
Space-Time Trade-Off Optimization for a Class of
Electronic Structure Calculations∗

Technical Report OSU-CISRC-11/01-TR24

Daniel Cociorva1 Gerald Baumgartner2 Chi-Chung Lam2 P. Sadayappan2

J. Ramanujam3 Marcel Nooijin4 David E. Bernholdt5 Robert Harrison6

1 Department of Physics
The Ohio State University

cociorva@pacific.mps.ohio-state.edu

2 Department of Computer and Information Science
The Ohio State University

{gb,clam,saday}@cis.ohio-state.edu

3 Department of Electrical and Computer Engineering
Louisiana State University

jxr@ece.lsu.edu

4 Department of Chemistry
Princeton University

Nooijen@Princeton.edu

5 Oak Ridge National Laboratory
bernholdtde@ornl.gov

6 Pacific Northwest National Laboratory
Robert.Harrison@pnl.gov

November 30, 2001

Abstract

The accurate modeling of the electronic structure of atoms and molecules is very computationally intensive. Many
models of electronic structure, such as the Coupled Cluster approach, involve collections of tensor contractions. There
are usually a large number of alternative ways of implementing the tensor contractions, representing different trade-
offs between the space required for temporary intermediates and the total number of arithmetic operations. In this
paper, we present an algorithm that starts with an operation-minimal form of the computation and systematically
explores the possible space-time trade-offs to identify the form with lowest cost that fits within a specified memory
limit. Its utility is demonstrated by applying it to a computation representative of a component in the CCSD(T)
formulation in the NWChem quantum chemistry suite from Pacific Northwest National Laboratory.

∗We are grateful to the National Science Foundation for support of this work through the Information Technology Research Program

1

1 Introduction

The development of high-performance parallel programs for scientific applications is usually very time consuming.
The time to develop an efficient parallel program for a computational model can be a primary limiting factor in
the rate of progress of the science. Our long term goal is to develop a program synthesis system to facilitate the
development of high-performance parallel programs for a class of scientific computations encountered in quantum
chemistry. The domain of our focus is electronic structure calculations, as exemplified by coupled cluster methods,
where many computationally intensive components are expressible as a set of tensor contractions. We plan to develop a
synthesis system that can generate efficient parallel code for a number of target architectures from an input specification
expressed in a high-level notation.

A critical issue in implementing electronic structure models, e.g. using coupled cluster methods, is the management
of storage requirements for intermediates. Significant savings in computational cost can be achieved by computing
and storing various intermediate array quantities, that are reused several times in the process of generating the final
results. However, the space requirements for these intermediates is often extremely large, making it infeasible to store
even on disk. In this case, there is no choice but to discard and recompute some of the intermediates. Therefore the
following optimization problem is of great interest: given a set of computations expressed as a sequence of tensor
contractions (explained later on), and a specified limit on the amount of available storage, re-structure the computation
so as to minimize the amount of redundant recomputation required. In this paper, we present a framework that we
have developed to address this problem. The space-time trade-off optimization we consider here is part of a planned
synthesis system that incorporates a number of optimization modules.

The computational structures that we address in this paper arise in scientific application domains that are extremely
compute-intensive and consume significant computer resources at national supercomputer centers. They are present
in computational physics codes modeling electronic properties of semiconductors and metals [1, 7, 16], and in com-
putational chemistry codes such as ACES II, GAMESS, Gaussian, NWChem, PSI, and MOLPRO. In particular, they
comprise the bulk of the computation with the coupled cluster approach to the accurate description of the electronic
structure of atoms and molecules [14, 15]. Computational approaches to modeling the structure and interactions of
molecules, the electronic and optical properties of molecules, the heats and rates of chemical reactions, etc., are crucial
to the understanding of chemical processes in real-world systems.

The paper is organized as follows. In the next section, we elaborate on the computational context of interest, the
pertinent optimization issues and an overview of the overall synthesis system that is under development. Section 3
elaborates on the problem using a concrete example that is abstracted from a computationally intensive calculation in
the NWChem [6] system. Section 4 provides a high-level description of the solution approach. Sections 5 and 6 present
details of the approach to solve the space-time trade-off problem. Section 7 presents results from the application of
the new algorithm to the example abstracted from NWChem. Conclusions are provided in Section 8.

2 The Computational Context

In the class of computations considered, the final result to be computed can be expressed in terms of tensor con-
tractions, essentially a collection of multi-dimensional summations of the product of several input arrays. Due to
commutativity, associativity, and distributivity, there are many different ways to compute the final result, and they
could differ widely in the number of floating point operations required. Consider the following expression:

Sabij =
∑

cdefkl

Aacik ×Bbefl × Cdfjk ×Dcdel

If this expression is directly translated to code (with ten nested loops, for indicesa− l), the total number of arithmetic
operations required will be4×N10 if the range of each indexa− l is N . Instead, the same expression can be rewritten
by use of associative and distributive laws as the following:

Sabij =
∑
ck

(∑
df

(∑
el

Bbefl ×Dcdel

)
× Cdfjk

)
×Aacik

This corresponds to the formula sequence shown in Fig. 1(a) and can be directly translated into code as shown in
Fig. 1(b). This form only requires6 × N6 operations. However, additional space is required to store temporary

2

T1bcdf =
∑

el

Bbefl ×Dcdel

T2bcjk =
∑
df

T1bcdf × Cdfjk

Sabij =
∑
ck

T2bcjk ×Aacik

(a) Formula sequence

T1=0; T2=0; S=0
for b, c, d, e, f, l[

T1bcdf += Bbefl Dcdel

for b, c, d, f, j, k[
T2bcjk += T1bcdf Cdfjk

for a, b, c, i, j, k[
Sabij += T2bcjk Aacik

(b) Direct implementation
(unfused code)

S = 0
for b, c

T1f = 0; T2f = 0
for d, f

for e, l[
T1f += B befl Dcdel

for j, k[
T2f jk += T1f C dfjk

for a, i, j, k[
Sabij += T2f jk Aacik

(c) Memory-reduced implementation
(fused)

Figure 1: Example illustrating use of loop fusion for memory reduction.

arraysT1 andT2. Often, the space requirements for the temporary arrays poses a serious problem. For this example,
abstracted from a quantum chemistry model, the array extents along indicesa − d are the largest, while the extents
along indicesi − l are the smallest. Therefore, the size of temporary arrayT1 would dominate the total memory
requirement.

The operation minimization problem encountered here is a generalization of the well known matrix-chain mul-
tiplication problem, where a linear chain of matrices to be multiplied is given, e.g. ABCD, and the optimal order
of pair-wise multiplications is sought, i.e. ((AB)C)D versus (AB)(CD) etc. In contrast to this, for computations ex-
pressed as sets of matrix contractions, although the final realization of the computation is in terms of a sequence of
matrix-matrix products, there is additional freedom in choosing the pair-wise products. For the above example, in-
stead of forcing a single chain order, e.g. ABCD, other orders are possible, such as the BCDA order shown for the
operation-reduced form above.

We have previously shown that the problem of determining the operator tree with minimal operation count is
NP-complete, and have developed a pruning search procedure [12, 13] that is very efficient in practice. For the
above example, although the latter form is far more economical in terms of the number of arithmetic operations, its
implementation will require the use of temporary intermediate arrays to hold the partial results of the parenthesized
array subexpressions. Sometimes, the sizes of intermediate arrays needed for the “operation-minimal” form are too
large to even fit on disk.

A systematic way to explore ways of reducing the memory requirement for the computation is to view it in terms
of potential loop fusions. Loop fusion merges loop nests with common outer loops into larger imperfectly nested
loops. When one loop nest produces an intermediate array which is consumed by another loop nest, fusing the two
loop nests allows the dimension corresponding to the fused loop to be eliminated in the array. This results in a smaller
intermediate array and thus reduces the memory requirements. For the example considered, the application of fusion
is illustrated in Fig. 1(c). By use of loop fusion, for this example it can be seen thatT1 can actually be reduced to a
scalar andT2 to a 2-dimensional array, without changing the number of arithmetic operations.

For a computation comprising of a number of nested loops, there will generally be a number of fusion choices,
that are not all mutually compatible. This is because different fusion choices could require different loops to be made
the outermost. In prior work, we addressed the problem of finding the choice of fusions for a given operator tree that
minimized the total space required for all arrays after fusion [9, 10, 11].

However, for many of the computational structures within the coupled cluster component of the NWChem software
suite, we find instances where the minimal memory required after optimal loop fusion is still too large. In such
situations, in order to create an executable implementation, it is essential to trade space for time, by only storing
lower dimensional slices of the largest arrays, and recomputing the slices as needed. This is the compiler optimization
problem we address in this paper. We extend the use of a previously proposed concept of afusion graphand develop
an algorithm that explores a space of alternative space-time trade-offs to determine thebestset of lower-dimensional
arrays that fit within a specified space limit, so that the additional recomputation cost is minimized.

The problem addressed in this paper is one of several optimization issues being addressed in the context of a larger
effort to develop a tool for the automatic synthesis of high-performance parallel code from a high-level specification
for a class of quantum chemistry calculations.

3

Figure 2: The Planned Synthesis System

Figure 2 shows the components of the system being developed. A brief description of the components follows:
Algebraic Transformations: It takes high-level input from the user in the form of tensor expressions (essentially
sum-of-products array expressions) and synthesizes an output computation sequence. The Algebraic Transformations
module uses the properties of commutativity and associativity of addition and multiplication and the distributivity of
multiplication over addition. It searches for all possible ways of applying these properties to an input sum-of-products
expression, and determines a combination that results in an equivalent form of the computation with minimal operation
cost.
Memory Minimization: The operation-minimal computation sequence synthesized by the Algebraic Transformation
module might require an excessive amount of memory due to the large temporary intermediate arrays involved. The
Memory Minimization module attempts to perform loop fusion transformations to reduce the memory requirements.
This is done without any change to the number of arithmetic operations.
Space-Time Transformation: If the Memory Minimization module is unable to reduce memory requirements of the
computation sequence below the available disk capacity on the system, the computation will be infeasible unless a
successful space-time trade-off is performed. This is the issue we address in this paper. If no satisfactory transforma-
tion is found, feedback is provided to the Memory Minimization module, causing it to seek a different solution. If the
Space-Time Transformation module is successful in bringing down the memory requirement below the disk capacity,
the Data Locality Optimization module is invoked.
Data Locality Optimization: If the space requirement exceeds physical memory capacity, portions of the arrays must
be moved between disk and main memory as needed, in a way that maximizes reuse of elements in memory. The same
considerations are involved in effectively minimizing cache misses — blocks of data must be moved between physical
memory and the limited space available in the cache. These issues have been addressed elsewhere [3, 4].
Data Distribution and Partitioning: The final step is to determine how best to partition the arrays among the pro-
cessors of a parallel system. We assume a data-parallel model, where each operation in the operation sequence is
distributed across the entire parallel machine. The arrays are to be disjointly partitioned between the physical mem-
ories of the processors. This model allows us to decouple (or loosely couple) the parallelization considerations from
the operation minimization and memory considerations.

4

for a, e, c, f[
for i, j[

Xaecf += Tijae Tijcf

for c, e, b, k[
T1cebk = f 1(c, e, b, k)

for a, f, b, k[
T2afbk = f 2(a, f, b, k)

for c, e, a, f[
for b, k[

Yceaf += T1cebk T2afbk

for c, e, a, f[
E += Xaecf Yceaf

array space time
X V 4 V 4O2

T1 V 3O CiV
3O

T2 V 3O CiV
3O

Y V 4 V 5O
E 1 V 4

Figure 3: Unfused operation-minimal form.

In the next section we use an example from quantum chemistry to further elaborate on the space-time trade-off
optimization addressed in this paper.

3 Elaboration of the Problem

One of the most computationally intensive components of many quantum chemistry packages is the CCSD(T) scheme.
It is a coupled cluster approximation that includes all single and double excitations from the Hartree-Fock wavefunc-
tion plus a perturbative estimate for theconnectedtriple excitations. For molecules well described by a Hartree-Fock
wave function, the CCSD(T) method predicts bond energies, ionization potentials, and electron affinities to an accu-
racy of approximately±0.5 kcal/mol, bond lengths accurate to±0.0005Ȧ, and vibrational frequencies accurate to
±5cm−1. This level of accuracy is adequate to answer many of the questions that arise in studies of complex chemical
systems.

As a motivating example for the problem addressed, we discuss a component of the CCSD(T) calculation. The
following representative equation arises in the Laplace factorized expression for linear triples perturbation correction.

A3A =
1
2
(
Xce,afYae,cf + Xaē,cf̄Ycē,af̄ + Xaē,c̄fYc̄ē,af + Xāe,cf̄Yce,āf̄ + Xāe,c̄fYc̄e,āf + Xāē,c̄f̄Yc̄ē,āf̄

)
where theX andY intermediates are of the formXae,cf = tae

ij tcf
ij andYce,af = 〈cb ‖ ek〉〈ab ‖ fk〉, respectively.

Integrals with two vertical bars have been antisymmetrized and may be expressed as:(〈pq ‖ rs〉 = 〈pq | rs〉−〈pq |
sr〉), where integrals with one vertical bar are of the form〈µν | ωλ〉 =

∫ ∫
dr3ds3φµ(r)φν(s)|r − s|−1φω(r)φλ(s)

and are quite expensive to compute (requiring on the order of 1000 arithmetic operations). Electrons may have either
up or down (or alpha/beta) spin. Down spin is denoted here with an over bar. The indicesi, j, k, l, m, n refer to
occupied orbitals), of number O between 30 and 100. The indicesa, b, c, d, e, f refer to unoccupied orbitals of number
V between 1000 and 3000. The integrals are written in the molecular orbital basis, but must be computed in the
underlying atom-centered Gaussian basis, and transformed to the molecular orbital basis. We omit these details in our
discussion here.

A3A is one of many contributions to the energy, and among the most expensive, scaling asO(OV 5). Here, we
assume that we have already computed the amplitudestae

ij , and they must be read as necessary, and contracted to form
a block ofX. The integrals〈cb ‖ ek〉 must be recomputed as necessary, contracted to form a block ofY corresponding
to X, and the two contracted to form the scalar contribution to the energy.

Figure 3 shows pseudo-code for the computation of one of the energy componentsE for A3A. Temporary arrays
T1 andT2 are used to store the integrals of form〈ab ‖ ek〉, where the functionsf1 andf2 represent the integral
calculations. The intermediate quantitiesXaecf are computed by contracting over (i.e., summing over products of)
input arrayT , while the intermediate quantitiesYceaf are obtained by contracting overT1 andT2. The final result is
a single scalar quantityE, that is obtained by adding together theO(OV 3) pair-wise productsXaecfYceaf .

The cost of computing each integralf1, f2 is represented byCi, and in practice is of the order of hundreds or
a few thousand arithmetic operations. The pseudo-code form shown in Fig. 3 is computationally very efficient in
minimizing the number of expensive integral function evaluationsf1 andf2, and maximizing the reuse of the stored

5

for a, e, c, f[
for i, j[

Xaecf += Tijae Tijcf

for a, f[
for c, e, b, k[

T1cebk = f 1(c,e,b,k)

for c, e[
for a, f, b, k[

T2afbk = f 2(a,f,b,k)

for c, e, a, f[
for b, k[

Yceaf += T1cebk T2afbk

for c, e, a, f[
E += Xaecf Yceaf

⇒

for a, e, c, f

for i, j[
X += Tijae Tijcf

for b, k[
T1 = f 1(c,e,b,k)
T2 = f 2(a,f,b,k)
Y += T1 T2

E += X Y

array space time
X 1 V 4O2

T1 1 CiV
5O

T2 1 CiV
5O

Y 1 V 5O
E 1 V 4

Figure 4: Use of redundant computation to allow full fusion.

for a t, e t, c t, f t

for a, e, c, f[
for i, j[

Xaecf += Tijae Tijcf

for b, k
for c, e[

T1ce = f 1(c,e,b,k)
for a, f[

T2af = f 2(a,f,b,k)
for c, e, a, f[

Yceaf += T1ce T2af

for c, e, a, f[
E += Xaecf Yceaf

array space time
X B4 V 4O2

T1 B2 Ci(
V,B

)

2
V 3O

T2 B2 Ci(
V,B

)

2
V 3O

Y B4 V 5O
E 1 V 4

Figure 5: Use of tiling and partial fusion to reduce recomputation cost.

integrals inT1 andT2 (each element ofT1 andT2 is usedO(V 2) times). However, it is impractical due to the huge
memory requirement. WithO = 100 andV = 5000, the size ofT1, T2 is O(1014) bytes and the size ofX, Y is
O(1015) bytes. By fusing together pairs of producer-consumer loops in the computation, reductions in the needed
array sizes may be sought, since the fusion of a loop with common index in the pair of loops allows the elimination of
that dimension of the intermediate array. It can be seen that the loop that producesX (with indicesa, e, c, f), the loop
that producesY (with indicesc, e, a, f) and the loop that consumesX andY to produceE (with indicesc, e, a, f)
can all be fully fused together, permitting the elimination of all explicit indices inX andY to reduce them to scalars.
However, the loops producingT1 (with indicesc, e, b, k) andT2 (with indicesa, f, b, k) cannot also be directly fused
with the other three loops because their indices do not match.

Figure 4 shows how reduction of space forT1 andT2 can be achieved by introduction of redundant loops around
their producer loops — add loops with the missing indicesa, f for T1 andc, e for T2. Now all five of the loops have
common indicesa, e, c, f that can be fused, permitting elimination of those indices from all temporaries. Further, by
fusing together the producer loops forT1 andT2 with their consumer loop that producesY , theb, k indices can also
be eliminated fromT1 andT2. Dramatic reduction of memory space is achieved, reducing all temporariesT1, T2, X
andY to scalars. However, the space savings come at the price of significant increase in computation. Now, no reuse
is achieved of the quantities derived from the expensive integral calculationsf1 andf2. SinceCi is of the order of
1000 in practice, the integral calculations now dominate the total compute time, increasing the operation count by
three orders of magnitude over the unfused form in Fig. 3.

A desirable solution would be somewhere in between the unfused structure of Fig. 3 (with maximal memory
requirement and maximal reuse) and the fully fused structure of Fig. 4 (with minimal memory requirement and minimal
reuse). This is shown in Fig. 5, where tiling and partial fusion of the loops is employed. The loops with indicesa, e, c, f

6

Figure 6: Fusion graph for unfused operation-minimal form of loop in Figure 3

are tiled by splitting each of those indices into a pair of indices. The indices with a superscriptt represent the tiling
loops and the unsuperscripted indices now stand for intra-tile loops with a range ofB, the block size used for tiling.
For each tile(at, et, ct, f t), blocks ofT1 andT2 of sizeB2 are computed and used to formB4 product contributions
to the appropriate components ofY , which are stored in an array of sizeB4.

As the tile sizeB is increased, the cost of function computation forf1, f2 decreases by factorB2, due to the reuse
enabled. However, the size of the needed temporary array forY increases asB4 (the space needed forX can actually
be reduced back to a scalar by fusing its producer loop with the loop producing E, butY ’s space requirement cannot
be decreased). WhenB4 becomes larger than the size of physical memory, expensive paging in and out of disk will
be required forY . Further, there is diminishing returns on reuse ofT1 andT2 afterB2 becomes comparable toCi,
since the loop producingY now becomes the dominant one. So we can expect that asB is increased, performance
will improve and then level off and then deteriorate. The optimum value ofB will clearly depend on the cost of access
at the various levels of the memory hierarchy.

The computation considered here is just one component of theA3A term, which in turn is only one of very many
terms that must be computed. Although developers of quantum chemistry codes naturally recognize and perform
some of these optimizations, a collective analysis of all these computations to determine their optimal implementation
is beyond the scope of manual effort. While recent developments in optimizing compiler research have resulted in
significant strides in data locality optimization, we are unaware of any existing work that addresses the kind of space-
time trade-off optimization required in the context we consider.

4 Solution Approach: The Fusion Graph

The operation-minimization procedure discussed above usually results in the creation of intermediate temporary ar-
rays. Sometimes these intermediate arrays that help in reducing the number of arithmetic operations create a problem
with the memory capacity required.

For a computation comprising of a number of nested loops, there will generally be a number of fusion choices,
that are not all mutually compatible. This is because different fusion choices could require different loops to be made
the outermost. A data structure that we call afusion graph can be used to facilitate enumeration of all possible
compatible fusion configurations for a given computation tree.

Figure 6 shows the fusion graph for the unfused form of the computation from Fig. 3. Corresponding to each
node in a computation tree, the fusion graph has a set of vertices corresponding to the loop indices of the node of the
computation tree. In Fig. 6, we do not show the operator tree corresponding to the computation, but directly illustrate
the fusion graph. The potential for fusion of a common loop among a producer-consumer pair of loop nests is indicated
in the fusion graph through a dashedpotential fusion edge connecting the corresponding vertices. Leaf nodes in
the fusion graph correspond to input arrays or primitive function evaluations and do not represent a loop nest. The
edges from the leaves to their parents are shown as dotted edges and do not affect the fusion possibilities. If a pair
of loop nests is fused using one or more common loops, it is captured in the fusion graph by changing the dashed
potential-fusion edges to continuous fusion edges. If more than two loop nests are fused together, a chain of fusion
edges results, called afusion chain. Thescope of a fusion chainis the set of nodes it spans. The fusion graph allows us
to characterize the condition for feasibility of a particular combination of fusions: the scope of any two fusion chains

7

(a) Fully fused computation from Fig. 4. (b) Partially fused computation from Fig. 5.

Figure 7: Fusion graphs showing redundant compution and tiling.

in a fusion graph must either be disjoint or a subset/superset of each other. Scopes of fusion chains do not partially
overlap because loops do not (i.e., loops must be either separate or nested).

The fusion graph in Fig. 6 can be used to determine the fusion possibilities. On the left side of the graph, the
edges corresponding to(a, e, c, f) can all be made fusion edges, suggesting that complete fusion is possible for the
loop nests producing and consumingX, reducing it to a scalar. Similarly, on the right side of the graph, the edges
corresponding to(c, e, a, f) can also be made fusion edges, reducingY to a scalar. Further, by creating fusion edges
for indices(c, e), the producer loop forT1 can be fully fused with theY loop that consumes it. However, now the
producer loop forT2 cannot be fused since the addition of any fusion edge (say for indexa) will result in partially
overlapping fusion chains fora and(c, e).

The fully fused version from Fig. 4 can be represented graphically as shown in Fig. 7(a). Additional vertices have
been added for indices(c, e) and(a, f) respectively at the nodes corresponding to the producer loops forT1 andT2.
Now, complete fusion chains can be created without any partial overlap in the scopes of the fusion chains. From
the figure, it can be seen that in fact the redundant computation need only be added to one ofT1 or T2 to achieve
complete fusion — for example, removing the additional vertices for(a, f) at T2 does not violate the non-partial-
overlap condition for fusion.

The fusion graph was used to develop an algorithm [10, 9] to determine the combination of fusions that minimizes
the total storage required for all the temporary intermediate arrays. A bottom-up dynamic programming approach
was used, that maintains a set of pareto-optimal fusion configurations at each node, merging solutions from children
nodes to generate the optimal configurations at a parent. The two metrics used are the total memory required under the
subtree rooted at the node, and the constraints imposed by a configuration on fusion further up the tree. A configuration
is inferior to another if it is “more or equally constraining” with respect to further fusions than the other, and uses no
less memory. At the root of the tree, the configuration with lowest memory requirement is chosen.

Although the complexity of the algorithm is exponential in the number of index variables and the number of
solutions could in theory grow exponentially with the size of the expression tree, the number of index variables in
practical applications is small enough and there is indication that the pruning is effective in keeping the size of the
solution set at each node small.

The fusion graph framework addresses a memory minimization problem, without changing the operation count. If
we applied it to the fusion graph of Fig. 3, the bottom-up dynamic programming algorithm would evaluate a number
of potential fusion combinations and find that fusion could be used to reduce the sizes of arraysX andY and convert
them to scalars. It would also be able to reduce the size of one of the two temporary arraysT1 or T2, but would
be unable to reduce the other at all. Although three of four temporary arrays would be dramatically reduced in size,
the size of the single remaining temporary array (of sizeO(V 3O)) would make the problem unexecutable on most
systems due to disk storage limits.

An enhancement of the model to capture a wider range of space-time trade-offs was already seen in Fig. 7(a), where
additional vertices were added to the fusion graph to introduce redundant recomputation to the producer loops forT1
andT2 and thereby enable a greater degree of fusion. As discussed earlier, the fully fused version of the loops results
in excellent memory savings but adds excessive recomputation costs. A combination of fusion and tiling is needed to
achieve a good balance between recomputation and memory usage. Figure 7(b) shows how the possibility of tiling
can be introduced into the fusion graph. For each loop of a loop nest that is to be tiled, the corresponding vertex in the
fusion graph is replaced by a pair of vertices — one to represent the outer tiling loop and another to denote the intra-tile

8

loop. By a choice of fusion configuration that only involves the tiling loops, a combination of fusion and tiling can
be represented. This framework can be used to explore a range of space-time trade-offs. However, the search space
is significantly larger than that for the memory minimization problem discussed in the previous sub-section, requiring
that selective search strategies be developed.

In this paper, we develop a two-step search strategy for exploration of the space-time trade-off:

• Search among all possible ways of introducing redundant loop indices in the fusion graph to reduce memory
requirements, and determine the optimal set of lower dimensional intermediate arrays for various total memory
limits. In this step, the use of tiling for partial reduction of array extents is not considered. However, among all
possible combinations of lower dimensional arrays for intermediates, the combination that minimizes recompu-
tation cost is determined, for a specified memory limit. The range from zero to the actual memory limit is split
into subranges within which the optimal combination of lower dimensional arrays remains the same.

• Because the first step only considers complete fusion of loops, each array dimension is either fully eliminated or
left intact, i.e. partial reduction of array extents is not performed. The objective of the second step is to allow for
such arrays. Starting from each of the optimal combinations of lower dimensional intermediate arrays derived
in the first step, possible ways of using tiling to partially expand arrays along previously compressed dimensions
are explored. The goal is to further reduce recomputation cost by partially expanding arrays to fully utilize the
available memory

5 Dimension Reduction for Intermediate Arrays

In the first step of the space-time trade-off algorithm we search among all possible combinations of redundant compu-
tations and loop fusions. The search is structured as a dynamic programming algorithm with pruning.

The input to this algorithm is an expression tree representing the operation-minimal computational structure of the
input formula. Expression tree nodes are of four types:

• array referencesa[i] with index vectori,

• function callsf (i) with argument vectori,

• summation quantifierssum(i, t) with summation indicesi and subtreet, and

• binary operatorsbin(o, l, r) with operatoro (+, - , or *) and subtreesl andr.

For each tree nodev, let indices(v)be the set of loop indices needed for evaluatingv, and letfusible(v)be the set of
indices that can be fused with the parent (indices other than summation indices). An indexi is a redundant index for
nodev if i is not an index ofv but of some ancestor node ofv. E.g., in Fig. 6 indicesa andf are redundant indices for
T1. Let redundant(v)be the set of redundant indices forv.

Introducing a redundant loop indexi to a nodev can allow additional fusion betweenv and its parent, which
reduces the dimension of the intermediate array holding the result ofv, in exchange for recomputingv in every
iteration of thei loop. The space-time trade-off algorithm computes for every combination of redundant indices the
loop fusion structure that results in the least amount of total memory.

In a bottom-up traversal, we compute a set of solutions for each nodev. Each solution consists of anestingof the
loops atv, the memory costmc, the recomputation costrc, and pointers to the solutions of the subtrees from which
this solution was obtained. A nesting is a sequence of index sets that represents constraints on the loop structure for
computingv. E.g., the nesting〈ij, k〉 indicates that the loopsi andj can be arbitrarily permuted, whilek must be
nested inside ofi andj. A solutions′ is inferior to solutions if its nesting is more constraining than that ofs (e.g.,
〈i, j, k〉 is more constraining than〈ij, k〉), and if its memory cost and recomputation cost are both higher than those of
s. The set of solutions for a node is recursively computed as follows:

• Supposev is an array reference of the forma[i] . The set of possible loops around the array node isfusible(t)∪
powerset(redundant(t)) with no constraints on the order of the loops. For the purpose of space-time trade-offs,
we do not model the cost of reading arrays from disk. Therefore, we form a solution for each of these nestings
with zero memory and recomputation costs.

9

• Supposev is of the formf (i) . Similar as for array references, we form a set of solutions for all possible
nestings. For each nestingh, we initialize the memory cost to the storage needed for holding the result off (i)
if all the indices inh are fused with the parent. The recomputation cost is initialized to the number of timesf
must be recomputed for all redundant indices inh times the cost of a function call.

• Supposev is of the formsum(i, t) . For each solutions for subtreet, we initialize a solutions′ for the
summation node by adding one to the memory cost (for the scalar holding the result of the summation assuming
full fusion with the parent) and by adding the recomputation cost for the summation node to that of the subtree.
We then remove the summation indicesi from the nesting ins′. All indices that are constrained to be nested
inside the summation indices must be removed as well since they cannot be fused with the parent anymore.
Removing a non-summation indexj from the nesting results in an increase in memory since thej dimension of
the resulting array must be stored. Finally, inferior solutions are pruned from the set of solutions forv.

• Supposev is of the formbin(o, l, r) . Since the subtreesl andr might not have all the indices ofv (indices(v)
is the union ofindices(l)andindices(r)), we first need to compute all the possible ways in which the solutions for
l andr might be fused withv. For each solutions for a subtree, we compute the set of all prefixes of the nesting
of s (e.g., for the nesting〈ij, k〉, the prefix〈i〉 represents the loop structure in which onlyi is fused withv).
For all the nestings obtained in this way we construct new solutions for the subtrees by increasing the memory
cost by the array dimensions that now need to be stored. Then, for all pairs of solutionssl andsr for l andr,
respectively, we merge the constraints on the loop structure from the nestings ofsl andsr. If sl andsr have
compatible nestings, we obtain a merged nesting forv. E.g., for the nestings〈ij, kl〉 and〈i, jk〉 for the subtrees,
we would obtain the nesting〈i, j, k, l〉 for v. Finally, we construct solutions forv out of the merged nestings by
adding the memory and recomputation costs forv to the costs for the subtrees and then prune inferior solutions.

The result of the above algorithm is a set of solution trees for the original expression tree. A solution tree contains
a nesting and memory and recomputation costs for each tree node of the expression tree. For each nodev, the nesting
for v only reflects constraints on the loop structure for the subtree rooted atv. From a solution tree we compute
a fusion tree by propagating constraints on loop nestings from the top of the tree down to the leaves. The resulting
fusion tree is then translated into an abstract syntax tree by constructing a computation order for the tree nodes. A node
v is computed after its subtrees. For a binary node, the subtree with the most loops fused is computed just before the
parent. After the computation order is determined, the loops are inserted to form an abstract syntax tree representation
of the code. For example, for the expression tree corresponding to the formula sequence in Fig. 1(a) this algorithm
constructs the pseudo-code in Fig. 8 as the solution with the minimal recomputation cost that stays below1012 words.

6 Partial Expansion of Reduced Intermediates

Once a set of optimal solutions is determined by the first step of the space-time trade-off algorithm, we resort to array
expansion for the second step. The second step operates on the abstract syntax tree generated by the first step of the
algorithm. In this tree, an interior node represents a loop nest, while a leaf represents the computation of a node from
the expression tree. A parent-child pair of nodes denotes an outer-inner loop pair, whereas nodes with the same parent
represent adjacent loops. For an example, the abstract syntax tree corresponding to the pseudo-code in Fig. 8 is shown
in Fig. 9.

The total number of operations needed to compute the final result is the sum over the number of operations for
the leaves of the abstract syntax tree. For each leaf, the number of operations is obtained by multiplying the cost of
the operation (one for multiplications or additions, a higher cost for function evaluations) by the loop ranges of all
its ancestors in the abstract syntax tree. For example, the number of operations required to computeX in Fig. 9 is
2NcNaNfNeNiNj = 2O2V 4 operations (the factor of 2 comes from one multiplication and one addition). Likewise,
the number of operations necessary to computeT2 is 1000NcNaNfNbNk = 1000OV 4 operations, assuming 1000
floating point operations are needed for each evaluation off2. In the case ofX the number of operations cannot be
further reduced. There is no redundant cost in computingX. In contrast,T2 is repeatedly computedNc = V times,
sincec is a redundant loop forT2. For the pseudo-code presented in Fig. 8 and the corresponding abstract syntax
tree in Fig. 9, the recomputation cost is1000(Nc − 1)NaNfNbNk = 1000OV 3(V − 1), coming entirely from the
evaluation ofT2.

10

E = 0
for c

for b,e,k
T1[b,e,k] = f1(c,e,b,k)

for a,f
for e

Y[e] = 0
for b,k

T2 = f2(a,f,b,k)
for e

Y[e] += T2 * T1[b,e,k]
for e

X = 0
for i,j

X += T[i,j,a,e] * T[i,j,c,f]
E += Y[e] * X

return E

Figure 8: Pseudo-code for the solution with the lowest recomputation cost after the first step of the algorithm, subject
to a memory limit of1012 words. The array sizes areNi = Nj = Nk = O = 100 andNa = Nb = Nc = Ne =
Nf = V = 3000. The redundant evaluation off2(a, f, b, k) is performedNc = V = 3000 times.

Figure 9: Abstract syntax tree for the fused loop structure shown in Fig. 8. A node in the tree represents a loop nest;
a parent-child pair represents an outer loop (parent node), and an inner loop (child node). The leaves of the tree are
multiplication and addition computations or function evaluations.

11

E = 0
for c_t

for c_i
c = c_i + c_t * NB
for b,e,k

T1[c_i,b,e,k] = f1(c,e,b,k)
for a,f

for e,c_i
Y[c_i,e] = 0

for b,k
T2 = f2(a,f,b,k)
for e,c_i

Y[c_i,e] += T2 * T1[c_i,b,e,k]
for c_i

c = c_i + c_t * NB
for e

X[c_i] = 0
for i,j

X[c_i] += T[i,j,a,e] * T[i,j,c,f]
E += Y[c_i,e] * X[c_i]

return E

Figure 10: Pseudo-code for the solution with the lowest recomputation cost after the second step of the algorithm,
subject to a memory limit of1012 words. Thec loop is split into the tiling and intra-tile loopsct andci. The ranges of
these loops areNB andB, respectively.B is the block size, andNB is the number of blocks. Their product is equal
to the original rangeNc = V = 3000 of thec loop. The arraysT1, Y andX are partially expanded from size one to
sizeB along thec dimension. The evaluation off2(a, f, b, k) is performedNB times.

In practice, the intermediate arrays do not have to be fully down-sized to a lower number of dimensions. For
example, the solution in Fig. 8 uses only9.0 × 108 words, much less than the memory limit of1012 words. We can
therefore increase the sizes of some intermediate arrays in order to reduce the recomputation cost. In our algorithm,
each redundant node in the tree is split into a parent-child pair, corresponding to a tiling loop node, and an intra-tile
loop node. Figures 10 and 11 present the pseudo-code and abstract syntax tree for the same computation, this time
performed with loop tiling. In this example, the root of the abstract syntax treec is the only redundant loop, but in
general the number of redundant loops could be as large as the number of nodes in the abstract syntax tree. Here thec
loop is split into the tiling and intra-tile loopsct andci. The ranges of these loops areNB (the number of blocks) and
B (the block size), respectively, such that their product is equal to the original range:B×NB = Nc = V = 3000. The
arraysT1, Y andX are partially expanded from size one to sizeB along thec dimension. The redundant computation
of T2 is now only performedNB times instead ofNc times, resulting in a lower recomputation cost. The maximum
value for the block sizeB is determined by the total amount of memory available in the system.

Our algorithm for determining the best choice for array expansion (the one that minimizes recomputation cost,
and still stays within the total amount of memory available) proceeds as follows: for a given untiled abstract syntax
tree generated in the first step (Fig. 9), all its redundant nodes are first split into tiling/intra-tile pairs. Subsequently,
the resulting abstract syntax tree is transformed by intra-tile loop permutation and fission into an equivalent abstract
syntax tree with the property that each intra-tile loop is either redundant or non-redundant with respect to all of its
descendant leaves. At this point those intra-tile loops which are redundant with respect to their descendant leaves are
removed.

Figures 10 and 11 show the pseudo-code and abstract syntax tree after such a transformation. Theci loop is split
into three loops along different branches of the tree. It is present as an ancestor of all the leaves except for the one that
producesT2, where it has been removed to reduce the recomputation cost. After this tree transformation the algorithm
proceeds by choosing numerical values for the tile sizes, thus fixing the loop ranges for all the nodes in the abstract
syntax tree. If the original range of a loop isNc, choosing a block sizeB for the intra-tile loop also fixes the range
NB = Nc/B of the tiling loop.

We thus obtain a new abstract syntax tree with well-defined loop ranges. Using the loop ranges, we can determine
the recomputation cost for the entire abstract syntax tree by adding the number of redundant operations for each leaf

12

Figure 11: Abstract syntax tree for the fused and tiled loop structure shown in Fig. 10. Thec loop is redundant for
the leaf evaluatingf2(a, f, b, k), resulting in a large recomputation cost. To improve upon that, the redundant loopc
is split into a tiling/intra-tile pair of loops (ct andci, respectively). The intra-tile loopsci are then moved by fission
and permutation operations toward the bottom of the tree. Theci loop is finally discarded for the leaf computing
f2(a, f, b, k). The remainingci loops are indicated by empty circles.

of the tree. With this approach, we arrive at a total recomputation cost for the abstract syntax tree for given tile sizes.
We repeat the calculation of the recomputation cost for different sets of tile sizes. We define our tile size search space
in the following way: if Ni is the loop range of a recomputation loop, we use a tile size starting fromB = 1 (no
tiling), and successively increasingB by doubling it until it reachesNi. This ensures a slow (logarithmic) growth of
the search space for increasing values ofNi. If Ni is small enough, an exhaustive search can instead be performed.

This tiling procedure and search for the optimal tile sizes is repeated for all solutions produced by the first step of
the algorithm. We finally choose the solution with the minimal recomputation cost.

7 Results

In this section we present the results of our two step space-time trade-off algorithm for the NWChem example intro-
duced in Section 3. We choose input parameters relevant to the addressed problem:Ni = Nj = Nk = O = 100,
Na = Nb = Nc = Ne = Nf = V = 3000, function evaluation costCi = 1000 floating point operations and available
memory ofM = 1012 words.

Figure 5 shows the pseudo-code for the solution that was manually optimized by a domain expert.1 Thea, c, e, and
f loops are split into tiling and intra-tile loops of sizeNB andB, respectively. They obey the constraintB×NB = V .
The largest intermediate array isY , which is a four-dimensional block of sizeB4. The recomputation cost of this
solution is2CiOV 3(V 2/B2 − 1). Requiring that the total memory usage is less thanM = 1012 words, and using
the values forO, V andCi provided in the previous paragraph, we arrive at a recomputation cost of≈ 5.1 × 1016

operations. The recomputation cost is due to the redundant evaluation of the functionsf1 andf2 N2
B times.

The optimal solution is obtained using the two step space-time trade-off algorithm presented in Sections 5 and 6.
The first step produces six solutions. All other possible loop fusion structures have both higher memory usage and
higher recomputation cost than one or more of these solutions. Figure 12 shows the six solutions ranging in memory
usage from three words to2.7× 1015 words, and in recomputation cost from zero operations to4.9× 1022 operations.
The memory limit in our example is marked by the solid horizontal line. Solution number 1 is trivial, and represents
the memory optimal solution with no redundant computation. Such a solution always exists for any operator tree.
If its memory usage is below the memory limit, then the second step of the algorithm is no longer necessary, and
this becomes the optimal final solution. Otherwise, it is discarded, along with all the other solutions that are above
the memory limit (in this case, only number 1). The rest of the solutions (2 through 6 in this example) are then
passed through the second step of the algorithm. Figure 8 shows the pseudo-code for solution 2, which has the lowest
recomputation cost (≈ 8.1× 1018 floating point operations) after the first step of the algorithm.

1The NWChem code also contains code for transforming integrals from the atomic basis into the molecular basis. This transformation is
encapsulated in the function calls.

13

Figure 12: Relationship between memory usage and recomputation cost. Solid triangles represent the 6 different
solutions produced by the first step of the space-time trade-off algorithm. The horizontal line shows the hard memory
limit of M = 1012 words used for this example. Except for solution 1, which uses more memory than the1012 words
limit, all the other solutions are analyzed by the second step of the algorithm.

The array expansion step brings significant further reduction of the recomputation cost for all the remaining 5
solutions. Their recomputation costs, ranging from8.1 × 1018 to 4.9 × 1022 operations after step 1, are reduced to
between5.4×1015 and5.1×1016 operations. The pseudo-code for the final optimal solution is presented in Fig. 10. It
happens to be the tiled form of solution 2, which was the best solution before the array expansion step. However, this
is just a coincidence, due in part to the very small operator tree considered for this example, which in turn generates
a very limited number of solutions. In general, any of the solutions obtained in step one could become the optimal
solution after tiling.

We note that the final solution is not trivial, in fact it has a rather complex structure. We also observe that, although
their cost is similar, all the solutions (the tiled versions of 2 through 6) have abstract syntax trees that are quite different.
Indeed, even for a relatively simple formula, like the one used in this example, the collection of solutions is rather rich
and non-trivial. Manual optimization is unlikely to find and test all possibilities, especially for larger trees. It is
also interesting to note that one of the solutions produced by the algorithm (the tiled version of 6) is identical to the
manually optimized pseudo-code presented in Fig. 5. Its recomputation cost of5.1 × 1016 operations is roughly one
order of magnitude higher than the cost of the optimal solution.

We investigate the recomputation cost of the optimal code in comparison with that of the manually generated code
for various values of the input parametersO, V , andM , consistent with their physical meaning. We find, as expected,
that the structure of the optimal code may change from one set of input parameters to another. The improvement factor
over the manual code presented in Fig. 5 ranges from 1 (when the manual code is optimal) to 20, depending onO, V ,
andM .

8 Conclusion

This paper describes a project on developing a program synthesis system to facilitate the development of high-
performance parallel programs for a class of computations encountered in computational chemistry and computational
physics. These computations are expressible as a set of tensor contractions and arise in electronic structure calcula-
tions. The paper provides an overview of the planned synthesis system and presents a new optimization approach that
can serve as the basis for a key component of the system for performing space-time trade-off optimizations.

The approach undertaken in this project bears similarities to some projects in other domains, such as the SPIRAL
project which is aimed at the design of a system to generate efficient libraries for digital signal processing algorithms
[19]. SPIRAL generates efficient implementations of algorithms expressed in a domain-specific language called SPL
by a systematic search through the space of possible implementations. Several factors such as the lack of a need to
perform space-time trade-offs renders the task faced by efforts such as SPIRAL and FFTW [5] less complex than what

14

computational chemists face. Other efforts in automatically generating efficient implementations of programs include
the telescoping languages project [8], the ATLAS [18] project for deriving efficient implementation of BLAS routines,
and the PHIPAC [2] and TUNE [17] projects.

The paper describes a two step algorithm for the space-time trade-off optimization problem, and presents the
results of applying it to a test case from the quantum chemistry code NWChem. The solution derived using our
implementation of the algorithm reduces the recomputation cost of the coupled cluster calculation by a factor of 10
for typical problem sizes.

References

[1] W. Aulbur. Parallel Implementation of Quasiparticle Calculations of Semiconductors and Insulators, Ph.D. Dis-
sertation, Ohio State University, Columbus, OH, October 1996.

[2] J. Bilmes, K. Asanovic, C. Chin, and J. Demmel. Optimizing matrix multiply using PHiPAC. InProc. ACM
International Conference on Supercomputing,pp. 340–347, 1997.

[3] D. Cociorva, J. Wilkins, C.-C. Lam, G. Baumgartner, P. Sadayappan, and J. Ramanujam. Loop optimization
for a class of memory-constrained computations.Proc. 15th ACM International Conference on Supercomputing
(ICS’01), Sorrento, Italy, June 2001.

[4] D. Cociorva, J. Wilkins, G. Baumgartner, P. Sadayappan, J. Ramanujam, M. Nooijen, D. Bernholdt, and R. Har-
rison. Towards Automatic Synthesis of High-Performance Codes for Electronic Structure Calculations: Data
Locality Optimization. To appear in theProceedings of the International Conference on High Performance Com-
puting, December 2001.

[5] M. Frigo and S. Johnson. FFTW: An adaptive software architecture for the FFT. InProc. ICASSP 98,Volume 3,
pages 1381–1384, 1998,http://www.fftw.org.

[6] High Performance Computational Chemistry Group. NWChem, A computational chemistry package for parallel
computers, Version 3.3, 1999. Pacific Northwest National Laboratory, Richland, WA 99352.

[7] M. S. Hybertsen and S. G. Louie. Electronic correlation in semiconductors and insulators: band gaps and
quasiparticle energies.Phys. Rev. B, 34:5390, 1986.

[8] Ken Kennedy et. al. Telescoping Languages: A Strategy for Automatic Generation of Scientific Problem-Solving
Systems from Annotated Libraries. To appear inJournal of Parallel and Distributed Computing,2001.

[9] C. Lam.Performance Optimization of a Class of Loops Implementing Multi-Dimensional Integrals, Ph.D. Dis-
sertation, The Ohio State University, Columbus, OH, August 1999.

[10] C. Lam, D. Cociorva, G. Baumgartner and P. Sadayappan. Optimization of Memory Usage and Communica-
tion Requirements for a Class of Loops Implementing Multi-Dimensional Integrals.Proceedings of the 12th
International Workshop on Languages and Compilers for Parallel Computing, San Diego, CA, August 1999.

[11] C. Lam, D. Cociorva, G. Baumgartner, and P. Sadayappan. Memory-optimal evaluation of expression trees
involving large objects. InInternational Conference on High Performance Computing, Calcutta, India, December
1999.

[12] C. Lam, P. Sadayappan and R. Wenger. On Optimizing a Class of Multi-Dimensional Loops with Reductions for
Parallel Execution.Parallel Processing Letters, Vol. 7 No. 2, pp. 157–168, 1997.

[13] C. Lam, P. Sadayappan and R. Wenger. Optimization of a Class of Multi-Dimensional Integrals on Parallel
Machines.Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific Computing, Min-
neapolis, MN, March 1997.

[14] T. J. Lee and G. E. Scuseria. Achieving chemical accuracy with coupled cluster theory. In S. R. Langhoff (Ed.),
Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, pp. 47–109, Kluwer Aca-
demic, 1997.

15

[15] J. M. L. Martin. In P. v. R. Schleyer, P. R. Schreiner, N. L. Allinger, T. Clark, J. Gasteiger, P. Kollman, H.
F. Schaefer III (Eds.),Encyclopedia of Computational Chemistry.Wiley & Sons, Berne (Switzerland). Vol. 1,
pp. 115–128, 1998.

[16] H. N. Rojas, R. W. Godby, and R. J. Needs. Space-time method for Ab-initio calculations of self-energies and
dielectric response functions of solids.Phys. Rev. Lett., 74:1827, 1995.

[17] M. Thottethodi, S. Chatterjee, and A. Lebeck. Tuning Strassen’s matrix multiplication for memory hierarchies.
In Proc. Supercomputing ’98, Nov. 1998.

[18] R. Whaley and J. Dongarra. Automatically Tuned Linear Algebra Software (ATLAS). InProceedings SC ’98
(Electronic Publication), IEEE Publication, 1998.

[19] J. Xiong, D. Padua, and J. Johnson. SPL: A language and compiler for DSP algorithms.ACM SIGPLAN PLDI,
June 2001.

16

