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AUTONOMOUS CONTROL OF NUCLEAR POWER PLANTS 
H. Basher and J. S. Neal 

 
 

ABSTRACT 
 
 
A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure 
that desired performance and safety can be achieved and maintained during its operations.  
Higher-demanding operational requirements such as reliability, lower environmental impacts, 
and improved performance under adverse conditions in nuclear power plants, coupled with 
the complexity and uncertainty of the models, necessitate the use of an increased level of 
autonomy in the control methods.  In the opinion of many researchers, the tasks involved 
during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, 
and core reload optimization) involve important human cognition and decisions that may be 
more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural 
networks, and genetic algorithms.  Many experts in the field of control systems share the idea 
that a higher degree of autonomy in control of complex systems such as nuclear plants is 
more easily achievable through the integration of conventional control systems and the 
intelligent components.  Researchers have investigated the feasibility of the integration of 
fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional 
control methods to achieve higher degrees of autonomy in different aspects of reactor 
operations such as reactor startup, shutdown in emergency situations, fault detection and 
diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following 
operations, to name a few.  With the advancement of new technologies and computing 
power, it is feasible to automate most of the nuclear reactor control and operation, which will 
result in increased safety and economical benefits.  This study surveys current status, 
practices, and recent advances made towards developing autonomous control systems for 
nuclear reactors. 
 
 

1.  INTRODUCTION 
 
 

Autonomous control systems have the potential for operating with very high levels of 
performance and reliability with a minimal or no human assistance.  To be autonomous, a 
control system should provide adequate control actions in the presence of significant 
uncertainties.  The key attributes of highly autonomous control systems are that they perform 
well under all process operating conditions and performance demands and are able to 
compensate for system failure without external intervention.  More complex and 
sophisticated controllers are necessary to cope with changes in operating conditions relative 
to the reference model, the presence of large uncertainties in plant parameters and 
unmeasurable disturbances, the deterioration of components or component failures, etc.  The 
conventional control techniques have evolved substantially over the past several decades 
from simple proportional-integral-derivative control to modern control such as optimal, 
adaptive, and robust control.  With the development of optimal, adaptive, and robust control, 
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the degree of autonomous operation of the controllers has increased.  In order to further 
increase the availability and lower the accident risk and operating costs in nuclear power 
plants (NPPs), a higher level of automation and fault tolerance will be highly desirable.   
 
Recent efforts have been directed toward the development of highly autonomous control 
systems that can independently perform complex tasks.  This trend is gaining momentum as 
control engineers solve many existing problems and seek to resolve new control problems 
that involve broader issues and require the full capabilities of available computing 
technologies.  Although it is clear that conventional control will play a major role in the 
development of such highly automated systems, the main focus in the control community is 
to integrate the functions of intelligent systems such as fuzzy logic, neural networks, genetic 
algorithms, and knowledge-based systems with the conventional control systems to perform 
complex tasks more easily.  Intelligent control systems are typically able to perform one or 
more of the following functions to achieve autonomous behavior: planning actions at 
different levels of detail; emulating human expert behavior; learning from past experiences; 
integrating sensor information; identifying changes, such as failures, that threaten the system 
behavior; and reacting appropriately.  The inclusion of the intelligent control aspect with 
conventional control techniques will encompass adaptation and learning; planning in the 
presence of large uncertainties; coping with huge data sets; and accommodation of plant 
dynamics, especially in complex nonlinear multivariable plants with numerous immeasurable 
parameters.   
 
Uhrig1 predicts the application of digital automation, including artificial intelligence 
techniques, to control and manage NPPs.  He envisions that this automation will improve 
performance, increase safety margins, lower environmental impacts, and provide greater 
investment protection.  This automation is attainable through further research, development, 
and advances in information processing technologies such as sensor validation, fault 
detection and diagnostics, fault-tolerant control, and intelligent systems.  Some of the recent 
studies and/or experiments conducted to achieve higher autonomy in nuclear industries are 
highlighted in the following sections.  
 
 

2.  PRINCIPLES OF AUTONOMOUS CONTROL 
 
 
An introduction to autonomous control may be found in refs. 2 – 13.  Antsaklis et al.2, 3 have 
defined functions, characteristics, and behaviors of an autonomous system that could be used 
as guidelines in the design of such a system.  They have also suggested that a hierarchical 
control structure is desirable to achieve an increasingly sophisticated autonomous controller.  
This architecture contains three levels:  “execution level” (lowest), “coordination level,” and 
“management and organization level” (highest).  The general idea of the structure is that 
commands are issued by higher levels to lower levels and response data flows from lower 
levels to upper levels in the tier structure.  The functions of each of these levels are described 
below.   
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1. Execution level: The function of the execution level includes the generation of control 
actions as dictated by the higher levels and application of this control action to the 
actuators and sensors that drive the plant under control.  The execution level also senses 
the plant responses and environment, processes them to identify parameters, detects any 
failures, and passes the information to the higher levels.  This level possesses 
conventional adaptive control capabilities and includes failure detection algorithms, state 
estimators and parameter identifiers.  

 
2. Coordination level: This level translates high-level commands into sequences of action to 

be passed to the execution level and provides the appropriate sequence of control and 
identification algorithms.  The coordination level can cope with limited predetermined 
crisis situations.  

 
3. Management and organization level: This level determines the system goals and supports 

the human communication interface, and oversees and directs all the activities at both the 
coordination and execution levels.  It is the most intelligent of the three levels.  

 
A similar three-tier structure is also proposed by Williams and Jouse.14  The proposed 
controller has been designed for the feedwater heater in an NPP.   
 
It is an established fact that developments of optimal control, adaptive control, and robust 
control have significantly increased the level of automation by encompassing higher levels of 
plant characterization uncertainty and parameter changes.  However, integration of intelligent 
components such as fuzzy logic, neural networks, and genetic algorithms, with the 
conventional control methodologies will further enhance the level of automation and permit 
this automation to be achieved more easily.11-13  On the other hand, some in the nuclear 
engineering community have raised concerns about this type of integration.8-10  Some suggest 
that conventional control has a better, more established track record than techniques from 
intelligent control, which are relatively new and in a very early stage of development.  
Stability analysis of a system being controlled is needed to verify the performance of the 
controller.  Some progress has been made in the stability analysis of fuzzy logic, neural 
networks, and expert systems, but much more work is needed in the area of nonlinear 
analysis of intelligent control techniques.  Validation of performance levels through 
experimental evaluations is needed.  Above all, systematic controller design and construction 
methodologies are needed when intelligent control is used.   
 
Ruan15 summarizes the application of intelligent systems in nuclear reactors that was 
reported in the FLINS’96 (Fuzzy Logic and Intelligent Technologies in Nuclear Science) 
Workshop on Intelligent Systems and Soft Computing for Nuclear Science and Industry, held 
on September 25–27, 1996, in Mol, Belgium.  The details of some of these presentations 
follow.  In his paper, Nishiwaki proposed the use of fuzzy theory in application to failure 
analysis and diagnostics of NPPs, whereas Liu and Ruan discussed how the power control 
stability of the Belgian Reactor 1 (BR1) at the Research Center for the Applications of 
Nuclear Energy (SCK⋅CEN) was improved by using a fuzzy logic control scheme and 
described its potential to replace nuclear reactor operators in the control room.  N.J.  Na, et 
al. presented a real-time expert system for alarm processing and presentation in an NPP, 
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which was tested in a simulated environment of the Three Mile Island (TMI)-2 accident.  The 
inspection of anomalous symptoms and a diagnosis process on a simplified model of the 
steam generator feedwater systems of a pressurized heavy-water reactor (PHWR) using a 
knowledge-based system was presented by Guildo et al. 
 
The activities reported in this paper deal with different aspects of nuclear operations, but they 
are all separate components of an autonomous controller for an NPP.  For the sake of clarity, 
the discussions are grouped in areas such as automated plant control, automated startup, 
temperature performance, load-following operation, emergency operating procedure, alarm 
processing and diagnosis, optimal fuel loading, fault-tolerant control, fault detection and 
identification, and sensor signal validation.  Since some investigations cover more than one 
aspect of NPP operations, a study included in a group may very well fit within another group 
as well.  
 
 

3.  AUTOMATED PLANT CONTROL 
 
 
Man–machine interaction and dynamic process control of a pressurized-water nuclear reactor 
plant has been demonstrated by Cha.16  This process is developed by integrating real-time 
and knowledge-based agents and testing in a dynamic simulation environment.  The goal is 
to use an experimental research test facility for process control, monitoring, and man–
machine interface in the main control room of a nuclear reactor.  The real time includes 
mathematical process models of the plant systems such as steam generator, feedwater system, 
control system, and electrical system.  The knowledge-based agents are designed for process 
control, monitoring, procedural operator support, real-time diagnosis for control automatics, 
and user interface.  The real-time knowledge-based system is evaluated under each of the 
simulated conditions such as the small-break loss-of-coolant accident (LOCA) and steam 
generator tube rupture (SGTR) and initial conditions such as startup, 10% power and full 
power. 
 
The studies conducted by Doraiswami et al.17 and Ben-Abdennour and Lee18 are not intended 
for NPP applications.  However, these studies are still relevant because they propose and 
successfully implement systems in which the autonomy is enhanced through performance 
monitoring, fault diagnosing, and tuning the control system of the plants.  Doraiswami 
provides a systematic and unified approach that accomplishes performance monitoring, 
performance improvement, and fault prediction in the control system.  The controller is 
adapted to ensure acceptable performance for variations in the operating conditions.  The 
signal estimation is performed in two steps.  In the first step, a high-order model for the 
measurement record is obtained using the Linear Predictive Coding Algorithm.  Then in the 
second step, a model reduction and validation is performed using an adaptive filtering 
algorithm.  The controller tuning is performed using the steepest descent method.  The 
proposed system is evaluated on an actual direct-drive robot manipulator made by Integrated 
Motions, Inc.  The method is found to be extremely reliable in monitoring the plant 
performance, tuning the controller, and predicting the faults of physical systems.  An 
autonomous controller developed for a boiler-turbine unit of a 160-MW oil-fired electric 
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power plant is described in ref. 18.  This approach realizes a fuzzy-logic-based intelligent 
coordinated control scheme.  The control system performs two main tasks: execution and 
supervision.  The execution is performed by the local controllers, and the supervision is 
carried out by a fuzzy-logic-based coordinator.  The local controllers are of linear quadratic 
regulator/loop transfer recovery type, and an extended Kalman filter is used to observe the 
status of the nonlinear plant on-line.  The residual error of the plant states is generated by 
comparing the estimates from the Kalman filter with the states of a nominal model.  The 
residuals and any other possible disturbances are monitored by a fuzzy-logic-based 
coordinator.  If a malfunction is detected, the coordinator modifies the set point of the local 
controllers to accommodate it.  
 
An automated control engine that automatically provides a new control strategy under 
different operating conditions of a nuclear reactor is suggested by March-Leuba and Wood.19  
The system is unique in the sense that it automatically optimizes the controller on-line for on-
line plant parameter changes.  This technique assumes that diagnostic methods that will 
identify component degradation or failure are developed and included in the system.  In this 
study, the current operating conditions and status of failed components are passed on to the 
control engine by running the control engine and a diagnostic system in parallel with the real 
system.  The plant model is updated on-line to incorporate the degradation or failure of 
components.  The control engine then determines the new control parameters or chooses an 
alternate control algorithm such that plant performance requirements are satisfied with the 
new plant configuration.  Prototype control engine software based on this concept is tested by 
running this with a high-fidelity pressurized-water reactor (PWR) simulator written in 
FORTRAN code.  To avoid reactor scram, the technique is demonstrated for two transients 
characterized as a 10% power reduction and a 40°F reduction in feedwater temperature.  The 
test results show that the system is very effective in maintaining the steam generator level 
and controlling the thermal power without oscillations.  
 
 
3.1 Reactor Startup 
 
If no disturbances occur, simply starting the appropriate systems in a fixed order is sufficient 
to start up the plant automatically.  However, such a simple procedure cannot respond to the 
transients or abnormalities that may occur during startup.  Some studies conducted to 
automate NPP startup operations are summarized in this section.  Berkan et al.20 have 
proposed an automated startup control system for the Experimental Breeder Reactor-II 
(EBR-II), the performances of which are validated by comparing the operator-driven actual 
plant data with the simulation results.  The simulations use a valid nonlinear model of the 
EBR-II.  The range of the startup transients is chosen to be sufficiently broad to include 
nonlinear effects.  The presence of plant nonlinearities over the startup of the reactor 
prompted the authors to use intelligent techniques such as reconstructive inverse dynamics, 
fuzzy logic, and neural networks to develop the controllers.  The algorithms developed in this 
research validate sensor signals, strategies, commands, and performance tracking to emulate 
operator tasks, which, in turn, generate reliable decisions and control actions.  The control 
module consists of three controllers designed on the basis of the above three techniques 
integrated to the existing conventional control.  The performance of each of these controllers 



 6

is satisfactory, providing fast and efficient diagnostics and reliable automatic control.  A 
similar study of automated startup of the boiling water reactor (BWR) has been performed by 
Sekimizu et al.21 using knowledge-based techniques.  The controller that contains an 
inference engine and an operation manager is tested with a BWR model (both written in 
LISP language).  The results of the tests proved to be satisfactory.  
 
 
3.2 Plant Performance 
 
An automatically tuned fuzzy logic controller is proposed by Ramaswamy et al.22 to 
automate nuclear reactor operations for improved reactor temperature performance of a 
pressurized-water reactor (PWR) over the power range of 10–100% and with significant 
plant parameter variations, which will replace an existing optimal-state feedback controller.  
One of the unique features of this controller is that it uses a simple low-order observer to 
estimate the reactor temperature, compared with the full-state observer needed in the current 
controller.  The existing adaptive controller requires a mathematical model of the reactor for 
its implementation, and its parameters are changed adaptively to cope with system 
nonlinearity and environmental variations.  The fuzzy-logic-based controller, however, does 
not rely on an accurate description of the plant or the precise measurements, and its 
parameters are automatically tuned.  Ramaswamy’s paper gives detailed discussions of the 
various stages of the controller design process.  The performance evaluation of the controller 
is conducted via simulations in which the simulated plant is a continuous-time point-kinetics 
model with six delayed neutron groups.  The simulation results show that the autotuned fuzzy 
logic controller demonstrates good stability and robustness characteristics when compared 
with the adaptive controller for the same range of uncertainties such as power level variations 
of a factor of ten, and control rod worth variation of a factor of four.  
 
The use of artificial neural networks (ANNs) can be found in many dynamic control systems, 
including nuclear reactors.  Their results show that learning and interpolation abilities of 
neural networks are very promising.  Several authors investigated the thermal power 
distribution in an NPP using a feedforward neural network (FNN), producing very 
encouraging results. FNN is a static mapping and requires a large number of neurons to 
represent a dynamic response in time domain, takes longer time to train, and does not 
guarantee convergence.  The recurrent neural network (RNN) has improved performances 
compared with FNN but still is not very suitable because it is difficult to train and does not 
converge in a short time.  On the other hand, diagonal recurrent neural retwork (DRNN) 
possesses a dynamic mapping capability, requires fewer neurons, and converges much faster.  
Ku et al.23 have shown that by using DRNN instead of RNN, improved temperature response 
is attainable with higher reliability and lower computing cost.  Their DRNN-based system 
contains a neurocontroller and a neuroidentifier, both of which are trained with a reference 
model that incorporates an optimal control law with improved reactor temperature response.  
The performances of the controller are demonstrated in a simplified model of a PWR, which 
is a point-kinetics model with one delayed neutron group and temperature feedback from a 
lumped fuel and coolant temperature calculation.  The simulation results show that the 
controller performs very well not only locally but also over a wide range of operations. 
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Fuzzy logic has been used in many NPP control problems.  The main advantage of fuzzy 
logic in that once the membership functions and the rules are defined, the desired control 
signals can be easily generated using only elementary arithmetic operations.  However, it is 
not always an easy job to find the membership functions and the rules, and usually a trial-
and-error method is used.  To ease this process, some researchers have investigated the 
inclusion of neural networks to generate the membership functions and rules.  One such 
controller that combines fuzzy logic and neural network methods to control core power 
distribution of NPPs was first reported in the work of Na and Upadhyaya.24  The neuro-fuzzy 
controller developed in this research does not require accurate description of the system but 
is based instead on expert knowledge of the plant.  This controller automatically constructs 
and tunes the rule base and membership functions.  The control method exhibits very fast 
response to any power offset without any residual oscillation.  One unique feature of this 
controller is that the controller can be designed to be automatically fine-tuned to obtain the 
desired performance using the process data.  
 
 
3.3 Fault-Tolerant Control 
 
Stengel25 gives an overview of the characteristics of a fault-tolerant control system.  He also 
explains why a fault-tolerant control is necessary and how such a system can be designed.  
Stengel’s discussions emphasize again that the integration of conventional control and 
artificial intelligence components will dramatically enhance the system reconfiguration 
capability.  This is further emphasized in the study performed by Rauch,26 who provides 
ideas on how fault diagnosis and control reconfiguration for complex systems can be 
achieved.   
 
 
3.4 Load-Following Operation 
 
Due to sharp variations in the power density during transients, the nuclear reactors exhibit a 
large local power peaking.  In the manual core control system, the reactor operator chooses 
the best control rod maneuver procedure based on his knowledge and experience during this 
load-following operation.  Research efforts have been focused on developing automatic 
control systems to improve this situation.  The advances in conventional control, intelligent 
techniques, and speed of computing methods have enabled engineers to pursue a more 
sophisticated control system for load-following operation of nuclear reactors.  Two of many 
works are cited here.27-28  The controller proposed by Khajavi et al.27 is based on neural 
networks and is trained from the response of a robust optimal self-tuning regulator.  It is 
claimed that the controller has demonstrated a good stability and performance for a wide 
range of operation of a PWR whose model is of fifth order with one delayed neutron group 
and two thermal feedback mechanisms.  One the other hand, a controller based on heuristic 
control algorithm and recurrent neural network for load-following operation of a PWR is 
presented by Boroushaki et al.28  This is an on-line intelligent controller that is capable of 
updating real plant data at any time interval for capturing any process dynamics not included 
in the training set of the neural network.  The approach of Boroushaki et al. utilizes the 
DYNCO code designed to simulate the dynamic behavior of the Russian 3000-MWt PWR 
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for testing and tuning of the controller.  Most of the works on the load-following operations 
of nuclear reactors use a single-input single-output (SISO) model, whereas a multi-input 
multi-output (MIMO) model is used in this study in identification of nonlinear complex 
dynamics of the nuclear reactor.  The performance of the controller has been evaluated 
through computer simulations.  
 
 
3.5 Emergency Operating Procedure 
 
The role of operators in the control room of nuclear reactors has become more and more 
important with the increasing size and complexity of NPPs.  The operator’s task is to 
maintain safety and reliability of an NPP.  To ensure that this is achieved, it is necessary to 
increase the automation of operating procedures in NPPs, including those employed in 
abnormal and emergency situations.  It is generally presumed that automation will enhance 
overall system reliability by reducing or removing the need for human action and that the 
operator will be freed from tasks that are routine, tedious, physically demanding, or difficult.  
The event-based approach developed in 1970s for operation and safety management of NPPs 
especially when operator intervention is warranted, proved to be efficient and easy to follow.  
However, the following weaknesses were identified in the TMI accident:   
 

• Too much responsibility was placed on the operator to identify the abnormality 
quickly and properly and then to respond using an event-oriented procedure.   

• Emphasis was placed on maintaining the plant availability while critical safety 
functions were ignored.   

• Response procedures led to conflict with objectives when multiple events were 
identified.   

• It was not possible to a priori define all unanticipated situations and abnormal events 
or combinations.   

 
These weaknesses can be overcome by developing a symptom-oriented approach, which 
again suffers from inherent complexity.  Another shortcoming of the symptom-oriented 
approach is that the maintenance of plant safety may lead to continued degradation of plant 
operation.  Reported studies indicate that many expert systems have been developed to 
improve the complexities of the reactor operating procedures but that few have been tested in 
an NPP simulator or employed in practice.  
 
In an effort to minimize the load on the operator during emergencies in an NPP, the 
automation of operating procedures using logic terminology and logic diagrams has been 
investigated by Husseiny et al.29  The prototype system has been tested for downpower and 
loss of forced circulation in a PWR.  It is reported that such automation is feasible, provided 
that fault-tolerant software and hardware become available for design of controllers.  
 
A small-scale prototype practical knowledge-based operator support system has been 
developed by Fujita et al.30 for a Japanese PWR.  The system utilizes the plant abnormality 
model approach, as opposed to methods based on a normative model.  The system consists of 
a decision support system and an intelligent interface.  The decision support system consists 
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of the following:  a status evaluator, a diagnosis system, a decision maker, and a 
computational module.  The functions of each of these modules can be explained as follows. 

 
1. Status evaluator: The status evaluator monitors component status, detects and verifies 

anomalous symptoms, identifies possible failures, and generates qualitative data used by 
the system.  

 
2. Diagnostic system: The diagnosis system identifies the causes of anomalous symptoms 

that may exist.  
 
3. Decision maker: The function of the decision maker is to generate guidance that 

dynamically fits the plant status by selecting and synthesizing procedures for the plant 
status from among existing operational procedures.  

 
4. Computational module: The computational module is an assembly of codes that 

calculates reference data and performs numerical calculations.  
 
The intelligent interface adaptively makes access to the most useful information easier to 
obtain at any given moment.  The system possess features that include monitoring of 
automatic component actions, early fault detection, diagnosis, operational guidance, and 
follow-up monitoring of operational actions recommended by the system.  The system 
functionalities are verified for SGTR, where SGTR is simulated with a high-fidelity real-time 
plant simulator.  The prototype system is upgraded to a full-fledged system for actual 
implementation.  
 
An integrated decision support system has been developed by Kang et al.31 to provide the 
plant operators timely and proper guidelines under abnormal and emergency situations.  This 
integrated operator decision aid support (IODAS) system performs four tasks: For example, 
signal validation and management, alarm processing, failure diagnostics, and dynamic 
emergency procedure tracking.  This effort is undertaken to develop a system that will assist 
the operator in the decision-making process and ensure the safety of an NPP.  The IODAS is 
based on the following three concepts:  

 
1. When an NPP is in a normal operating condition, the system condition should be 

maintained to prevent an abnormal state.  
 
2. If an NPP is in an abnormal state, alarm processing and failure diagnosis should be used 

to prevent a reactor trip.  
 
3. If a reactor is tripped, early and safe plant shutdown should be achieved by employing 

emergency operating procedures.  
 

The system is being implemented on a SUN-4/75 workstation using C and Quintus Prolog 
language, and its functionalities are verified with a full-scope real-time simulator.  Test 
results show that IODAS is capable of diagnosing a plant failure quickly and of providing an 
operator guideline with fast response time.  
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An intelligent control scheme is suggested by Choi, et al32 in an effort to automate the 
emergency procedure for optimal shutdown in a PWR.  In this proposed method, fuzzy logic 
technique is used to adaptively adjust the controlled parameters for optimal cooldown and 
depressurization.  The performance of the proposed control system is validated by integrating 
the control system with a microsimulator of Kori Unit 2.  The tests are conducted with SGTR 
events of the Kori simulator.  The results of the tests indicate that the automated emergency 
operation has successfully driven the plant at full power to a cold shutdown state with all 
operational constraints satisfied. 
 
A decision-making technique based on fuzzy logic for  the evaluation of accident 
management strategies in an NPP has been suggested by Jae and Moon.33  The approach in 
this study contains three major objectives:  
 
1. representation of the decision problem,  
 
2. fuzzy set evaluation of the decision alternatives, and  
 
3. selection of the optimal alternatives.  

 
Identification of decision goals and setting of the decision alternatives, identification of a set 
of decision criteria, and building a hierarchical structure of the decision problem are the 
activities that are performed in the representation of the decision problem section.  The fuzzy 
set evaluation includes activities such as choosing the sets of the preference ratings, 
evaluating importance weights of the criteria, and aggregating the weights of decision 
criteria.  The selection of optimal alternatives is accomplished through prioritizing of the 
decision alternatives using the aggregated assessments and choice of the decision alternatives 
with highest priority as the optimal.  The proposed system is evaluated with successful 
results in the selection of the best accident management strategy for multiple decision 
alternatives in an NPP.   
 
 
3.6 Alarm Processing System 
 
In NPPs, an alarm system is provided to indicate abnormal situations and to aid in operator 
decision making.  Due to the large size and the complexity of NPPs, enormous data influxes 
are present when a malfunction occurs.  In such situations, the plant operators cannot 
diagnose the fault and process it quickly and properly.  Earlier alarm systems, such as the 
annunciator system developed by Westinghouse Electric Corporation and the disturbance 
analysis system based on cause-consequence trees developed by Electric Power Institute, 
lack flexibility.  In an effort to assist operators in NPPs in identifying primary causal alarms 
and in diagnosing the fault using modern technologies, several studies have been 
conducted34-39 to automate alarm processing and diagnosis of NPPs.  
 
Yang and Chang34  have suggested a prototype alarm processing system that is developed 
using model-based reasoning and object-oriented representation of the alarm with general 
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cause-consequence check rules.  This alarm processing system, which filters and suppresses 
unnecessary and potentially misleading alarms, is validated with an NPP simulator.  
 
To assist the operator in identifying the primary causal alarm among multiple alarms and in 
diagnosing the plant malfunction promptly, Cheon et al.35 and Cheon et al.36 have 
investigated alarm processing systems using expert systems and neural networks, 
respectively.  A prototype system of each has been developed, and encouraging results were 
observed when a number of case studies were performed on the Kori-2 NPP in South Korea.  
 
A computerized annunciator system suggested by Naito and Ohtsuka37 is capable of 
extracting relevant alarms from the large number of alarms and of providing the operator 
with a clear overview of the process status on a CRT in a nuclear reactor control room.  The 
alarm processing is realized using logical expressions for an alarm generation model 
generated by a human expert and is implemented with a process computer.  The 
performances of the proposed system are validated on a full-scope BWR plant simulator with 
satisfactory results.  
 
Progress toward further automation in alarm processing in NPPs is found in the published 
work of Choi et al.38   Choi et al. describe an on-line alarm processing system referred to as 
the alarm filtering and diagnostic system (AFDS).  This system uses a fuzzy expert system 
that performs three tasks:  For example, alarm filtering, system-wide alarm diagnosis, and 
alarm prognosis.  The AFDS generates clear alarm pictures without any overlapping of 
alarms, provides system-wide failure information through alarm filtering and diagnosis, and 
enables operator-related operating procedures as well as diagnostic results.  Another unique 
and important feature of this system is that it provides information about early failure 
detection or early plant abnormalities by providing trend information and predicted future 
values of some critical safety parameters in its prognosis stage.  The Levinson algorithm is 
used to predict the future values of safety parameters.  The AFDS has been proven successful 
after tests were conducted on the full-scope simulator of Yonggwang Units 1 and 2.   
 
The study conducted by Park and Seong39 is focused on developing an integrated knowledge-
base tool for knowledge acquisition and verification of an NPP dynamic alarm processing 
system.  Document analysis method and extended colored Petri net matrix analysis with 
backward simulation are used to develop the knowledge acquisition and knowledge 
verification, respectively.  The alarm knowledge was acquired more easily and consistently 
from knowledge of sensors when the tool was tested on the coolant system of Unit 3 of Kori 
NPP in Korea. 
 
 
3.7 Optimal Fuel Loading 
 
In-core fuel management continues to be among the main concerns of the NPP operators.  
The optimization of fuel loading patterns improves the cost-effectiveness of the overall plant 
operation and guarantees safety during the operation.  An optimal loading pattern ensures 
that the local power peaking factor (Pmax) is lower than a predetermined value during the 
“on” cycle and that the effective multiplication factor (keff) is maximized to extract the 
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maximum energy.  Over the last two decades, many researchers have attempted automatic 
optimization of the fuel reloading pattern by using various techniques such as direct search 
algorithms, simulated annealing methods, and linear programming.  Because of the 
limitations of their search algorithms, none of these approaches ensure the global optimum 
solution.  To resolve these limitations, researchers have explored artificial intelligence 
techniques such as ANNs, fuzzy-rule-based systems (FRBSs), genetic algorithms, and any 
combinations of these in fuel-reload-optimization activities.40-46  
 
An optimal fuel loading pattern system has been proposed by Kim et al.40 that utilizes a 
backpropagation neural network to quickly predict core parameters, Pmax and keff, at the 
beginning-of-cycle for given fuel loading patterns.  Researchers have claimed that this 
system predicts the core parameters several hundred times faster than the reference numerical 
code but that the prediction accuracy is not sufficient.  This work has been further extended 
by Kim et al.41 in an attempt to improve the accuracy of the core parameter predictions.  The 
fuel-shuffling system developed by Kim et al.41 was tested to generate the fuel loading 
pattern of cycle 1of Kori-1 PWR.  This technique takes advantage of the very fast prediction 
capability of an ANN and the very effective searching capability of an FRBS.  The FRBS is 
used in order to achieve more effective and faster searching of loading patterns that satisfy 
Pmax requirements.  The ANN, which utilizes a backpropagation network, predicts Pmax and 
keff for the “good” patterns generated by the FRBS.  The fuzzy rule is optimized according to 
the prediction results by modification of its membership function.  The system is developed 
using Quintus Prolog and C languages and installed on a SUN 4/75 workstation.  It generates 
few patterns that are better than the reference pattern, and one can select from among them 
according to one’s experience and knowledge.  The system fails to generate the global 
optimal pattern but instead produces a local optimal pattern.  
 
The optimum fuel loading pattern system called CIGARO, developed by using genetic 
algorithms, was demonstrated by DeChaine and Feltus.42   One salient feature of the 
CIGARO system is that it includes a code-independent interface that allows the use of any 
reactor physics code to evaluate the loading pattern.  The interface program serves as 
translator between the genetic algorithm code and the reactor physics code.  Basically, the 
interface program changes the output from one program into a format so that the other 
program can use it.  The genetic algorithm portion of the code is programmed in C++, and 
the interfaces are made with standard UNIX tools.  The CIGARO system is tested with 
CASMO-3/SIMULATE-3 reactor physics code to optimize the loading pattern of a 
Westinghouse PWR.  The system is designed to work for both the BWR and the PWR but 
has been tested only with the PWR.  Better optimization results were later obtained by 
incorporating expert knowledge on fuel management optimization by DeChaine and Feltus43 
with the original genetic algorithm system developed by DeChaine and Feltus.42   
 
A method of Hopfield network integrated with the classical technique such as simulated 
annealing has been proposed by Sadighi et al.44 to find the best configuration of fuel 
assemblies in a PWR.  This study shows that a Hopfield network is effective in finding a 
local minimum solution that can be extended to seek for a global minimum by integrating a 
simulated annealing method.  Hopfield and simulated annealing routines are developed using 
FORTRAN.  The code is tested to find the optimum loading pattern for the Bushehr NPP in 
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Iran, which is verified against the pattern proposed by the designer of the plant, and the 
results show that the solution found is very close to optimum.  
 
Unlike Kim’s fuel-shuffling system,41 Erdogan and Geckinli45 developed a computer 
algorithm called XCore that combines the powerful learning and mimicking abilities of ANN 
with the genetic algorithm’s stochastic optimization capability to optimize fuel loading 
pattern.  In this algorithm, the ANN predicts the power distribution in the core and the 
effective multiplication factor (keff), which are used by the genetic algorithm to search for an 
optimum loading pattern to ensure safe and efficient reactor operation.  The primary goal of 
this study is to automate the fuel loading pattern generation that satisfies reactor safety 
requirements and to minimize the operating costs by reducing the initial amount of fuel 
charged to the core and by increasing burnup.  XCore is written in C++ and runs under the 
LINUX operating system.  The code has been tested successfully by using the data from the 
PWR Almaraz Nuclear Power Station in Spain, and the test results conform very well to 
those loading patterns suggested for the nuclear reactor core.  The authors suggest that the 
capabilities of XCore can be enhanced further by including burnup and leakage-flux effects 
into the both ANN and genetic algorithm modules of the code.  
 
An algorithm based solely on ANN is proposed by Faria and Pereira46 for the optimum 
loading pattern for a PWR.  In this algorithm, the loading pattern is generated by ANN 
whereas the core parameters are calculated with the WIMS-D4 and CITATION-LD12 codes 
to satisfy the Pmax constraint only.  The developed procedure is able to generate a better 
loading pattern than the reference loading pattern but does not always guarantee a global 
optimum loading pattern. 
 
 
3.8 Fault Detection and Identification 
 
Fault detection and identification have always been of paramount importance to improve 
safety in nuclear reactor operations.  Quick detection and accurate diagnosis of faults are 
extremely important to NPP safety because relatively simple misdiagnosis followed by 
inappropriate corrective action may lead to a more dangerous situation.  Many studies have 
been reported in the literature investigating the ways to develop fault detection and 
diagnostic systems to address the above issues.  
 
A fault diagnostic system for the emergency feedwater system (EFWS) of the Seabrook 
Nuclear Station has been developed by Obreja47 using expert systems.  The proposed 
diagnostic system consists of a fault detection module and a fault diagnosis module.  The 
symptom of malfunction is detected by the fault detection module by observing the 
qualitative variation of the output parameter, which is then propagated through the system 
model where all possible faults are generated.  The knowledge base contains the qualitative 
information of the EFWS, which is used by the diagnostic process.  The system has been 
tested only on a portion of the whole EFWS model.  
 
One of the major drawbacks of using expert systems is that the monitored input variables can 
be degraded by noise, which can cause expert systems to deviate from the formulated 
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conditions at critical decision levels.  These systems may also require a significant amount of 
computation time and resources to progress through the many decision levels required to 
diagnose a fault.  To alleviate this problem, a system using a self-optimizing stochastic 
learning algorithm ANN for fault detection and diagnosis has been suggested by Bartlett and 
Uhrig.48   In this study, the ANN is trained on normal operating conditions as well as on 
potentially unsafe conditions of an NPP.  ANN is chosen by Bartlett because it has 
demonstrated improved diagnostic capabilities in situations in which data are noisy and 
incomplete.  NPP simulation data from the Watts Bar Nuclear Power Station are used to test 
the algorithm.  The ANN is taught seven accident scenarios of the NPP, such as total loss of 
off-site power, main feedwater line break, main steam line break, control rod ejection, hot-
leg loss of coolant, cold-leg loss of coolant, and steam generator tube leak.  The data set for 
each scenario contains 27 plant process variables at 0.5-s intervals for at least 250 s.  The 
results of the tests are depicted in graphical form for each of the above fault conditions for 
situations without noise present in data and for those with noise.  The results demonstrated 
that the network responds very quickly to the onset of most of the accidents except in the 
case of steam generator leak; however, the network classifies this accident well in advance of 
the reactor scram.  
 
On the other hand, a system that combines a neural network and knowledge processing has 
been proposed by Ohga and Seki49 to identify abnormal events that cause a nuclear reactor 
scram.  The change pattern of plant variables in analog form is recognized by the neural 
network, which is then outputted as the candidate abnormal event.  The knowledge 
processing reads the event code from the neural network and confirms the network result 
using a knowledge base for the plant data.  It has been shown that the neural network can 
identify effectively any event on which it is trained, even in presence of white noise, and that 
it does not mistakenly identify any nontrained event.  This method provides rapid 
identification using a small amount of knowledge.  The system performance is validated 
through tests on the simulated results of a transient analysis program for a BWR.  The data 
for neural network input includes reactor pressure, reactor water level, neutron flux, main 
steam flow rate, and feedwater flow rate.  Ten events are selected along with a white noise, 
with a standard deviation of 10% for the test.  The test results show that the neural network 
can identify a trained event when the plant condition differs from the trained one.   
 
The work of Bartlett and Uhrig48 has been extended by Kim and Bartlett50 to address the 
issue of accuracy of the previous fault diagnosis algorithms.  A method presented in ref. 50 
provides an error bound and hence a figure of merit for the diagnostic system of NPPs 
developed previously by using ANN.  For the following reasons, this error-bound prediction 
method utilizes a modified stacked generalization scheme based on cross-validation and 
nonparametric statistics.  Cross-validation is very effective in selecting the best model for 
data (such as Fault diagnosis data) that are not normally distributed.  Statistical modeling by 
nonparametric methods is more accurate for the type of data that the fault diagnosis system 
produces.  The developed system includes an ANN advisor that detects and diagnoses faults 
and a stacked generalization technique to estimate the error bounds of the main ANN 
advisor.  The data used for training the ANN are taken from the San Onofre Nuclear Power 
Plant (a 500-MW PWR), and the system is tested for 10 simulated transient situations 
containing 33 plant variables and 10 simulated normal operating conditions of the NPP.  The 
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root-mean-square error of each of the above cases is displayed in graphical form, 
demonstrating the effectiveness of the method and providing estimated error bounds for each 
of its diagnoses.  
 
The error predictor network used in the above approach requires an additional input vector 
that doubles the total input space as compared with that of the ANN advisor.  This increase in 
input space causes increase in complexity and additional difficulties in network training.  
Another disadvantage of this technique is that the error predictor network is fed by an input 
vector that is unrelated to the performance of the main ANN advisor.  To overcome these 
drawbacks of the previous error bound estimator of an ANN advisor, Kim and Bartlett51 
presented a scheme called “error estimation by series association,” by replacing the previous 
error predictor network with a new network developed via a different technique.  The error 
estimation in this approach is performed by a secondary neural network that is fed both the 
inputs for and the outputs of the ANN advisor.  Encouraging results have been reported from 
the test on 33 transient scenarios of various severity levels and degraded noise conditions of 
the Duane Arnold Energy Center NPP ranging from a main steam line break to anticipated 
transient without scram.  The developed ANN fault diagnosis system demonstrates increasing 
robustness to noise compared with other systems.  
 
 
3.9 Sensor Validation and Detection 
 
The sensor validation plays an important role in real-time NPP operations.  Faulty and 
conflicting sensor readings may often degrade the performance of the control system, 
confuse operators, and lead to actions that may compromise the safety of an NPP.  
Automation of the sensor validation process will be an important advancement for increased 
safety and higher autonomy in control functions of an NPP.  The proposed method presented 
by Eryurek and Upadhyaya52 uses an adaptive backpropagation network for signal validation 
of an NPP.  During the training period for the network, both steady-state and transient 
behavior can be included and new data can be incorporated by updating the network 
connection weight.  The most important feature of the algorithm is the ability to adjust the 
sigmoidal threshold function and weight-updating terms progressively during the learning 
phase.  Test results have indicated that the speed of convergence and accuracy of results can 
be improved by incorporating the above capability in the network.  The algorithm is tested 
with the operational data from a four-loop Westinghouse PWR at startup for a period of 
approximately 36 h.  The predicted values can be used for sensor validation, process 
monitoring, and diagnostic applications.  This work has been extended by Upadhyaya and 
Eryurek53 to include additional features, which are listed below.  The sigmoidal function can 
be changed on-line, all input and output signals can be scaled automatically, and a single 
hidden layer is sufficient (instead of the multiple hidden layers normally used).  Startup data 
from EBR-II are used to illustrate the effectiveness of the approach.  It is reported that the 
reactor power (0 to 100%), the control rod position, the core exit temperature, and the 
secondary sodium outlet temperature of the intermediate heat exchanger are predicted with a 
higher degree of accuracy.  
 



 16

A different approach that utilizes computer-aided techniques to automate the sensor 
validation process is suggested by Ning and Chou54 for sensor validation of NPPs.  Ning and 
Chou have proposed a fault detection network that consists of sensors, mathematical models 
for sensor relations, and a decision/estimator unit — all linked in a fault-tree structure.  The 
function of the decision/estimator is to discriminate minority sensors and isolate their 
readings.  The data structuring is done using an entity relationship modeling technique, and 
data manipulation is accomplished via object-oriented programming.  This scheme provides a 
tool to build the fault detection network in a systematic manner.  The system is implemented 
in a personal computer, where the codes are written in C.  The tests have been conducted to 
evaluate the system with Taipower Company’s Maanshan three-loop PWR in Taiwan, with 
encouraging results.   
 
The process empirical modeling (PEM) technique is proposed by Holbert and Upadhyaya55 
for the purpose of signal validation.  The empirical models are developed by using data from 
different steady-state operations.  The nonlinear multiple-output single-input model 
developed by this technique compares the sensor output with the measured signal to identify 
any anomaly.  The main advantage of this method as compared with analytical methods lies 
in the reduction of effort required to create the models.  The technique possesses the ability 
to replace a faulty measurement as an input to a control system.  Holbert and Upadhyaya 
report that the PEM technique has the ability to automatically discard the signal that does not 
change with the output.  This feature has proved to be a drawback in cases where a process 
variable is held constant throughout the operation of the plant, such as the flow rate of a 
reactor coolant system.  The authors warn that this aspect must be accounted for in any 
practical application.  The technique employs fuzzy S-curve to identify signal anomaly by 
comparing the deviation of the measured and predicted signals with the signal tolerance.  If 
the measured value is found to be inaccurate, the predicted value is used for input to the 
control system or as a display for the operator in real time.  The method is applied to 
operational data from a four-loop Westinghouse PWR and the EBR-II. A total of 9 variables 
of the PWR and 19 variables of the EBR-II are modeled.  The test results indicate that errors 
of the prediction accuracy of the PEM are 0.09 to 3.9% and 0.06 to 0.6% for the PWR and 
EBR-II variables, respectively.  The PEM has proved to be highly useful as an independent 
estimate of process conditions.  
 
For signal validation, Fantoni and Mazzola56 suggest a pattern recognition-ANN-based 
system that is capable of identifying abnormal condition.  The major accomplishment of this 
work is that the system can validate process signals in case of multiple-failure scenarios, both 
in steady-state and transient conditions.  The signal validation process is accomplished using 
multilayered supervised ANN with a backpropagation algorithm.  The training data for the 
ANN is obtained from a BWR simulator (APROS) that contains both transient and steady-
state conditions with added noise (2% superimposed standard deviation).  The test results, 
including the case of double fault, indicate that the system estimates the process signals 
satisfactorily with a maximum error of 5% (below 3% in most of the cases). 
 
A sensor validation system proposed by Heger et al.57 is based on a fuzzy logic approach and 
includes the functions such as instantaneous signal validation and measurement of long-term 
sensor status when two or three redundant sensors are used.  The first function provides 
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information about the current status of the sensors, which is then used to compute the best 
estimate of the measured variable.  The second function uses a frequency fuzzy variable to 
determine the signal condition over a specific period.  The instantaneous signal validation is 
important in detection of any catastrophic fault in a sensor, whereas the long-term evaluation 
will discern a slowly developing fault such as drift.  The generalized likelihood ratio (GLR) 
and sequential probability ratio test (SPRT) methods are used for the instantaneous and long-
term signal validation, respectively.  The GLR technique is very useful in detecting abrupt 
changes or failures of the system and provides a single best estimate of a particular variable 
by comparing the reading with the sensor readings of the variable from other counterparts.  
The SPRT provides a systematic procedure for fault detection and isolation.  The decision is 
based on the information gathered from the past measurement history and the current 
observation.  The system is tested by analyzing synthetically generated data, which are 
produced to mimic various possible scenarios that may occur during a sensor malfunction or 
normal plant operation.  A Gaussian noise of mean value zero and standard deviation of unity 
is superimposed on the signals.  It is shown that the technique is effective in evaluating the 
sensor status for both instantaneous and long-term signal validation.  
 
Earlier reported methods in signal validation using neural networks may require a large 
number of input signals to estimate the output signal.  The selection of input signals plays a 
vital role in the performance of such networks.  The training time for neural networks 
increases exponentially as the number of input signals becomes larger.  A reliable and 
effective sensor detector proposed by Na et al.58 automatically optimizes the number of 
required input signals and hence reduces the neural network training time.  The technique 
utilizes a fuzzy neural network with an optimal structure constructor.  Correlation analysis 
and genetic algorithms are also combined in this technique to perform the optimal selection 
of proper input signals, whereas the fuzzy neural network estimates the output signals from 
the optimum input signals.  The genetic algorithm is also used here to automatically generate 
the optimum number of fuzzy rules.  The residual error is generated by taking the difference 
between the estimated and the measured signal, and, subsequently, the degree of degradation 
and continuous behavior of the sensor may be determined with SPRT applied to the residual 
error.  The proposed technique is applied to monitor the steam-generator water level, hot-leg 
temperature, and the ex-core neutron flux sensors in Yonggwang Unit 3 and 4 PWRs.  The 
test results show that the performance of this algorithm is superior to other existing 
algorithms.  
 
 

4.  CONCLUSIONS 
 
 
With ever-increasing demands for quality improvement, reliability, safety, and cost reduction 
placed on NPPs there is a trend toward autonomous operations in which the tasks of 
performance monitoring, early fault detection and diagnosis, automated alarm processing, 
emergency operating procedures, etc., can be integrated.  Autonomous control systems must 
perform well under significant uncertainties in the plant and the environment for extended 
periods of time, and they must be able to compensate for system failures without external 
intervention.  In this study, we have tried to collect information on ongoing efforts, current 
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status, and future trends to achieve higher automation of NPP operations.  Nuclear engineers 
are constantly engaged in developing controllers for NPPs with higher autonomous behavior.  
Clearly, recent developments show that intelligent techniques such as fuzzy logic, neural 
networks, genetic algorithms, expert systems, and others provide additional tools that 
significantly enlarge the range of problems that can be solved.  An increasing number of 
studies have been conducted in recent years that contain intelligent agents such as fuzzy 
logic, neural networks, genetic algorithms, etc., to achieve higher autonomy in complex plant 
operations like NPP, and it has been proven that such systems have the potential to operate 
with high levels of performance and reliability with minimum operator intervention.  There is 
a broad consensus that a reasonable degree of autonomy is more easily achievable by 
incorporating intelligence components in the conventional control systems.  Nuclear 
engineers also share the opinion that more studies must be focused on the stability analysis of 
intelligent control systems. 
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