ranges in the interval 120-130 km, and for different variations in the ozone
profile, within £1% of po(r). Both the predicted radiance and the measurement S were
calculated by summing up the spectral radiances across the same ozone-absorption window
(9-11 pm), which does not suffer much from water absorption.

When implementing the algorithm, we gradually increased the number of ozone layers
from two to five. The thickness of the layers varied between 2 and 8 km, as shown in
Table 3. This provided a general outlook for the dependence of the target radiance on the
partitioning of the ozone profile. In particular, it showed that the radiance is most sensitive
to the resolution of the layer with the highest density of ozone. Since detection of airborne
missiles with remote sensing aircraft [4] uses an uplooking baseline, MPR is particularly
sensitive to the peak ozone density at ~ 22 km. Therefore, to obtain the best sensitivity
available with a small number of ozone layers in our algorithm, the ozone profile should be
partitioned nonuniformly, by using more layers at high-density altitudes (19 — 24 km).

Table 3 shows the percentage deviation in the target radiance as compared to the target
radiance computed using the highest resolution considered for the ozone concentration (i.e.,
five layers). This provides a measure of the sensitivity in the construction of the ozone layers
as their number is increased from two layers to five layers. In addition, the partitioning or
structure of the layers plays an important role in determining the sensitivity. For example,
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Figure 13: Error function using three ozone layers, for (a) mid-ozone concentration change
(£1%) vs. range (km), and b) low-ozone concentration change (+1%) vs. range (km).
The error function is plotted on a logarithmic scale, with dark intensities indicating smaller
values. The position of the global minimum is indicated by the superimposed arrows.

if the peak ozone density (21 — 22 km)is designed to reside within the interior of one layer,
the deviation between the radiance of the 4-layer and the 5-layer models is negligible:
(1.4 £ 1.1) x 1073%. However, the deviation increases greatly if the 4-layer model places
the peak ozone densities on the boundary between two adjacent layers.

The resulting error function contained tens (k = 3) to thousands (k = 5) of values close
to zero, thus providing a good testing environment for our GOP algorithm. However, these
values are not separate minima, but rather belong to the same basin of attraction. Fig. 13
shows the intensity plots of slices of an error function obtained using three ozone layers.
The ozone profile has been partitioned uniformly into a low layer (13 — 18 km), a mid layer
(19—24 km) and a high layer (25—30 km). The sensor is assumed to be at a typical altitude
of 11 km, and the target is at an altitude of 33 km, as illustrated for the upward-looking
scenario in Fig. 1.

The range interval shown in Fig. 13 focuses on the region that contains the target range,
which is set to 125 km. The values of the error function for ranges within +0.1 km are very
close to the global minimum. We note that a small uncertainty in the variation of the
mid-ozone layer can result in a large uncertainty (~ £0.1 km) for the target range. Thus
solving the GOP for the MPR problem yields the target range with an accuracy that is
better by at least an order of magnitude, compared to algorithms that ignore the variation
in the mid-ozone layer.

GMG was implemented in Fortran 90 to simplify calling MODTRAN (Fortran 77 code)
when evaluating the error function. The algorithm takes full advantage of the IBM Power4
parallel supercomputer within ORNL’s Center for Computational Sciences, which hosts
a total of 27 x 32 1.3GHz processors. The most demanding computation required 441
processors, ~ 55% of the total available, which enabled us to use six dimensions for the
radiance, i.e., five ozone layers and the range. In this case, the typical run time was
of the order of several hours. The rather voluminous output that is normally produced
by MODTRAN was trimmed to a few hundred megabytes - however the output of our
algorithm, describing the error function and the position of the global minimum was much
smaller.
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5.1 GMG ASSESSMENT ON THE MPR PROBLEM

In order to assess the performance of GMG for the MPR problem, we first verified it in the
ideal case, where complete and unadulterated additional information was known about the
error function, as described in Section 3.1. The basin of attraction of the global minimum
was found in 100% of trials. After descending to the global minimum (if required), the
range xg and the ozone densities p1, po, . . ., pr found by the algorithm were identical to the
values used originally to calculate the sensor measurement S.

The performance and time scaling of the algorithm are consistent with the previous
results shown for the golf-course problem, namely:

1. The total processor time to find a solution grows exponentially with the number of
dimensions. This is compounded by computationally intensive calls to MODTRAN,
and limits the number of dimensions that can be modelled.

2. For a fixed number of dimensions, the total processor time grows as an inverse power of
the size of the basin of attraction. As expected, the algorithm is most computationally
demanding when the size of the basin of attraction of the global minimum is relatively
small.

3. The probability of finding the global minimum is equal to one if the minimum size of
the basin of attraction is greater than the grid size used to discretize the function.

4. The probability to find the global minimum in a fixed time T is equal to one if the
minimum grid size that can be achieved in that time is less than or equal to the size
of the basin of attraction.

The amount of information known about the error function was then relaxed to simulate
uncertainties typically present in MPR. In particular, the information related to the size
of the basin of attraction for the global minimum is of prime importance for an efficient
guarantee.

Taking the size of the basin of attraction as unknown, we progressively increased the
grid density by a factor of 2, to search for a unique solution that satisfied the threshold
in the discrete transformation in Eq. 4. This approach is guaranteed to find the basin
of attraction of the global minimum, if the value of the global minimum is zero (or some
other known value), or if the threshold § is known. However, we lose the guarantee if no
information of types (i) or (ii) is available, due to noise, etc.

By implementing GMG to various realizations of the MPR problem, we also verified that
partitioning the ozone profile has a significant effect on the target radiance. In particular, we
found that the error function depends very sensitively on the mid-ozone layer, containing
the peak ozone density. As a result, the basin of attraction of the global minimum is
typically localized in the direction of this variable (see Fig. 13 for two-dimensional cuts of
the four-dimensional error function). If this additional information about the error function
is used, e.g., the peak ozone density is (approximately) identified beforehand, then we can
optimize the use of computational resources by focusing from the beginning on those layers
that cause the greatest uncertainty in the error function. Incidentally, this would provide
another instance in which additional information leads to a considerable reduction of the
computational complexity.
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6 CONCLUSION

We developed and validated GMG, a new deterministic algorithm for GOP’s, which guar-
antees to find the global minimum. The novel idea behind GMG is to identify and system-
atically use additional information about the objective function. Unlike previous similar
approaches, the additional information we use is not directly related to smoothness prop-
erties. Out algorithm reduces the computational complexity of the problem, and thereby
guarantees finding the location of the global minimum in a reasonably short time. Just
as importantly, GMG allows us to predict an upper bound for the computational effort
required to find the global minimum.

After validating GMG on various benchmark problems, we applied it to the MPR prob-
lem and assessed its performance, which turned out to be excellent. This demonstrates
that GMG can be applied to GOP’s related to national security, computational biology,
materials science etc., which often require precise, guaranteed and timely identification of
the global minimum.
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