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A combined atom probe tomography and atom probe field ion microscopy study has been 
performed on a submerged arc weld irradiated to high fluence in the Heavy-Section Steel 
irradiation (HSSI) fifth irradiation series (Weld 73W). The composition of this weld is 
Fe - 0.27 at. % Cu, 1.58% Mn, 0.57% Ni, 0.34% MO, 0.27% Cr, 0.58% Si, 0.003% V, 0.45% 
C, 0.009% P, and 0.009% S. The material was examined after five conditions: after a typical 
stress relief treatment of 40 h at 607”C, after neutron irradiation to a fiuence of 2 x 1 Oz3 n rnd2 
(E > 1 MeV), and after irradiation and isothermal anneals of 0.5, 1, and 168 h at 454°C. This 
report describes the matrix composition and the size, composition, and number density of the 
ultrafine copper-enriched precipitates that formed under neutron irradiation and the change in 
these parameters with post-irradiation annealing treatments. 
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INTRODUCTION 

The embrittlement of pressure vessel steels during service in a nuclear reactor is clearly 
evident from the change in mechanical properties. These changes are manifested in an 
upward shift in the ductile-to-brittle transition temperature and a loss in fracture toughness. 
These changes have been correlated with the composition of the pressure vessel steel, in 
particular with the levels of copper, nickel, manganese, and phosphorus, and also with the 
magnitude of the fluence of the irradiation. 

Previous atom probe field ion microscopy investigations of neutron-irradiated pressure vessel 
steels have clearly established that there are several different types of microstructural features 
present in these materials. The atom probe field ion microscope has indicated that the most 
prevalent change in the microstructure during neutron irradiation is the evolution of ultrafine 
(-2 nm) copper-enriched regions and phosphorus-enriched-regions. Other microstructural 
changes that have been characterized include solute segregation to and precipitatron at 
dislocations and grain and lath boundaries. The contributions, of the techniques of atom probe 
field ion microscopy and atom probe tomography to the understanding of the microstructure of 
neutron-irradiated pressure vessel steels and related alloys have been reviewed recently [l]. 

This report presents the results of an atom probe tomography study of the effects of high- 
fluence neutron irradiation and sub~sequent short- and long-term post-irradiation annealing 
treatments of a high-copper submerged arc weld. The technique of atom probe tomography is 
an extension to atom probe field ion microscopy that enables the x, y, and z coordinates and 
the elemental identities of the atoms within a small volume to be determined with atomic 
resolution [24]. The analysis volume typically contains between 500,000 and 
1 ,OOO,OOO atoms and originates from a volume in the specimen that is -10 to -15 nm square 
by -100 to -250 nm long. These data may then be reconstructed in a computer so that the 
distribution of all the elements present in the material may be visualized. In addition, material 
and microstructural parameters such as the size, shape, and number density of ultrafine 
precipitates and the compositions of precipitates and the surrounding matrix may, be 
estimated. 

EXPERIMENT 
Table 1. Bulk chemical composition of 

the submerged arc weld (weld 73W) 

This atom probe tomography and atom 
probe field ion microscopy study was 
performed on a submerged arc weld from 
the HSSI fifth irradiation series (Weld 73W). 
The chemical composition of this high 
copper (0.27 at. % Cu) weld is given in 
Table 1 [5]. The material was examined 
after five conditions: after a typical stress 
relief treatment of 40 h .at 667X, after 
neutron irradiation to a high fluence of 2 x 
1 023 n m-* (E > 1 MeV), and after irradiation 

Element 1 Atomic percent 1 Weight percent 

cu 0.27 0.25 
Mn 1.58 1.56 
Ni 0.57 0.60 
MO 0.34 0.58 
Si 0.89 0.45 
Cr 0.27 0.25 
C 0.45 0.098 
P 0.009 0.005 
S 0.009 0.005 
Fe Balance Balance 
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and isothermal anneals of 0.5, 1, and 168 h at 454°C. Blanks (0.25 x 0.25 x 10 mm) for atom 
probe specimens were cut from Charpy bar specimens with the use of a slow-speed diamond 
saw. The electropolishing methods used to prepare needle-shaped field ion specimens from 
these bulk samples have been described previously [6]. 

The material was characterized in both energy-compensated atom probe field ion microscopes 
(ECAP) [7,8] and an energy-compensated optical position-sensitive atom probe (ECOPoSAP) 
[4]. The former type of instrument was used primarily for characterization of the composition of 
the matrix and for general field ion microscopy of the microstructure. This instrument features 
high mass resolution. The latter three-dimensional ECOPoSAP instrument was used primarily 
to provide information on the size, morphology, number density, and composition of the 
copper-enriched regions formed during irradiation, since the number of atoms collected from 
each specimen was significantly higher. In both instruments, the conditions used for 
composition determinations were a specimen temperature of 50K, a pulse fraction of 20% of 
the standing voltage, and a pulse repetition rate of 1500 Hz. Field ion images were recorded 
with a specimen temperature of 50K and with the use of neon as the image gas. 

RESULTS AND DISCUSSION 

The results of the matrix composition determinations for all the materials are summarized in 
Table 2. It should be noted that these determinations do not include any contributions from the 
copper-enriched regions and are strictly the copper levels in solid solution in the matrix. As in 
previous investigations of pressure vessel steels [l], the copper level in the matrix was found 
to decrease during neutron irradiation, and a small additional decrease in the copper level was 
observed after post-irradiation annealing. These results are in agreement with previous studies 
of a surveillance weld and a weld from the Midland reactor [9,10]. 

Table 2. Matrix compositions of the submerged arc weld (weld 73W) for 
the five different heat treatments in atomic percent 

Element $rvsesd 
Irradiated Irradiated + Irradiated + Irradiated + 

2 x 1O23 n rnv2 annealed for annealed for annealed for 
(E > 1 MeV) 0.5 h at 454°C 1 h at 454°C 168 h at 454°C 

cu 0.12 0.055 0.052 0.049 0.039 
Mn 0.94 0.78 1 .oo 0.82 0.89 
Ni 0.51 0.53 0.70 0.57 0.89 
MO 0.15 0.30 0.17 0.19 0.12 
Si 0.75 0.62 0.61 0.51 0.66 
Cr 0.14 0.20 0.16 0.18 0.15 
C 0.01 0.027 0.023 0.01 0.01 
P 0.011 0.024 0.003 - - 

Fe Balance Balance Balance Balance Balance 

- = not detected. 
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A series of three-dimensional atom maps of the copper, nickel, and manganese atom 
distributions are shown in Figs. 14 for the different materials. In this type of representation, 
each sphere is the location of an in,dividual “atom- in the volum-2 [4]. It is evident from the local 
increase in the density of copper atoms that ultrafine copper-enriched regions are present in 
all neutron-irradiation and. post-irradiation annealed materials. it is also evident from the 
comparison between-the-copper, nickel, manganese, and silicon atom maps that the 
copper-enriched regions are also enrjched in nickel, manganese, and silicon. The size and 
shape of each copper-enriched region may be obtained from these atom maps. The 
copper-enriched regions were found to,be roughly spherical, but the surface of the enriched 
region was extremely irregular on an atomic scale. The irregular surface has previously been 
described as a ramified structure [6]. These observations are in agreement with previous atom 
probe characterizations of neutron&@iated pressure vessel steels [l]. 

In addition to the copper-enriched precipitates, phosphorus-enriched regions were also 
observed. An example of a phosphorus-enriched region in the material that was 
neutron-irradiated and anneaied for 0.5 h at 454°C is shoyn in Fig. 5: No copper was 
associated with this phosphorus-ennched region. The number density of these features was at 
least an order of magnitude lower than that of the copper-enriched regions. 

This type of high spatial resolution analysis also enables estimation of th,e number,of atoms 
associated with each copper-enriched region. Since the spatial coordinates of all the copper 
atoms are known, the copper atoms that are associated with each copper-enriched precipitate 
can be determined by locating the copper atoms that were within 0.7 nm of othercopper 
atoms. The value of 0.7 nm was selected from the visual examination of extent of the _, “* I - .d.” _._lwi. -., __ *,, ~i_.~l 
copper-enriched regions and the absence of the copper concentration in the atom maps. The 
results for the different materials are summarized in Table 3. It is evident that there is a large 
variation in the number of copper atoms associated with each precipitate. The minimum size 
of the precipitate may be estimated from the number of copper atoms by assuming that the 
copper atoms are arranged within a spherical envelope on a body-centered cubic lattice with 
the same lattice parameter as iron (or any lattice with the equivalent atomic volume). These 
results are included in Table 3. It sh~ould be noted that these results slightly underestimate the . r. 1. -, _,.. i^ _,i,_, ,i_ 
true minimum size, as they are not corrected forthe_d,etectiqn efficiency of the mass 
spectrometer. This correction increasesthe m,ini,m”um, radius of the precipitate by 
approximately 12%. 

In addition, the center and. the radius of-gyration of each copper-enriched region can be 
calculated from the positi,ons of the copper atoms. The center of mass (x, 3, 2) of a feature, 
such as a precipitate, is given by 

..,_ -- 

n n n 

c Xi m, c Yi mi c Zi tlli 
2 = i=l 

9 ‘y = j=’ , and 1 = i=’ 
n n n (1) 

c mi 
i=l 

c mi 
i=l 

c mi 
i=l 
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Figure 1. Atom maps of the solute distribution in weld 73 after neutron 
irradiation to ti fluence of 2 x 1O23 n me2 

) 

: 

j 

2 nm 

Figure 2. Atom maps of the solute distribution in weld 73 after nezon 
irradiation to a fluence of 2 x 1O23 n me2 and anneal for 0.5 h at 
454°C. 

NUREGKR-6629 4 

c 



Figure 3. Atom maps of the solute distributio -- 

2 nm 

10 in weld 73 after neutron _’ ._ __ 
irradiation to a fluence of 2 x 10z3 n m‘-’ and anneal for 1 h 
at 454°C. 

Figure 4. Atom maps of the solute distribution in weld 73 after 
neutron irradiation to a fluence of 2 x 1O23 n mS and 
anneal for 168 h at 454°C. 
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2 nm 
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Figure 5. Atom maps of the phosphorus and copper distribution in weld 73 after 
neutron irradiation to a fluence of 2 x 1O23 n me2 and anneal for 0.5 h at 
454°C. A small phosphorus-enriched region is evident. 

Table 3. Number of copper atoms detected in the precipitates and their 
estimated radii based on the number of copper atoms in the submerged 

arc weld (weld 73W)‘for the different heat treatments 

Irradiated + 

68 h at 454°C 

> Denotes that precipitate was clipped by the analysis volume. 
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where xi, yi, and z are the spatial coordinates of each atom; mi is the mass of each one; and n 
is the number of atoms in the feature. If all atoms are the same species (i.e., the same mass), 
this reduces to [l l] 

n n 

c ‘i c Y. I 
T< - i=l , 

n y=? 
and 

n 

c ‘i 
z _ i=l 

n 

(2) 

The radius of gyration is a, measurement of how far from the origin (i.e., the center of mass of 
the precipitate at x, y, 2) the entire mass, m,, might be concentrated and still give the same 
moment of inertia, I,. It is given for the ohe-dimensional case by 

I, = Ix a- mo = 

I n 

J 
C t?li (Xi - Rr 
i=l 

n 

c mi 
i=l 

= (3) 

where Xi, yi, and Zi are the spatial coordinates of each atom; mi is the mass of each one, and n 
is the number of atoms in the feature. Similarly the radius of gyration, I,, for the 
three-dimensional case is given by 

1 
~ (Xi - ~)” + (yi - ~~ + (Zi - ~)* 

(4 
I, = i=l 

n - A-b-‘*- 
. .^ ,_s I, -. . . -. _. -. .,.. .- “, 

c 

i 

These estimates assume that the copper distribution defines the extent of the copper-enriched 
region. These values are summarized for some of the largest copper-enriched precipitates in 
each treatment in Table 4.4 smalf increase in the-cadius of gyration was observed with 
annealing time at 454°C. However, the magnitude of the fncrease was not statistically 
significant because of the small number of precipitates encountered and the large variations in 
their sizes. The variation in the radius of gyration measurements was less than expected from 
the number of copper atoms in each precipitate. This small variation, coupled with the ramified 
nature of the precipitates, suggests that the precipitates are far from an equilibrium state 
during neutron irradiation and the early stages of annealing. It should be noted that these radii 
of gyration measurements do not take into account the differences in the.lpcal magnification 
between the matrix and the copper-enriched precipitates [lo] and are therefore- an 
underestimate pf the true size (see below). 
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Table 4. The radii of gyrations of the precipitates in the submerged 
arc weld (weld 73W) for the different heat treatments 

The order of the data is the same as in Table 3 

Copper- 
Irradiated Irradiated + . Irradiated + Irradiated + 

enriched 
2~lO’“nrn-~ annealed annealed annealed 

precipitate 
(E > 1 MeV) 0.5 h at 454°C 1 h at 454°C 168 h at 454°C 

I,, m-t-7 I,, nm I,, nm I,, nm 

1 1 .OO [I .81] 1 .OO [2.06] 1.08 [ 1.391 1.47 12.921 
2 0.96 Cl.471 1 .oo El.47 0.95 [ 1.701 1.79 
3 (0.70) [1.28] 1.17 [1.62] 1.10 [ 1.421 (0.98) 
4 0.78 [1.29] (0.76) [0.99] 0.97 (1.211 
5 0.77 [1.26] 0.85 [l.ll] . 0.88 [1.12] 
6 1.09 El.471 0.88 [1.25] 0.92 [I .19] 
7 0.64 [0.80] 0.88 [1.08] 0.88 [ 1.341 
8 0.95 0.99 [ 1.331 
9 (0.81) 0.98 [I .22] 

( ) Denotes severely clipped precipitate. 
[ ] Denotes corrected for local magnification. 

The number density of the copper-enriched regions was also estimated from the number of 
copper-enriched regions in the volume analyzed. The number of particles was taken as either 
the number of particles whose centers were inside the analyzed volume or the number of 
particles in the volume that did not intersect the top, left or rear surfaces of the volume. The 
volume, V, was estimated from the total number of atoms in the volume, N, which was 
corrected for the detection efficiency of the mass spectrometer, c, and the number of atoms 
per unit volume of the body-centered cubic iron crystal structure (lattice parameter, a, = 
0.288 nm with 2 atoms per unit cell; that is, V = N ao3/2?/2S. The number densities were estimated 
to be -6.4 x IO” ma for the neutron-irradiated material and -6.2, -6.1, and -0.5 x 1 023 rnd for 
the materials annealed for 0.5, 1, and 168.h, respectively. As expected because of the 
coarsening of the copper-enriched regions, the number density decreased slowly over the first 
hour of annealing and by more than an order of magnitude after 168 h. 

The compositional variations of the copper-enriched precipitates were investigated by several 
different methods. In the first method, the numbers of different types of atoms within a small 
spherical volume were determined for each copper-enriched region. This measurement yields 
the average composition of the core of the copper-enriched region. The position of the 
analysis volume was adjusted to yield the highest local copper concentration within each 
copper-enriched region. The solute concentration results are summarized in Table 5 for the 
different treatments. In all cases, the iron, manganese, nickel, and silicon concentrations in the 
copper-enriched regions were found to be significant. A significant variation in the composition 
of the individual precipitates was observed. The measured copper levels were significantly 
different from the equilibrium concentration of the e-Cu phase of -95% Cu. The correlation 
between the copper concentration and the concentration of the other solute elements (i.e., 
iron, manganese, nickel, and silicon) is shown in Fig. 6. All results indicated that high copper 
levels were correlated with low iron levels. The correlation with the other elements is less 
defined. 
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Table 5. Selected volume precipitate compositions in the submerged arc weld 
(weld 73W) for the different heat treatments 

Concentrations are quoted in atomic percent and are listed in order of 
decreasing number of copper atoms for each material 

Irradiated 
2x 10’“n mB2 
(E > 1 MeV) 

Irradiated + 
annealed 
0.5 h at 454°C 

% Fe % cu %Ni % Mn 

45.1 35.9 4.9 10.6. 
63.4 24.8 3.0 5.9 
45.1 36.8 6.3 9.0 
52.9 36.1 4.2 3.4 
78.5 12.7 1.3 2.5 
61.2 25.4 4.5 6.0 
54.3 32.8 5.2 . 5.2 

36.1 48.1 7.1 
59.6 35.1 4.3 
58.5 36.6 2.4 
49.6 28.5 7.3 
72.9 22.0 1.7 
69.8 24.7 1.4 
64.8 26.1 3.4 
72.3 21.5 1.5 
77.8 19.4 2.8 
32.4 24.3 16.2 

4.4 
1.1 
2.4 
9.8 
- 
2.7 
2.3 
3.1 
- 

18.9 

Irradiated + 
annealed 
1 h at 454°C 

50.0 41 .I 
56.6 38.6 
57.7 38.8 
55.7 36.1 
64.6 27.1 
68.3 29.3 
68.6 .I’_ - 24.6 
73.2 17.1 

Irradiated + 
annealed 
168 h at 454°C 

2.4 
- 
1.2 
4.1 
3.1 
1.2 
3.3 
2.4 

2.76 
- 

3.77 
.“^ 

3.0 
4.8 
2.4 
2.5 
5.2 
1.2 
3.3 
4.9 

42.9 
55.0 
48.7 

Fourteen concentrations not 

51 .o 
30.0 
39.0 

?tected. 

2.40 
15.0 

8.49 
_.. ” -. _ .“.. 

% Si 

2.8 
1.0 
2.1 
2.5 
3.8 
1.5 
2.6 

1.1 
- 
- 
0.8 
1.7 
1.4 
3.4 
1.5 
- 

2.7 

2.4 
- 
- 

1.64 
- 
- 
- 
1.22 

0.4 
- 
- 

T. _. ,, _.I.(,... __ .,i 

The difference in the numbers of atoms in these copper-enriched regions was also compared 
with the number of atoms in similar volumes in the matrix so that the differences in local 
magnification between the precipitate arid matrix regions could be estimated. Variations 
between -1.5 and -4 times the number of atoms in the copper-enriched precipitate and the 
matrix were measured, and the local magnification was generally higher in precipitates with 
higher copper contents. These local magnification measurements indicate that the 
radius-of-gyration results should be increased by from 1.2 to 2 times. The increase in these 
values due to local magnification differences is in agreement with previous measurements 
obtained from field ion images on similar thermally aged iron-copper alloys [13]. The corrected 
values of the radius-of-gyration measurements are included in Table 4. As expected, the 
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Figure 6. Concentration correlation of the copper-enriched precipitates in 
weld 73 after (a) neutron irradiation to a fluence of 2 x 1O23 n m”, 
(b) anneal for 0.5 h, (c) anneal for 1 h, and (d) anneal for 168 h 
at 454°C. 

radius-of-gyration measurements are slightly larger than the estimate based on the number of 
copper atoms because there are other solutes within the precipitate. 

In the second method, the radial concentration profile from the center of the copper-enriched 
region into the matrix was determined. The center of the copper-enriched region was 
determined from the distribution of the copper atoms in each copper-enriched region, as 
described previously. Then the concentrations of the different types of solute atoms that were 
within spherical shells of equal thickness were determined as a function of distance from the 
center of the copper-enriched regions. Examples of the results for the different treatments are 
shown in Figs. 7-10. it should be noted that the ramified or diffuse nature of the 
copper-enriched regions and small non-uniformities in the shape of each region will influence 
the sharpness of the interface in these radial composition profiles. The enrichments of copper, 
manganese, nickel, and silicon and the depletion in iron in the copper-enriched regions are 
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Figure 7. Radial concentration 
distributions of three 
copper-enriched 
precipitates in weld 73 
after neutron irradiation 
to a fluence of 2 x 
1 023 n me2. 
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Figure 8. Radial concentration 
distributions of three 
copper-enriched 
precipitates in weld 73 
after neutron irradiation to 
a fluence of 2 x 1O23 n mq2 
and anneal for 0.5 h at 
454°C. 
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Figure 9. Radial concentration 
distributions of three 
copper-enriched 
precipitates in weld 73 
after neutron 
‘irradiation to a fluence 
of 2 x 1 023 n mS2 and 
anneal for 1 h at 454°C. 

RADIAL DISTANCE, nm 

Figure 10. Radial concentration 
distribution of a 
copper-enriched 
precipitate in weld 73 after 
neutron irradiation to a 
fluence of 2 x 10” n mS2 
and anneal for 168 h at 
454°C. 

clearly evident. It was also evident that there were 
some solute enrichments at the precipitate matrix 
interface. Linear composition profiles through the 
center of the copper-enriched regions also indicated 
that the solute enrichments were not always uniformly 
distributed. 

CONCLUSIONS 

The size and composition of the copper-enriched 
precipitates that form during neutron irradiation to a 
high fluence have been determined by atom probe 
tomography and atom probe field ion microscopy. As 
expected, the size was found to increase and. the 
number density of these precipitates to decrease 
during isothermal annealing at 454°C. Significant 
levels of iron, nickel, manganese, and silicon were 
found in the core of the copper-enriched precipitates. 
Enrichments of nickel and manganese were observed 
at the precipitate-matrix interface. The distribution of 
the solute enrichment was not always uniform within 
the copper-enriched region. 
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