
System Software and Ultrascale Simulation

Al Geist

8/2/2003

Systems software is a broad area that generally includes all the software needed to
manage and maintain a large production computer center. Some of the major categories
of system software are:
Resource management – This software takes care of scheduling jobs to most effectively
utilize the supercomputers based on the application needs and priorities.
Accounting and user management – This software provides access security to the
supercomputers and keeps track of how much time each user has accrued.
Job management – This software allows users to submit and query the status of their
jobs. It is also used to interactively launch jobs.
System Monitoring – This software monitors all the computers in the center, providing
information on availability, status, and potential faults.
Configuration management – This software is used to start up new computers,
reconfigure, and reboot existing supercomputers as required by application needs as well
as software upgrades.
Operating System (OS) – The software that provides the functions and runtime
environment on the supercomputer. The OS overlaps with several other areas in this
report including architecture, data management (parallel I/O), frameworks, and
performance. In this chapter we will try to focus on those parts of the OS and systems
software that are not covered by these other areas.

Impact of Systems Software on Application Areas

Beyond the obvious observation that no applications can run unless there is system
software, there are many opportunities for systems software to reduce the time required
for large science applications to get their results. Through resource management it is
possible to ensure that large science applications get the majority of the time on the
supercomputers and that smaller jobs are scheduled on other resources. When the
applications are running, the OS can get out of the way – termed low impact OS. A low
impact OS provides only those functions needed by the application and disables
functions, such as sendmail, that might interrupt the computer during processing.

The mean time between failure (of some portion) of today’s supercomputers is measured
in days, thus for applications that run for weeks or months, fault tolerance is already an
important issue. For the petascale computers the mean time to failure could be as low as a
few minutes. Such computers will have to have system software that is tolerant of partial
failures and be able to reconfigure the computer dynamically. The system software would
also be responsible for automatically migrating and/or restarting the long running
applications.

The runtime environment provides the framework for the programming model used by
the application. The most popular programming model today is message passing, but
future programming models will have to be supported by the systems software if the
applications require it.

In the following tables small (S), medium (M), and large (L) system software impacts of
the above issues are expressed in terms of the different application areas. Table 1
provides the current perception. Table 2 reflects the increasing impact of the issues as the
scale of the supercomputers grow and fault tolerance and security become more critical
across all the applications.

Table 1. Current System Software needs by the applications

Table 2. Changing System Software needs as machines are scaled to peta-scale.

In addition to the system software areas given in Table 2, debugging, validation, and
system diagnostics were identified as also becoming important to ultrascale simulations.

 Low impact
OS

Parallel
I/O

Fault
Tolerance

Programming
Model support

Resource
Mgmt

Security

Accelerators S S S L M S
Astrophysics S L M S M M

Biology S L S S S L
Chemistry S M M L M S

Climate/Earth science S L L M L S
Combustion science S L S S M M

Environmental science S M L S
Materials science S M S M M L

Nanoscience S S S M
Plasma science L L M S S

Quantum
Chromodynamics

L S S L M S

High Energy Physics L L L M L S

 Low impact
OS

Parallel
I/O

Fault
Tolerance

Programming
Model support

Resource
Mgmt

Security

Accelerators L M L S M M
Astrophysics L L L M M M

Biology M L L M M L
Chemistry L L L L M M

Climate/Earth science L L L M M M
Combustion science L M L M M L

Environmental science M L M M
Materials science L L L L M L

Nanoscience M L L M L
Plasma science L L L S M M

Quantum
Chromodynamics

L S L L M S

High Energy Physics L L L M M S

Research Issues in Systems Software

The nation’s premiere scientific computing centers are facing a crisis. They all use
incompatible, ad hoc sets of systems software and this software is not designed to scale to
the multi-teraflop systems that are being installed in these centers today. One solution
would be for each computer center to take their home-grown software and rewrite it to be
scalable. But this would incur a tremendous duplication of effort and delay the
availability of the multi-teraflop computers for scientific discovery.

Standardizing interfaces in systems software is a catalyst for fundamentally changing the
way future high-end systems software is developed and distributed. Research and
development in this area will reduce facility management costs by: reducing the need to
support home-grown software, making higher quality systems tools available, and
enabling new machines to be up and running sooner. Standardization will also facilitate
more effective use of machines by scientific applications by providing scalable job
launch, standardized job monitoring and management software, and allocation tools for
the cost effective management and utilization of the computational resources.

Besides the advantage of having standardized user interfaces to improve the usability of
the production systems by the scientist, system software research also addresses the
following critical issues during the running of science applications.

Improved application performance by having an OS that does not get in the way of the
application. Operating systems such as Linux have many programs running in the
background that periodically interrupt an application’s progress in order to just check if
they should run or not. Even when all these extraneous programs are disabled in Linux,
the Linux OS itself has problems scaling to thousands of processors. For these reasons
there needs to be a high performance OS research effort to complement ultrascale
simulation effort. It is suggested that this OS research be built on a flexible framework
that would allow the OS to be lightweight or heavyweight as required by the different
application areas and be portable to different architectures. It is envisioned that
eventually the OS could adapt itself to have just the functions required for a given
application and even tune OS parameters to improve an application’s performance on a
given architecture.

Support for parallel I/O and external networks required to get the data in and results out
of the applications is a key CS research area. While a separate chapter in this report
discusses the issues of data management and parallel I/O, the OS is the interface between
the application and the file system. Interaction between the high performance OS and the
parallel I/O research is crucial to being able to meet the data requirements of the
applications.

System Fault Management today consists of restarting a job from its last checkpoint if a
system fault occurs. As the size of computers grows the time it takes to reload a job
grows larger while the time between faults gets shorter. It has been estimated that on a
100,000-processor computer that faults would occur faster than a job could be reloaded.

Thus next generation computers will require a new approach to system fault management
that detects, adapts, and reconfigures around faults to allow long running applications to
complete. For large computers fault management research could be even more important
than performance research because if an application fails before giving a result it doesn’t
matter how fast it was running up to that point.

There are two levels of fault management. First the system software itself needs to be
able to survive a fault and reconfigure the resources accordingly. Second the applications
need to be designed with fault tolerance in mind. Research is needed at both levels in
order for long running simulations to complete.

Scalable Resource Management is critical to efficiently schedule the applications to best
utilize the available resources and meet the applications’ deadlines. Most system software
today is unable to scale to the tens of thousands of processors that petascale computers
will have. Significant scalability research is required across the entire system software
suite. In particular, the resource management software will need to provide support for
migration and dynamic job sizing so that applications can be dynamically configured
around faults or moved to more efficiently utilize the overall computer resources. For
example, to make room for another job to be started.

Programming Model Support for existing and future programming methodologies
portably across all the top-end architectures is an important application need. The runtime
environment is responsible for supporting the programming model used in the scientific
application. While message passing, in particular MPI, is the predominate programming
model in use today, it is not the only programming model. The runtime environments that
are developed for the next generation supercomputers need to be flexible enough to
support a variety of programming models.

Resources Required

The group felt that the software running the largest computers in the nation should not be
a “student project” but rather the result of professional software developers with
experience with supercomputers. There should also be a conscious investment in the
management and maintenance of the developed systems software as well, otherwise the
high performance OS and scalable system software will become obsolete and the
development investment wasted.

Hardware testbeds are needed in order to test and debug OS and system software at scale
before it can be moved to the nation’s premier supercomputers. The production
supercomputers cannot afford to have their science applications disrupted in order to do
debug OS software.

It was noted that in the last decade there has been a marked decrease in students doing
research in high performance computing. Investment is needed in the education of the
next generation of computer scientists who will carry on the research required in scalable
systems software.

External Dependencies

System software must support the programming models chosen by the applications. It
must work across multiple architectures chosen and designed by the vendors. The
software must scale from small PC clusters to petascale supercomputers in order to cover
all the resources chosen by large computer centers. The system software must be able to
handle a variety of usage models. Some applications may require thousands of ensemble
runs, others may require the entire machine for a month for one run, and still others may
desire to run constantly in the background. Flexibility to adapt to all these external
dependencies will be an important aspect of the next generation system software.

Metrics of Success

The primary metric for success is increased scientific productivity. This can manifest in
systems software in many ways most of them completely transparent to the users. For
example, next generation machines could be available for production sooner because the
system software was designed to be portable to new architectures and scalable to tens of
thousands of processors. Another example would be the ability to submit a long running
application and just wait for the answer to appear while the system software takes care of
any detection and fault management that may be required for the job to complete.

A less transparent metric is the perceived usability of the production systems. The ability
to have common, portable job management and system monitoring interfaces regardless
of what architectures or computer centers are being used will allow the scientists to
become familiar with the user environment and allow reuse of their submission scripts.

The general felling is that if the system software is successful one never hears about it,
i.e. success is having no complaints from the users.

