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4 Determine Limits Of Existing Modulating Technology

 High efficiency drives and heat exchangers
| e Reciprocating compressors
4+ Demonstrate Use of Modulating Design Tool
e Extension of Mark III heat pump design model
— 4 types of modulating drives for comp. and fans
— extended flow-range air-side H.T. correlations
— charge inventory prediction and balancing

— extensive 1- and 2-D parametrics



4 Same Hardware Constraints As Highest SEER
Modulating Unit

* ECM-driven compressor and fans
e Same compressor turndown ratios

— 1 t0 0.28 in heating and cooling

— no heating-mode overspeed operation
* Reciprocating compressor

* Same [total Hx area] / [ton of cooling capacity]



COMPONENT EFFICIENCY REPRESENTATION S

 Compressors, and Fans

4 Modulating Drive Efficiencies -- Compressors and Fans
 Functions of speed and torque ratios
4 Modulating Compressor Efficiency
 Functions of speed and operating conditions
— map-based from discrete frequency data
— induction-to-ECM drive conversion built-in
4 Modulating Fans
e Efficiencies assumed constant as speed changes
— ODF efficiency varies with coil AP characteristic
— IDF efficiency fixed at 45% under all AP conditions



REFRIERAIOCOMPONE . PERFORMANCE

He Transfer and Refn Flowol

+ Heat Exchangers
e Hx geometry of first-generation modulating unit
— validated fin-and-tube Hx configurations
— air-side area/ton scaled to SOA
* Added internal and external surface augmentation
— louvered fins on air-side
— 150% multipliers to ref-side H.T. and AP
4 Idealized Variable-Opening Flow Control
* Fixed low values of evaporator superheat
— 10 F° in cooling, 1 F° in heating
* Condenser subcooling used as design variable



STEADY STATE DESIGN APPROACH

4 Cooling Mode

* 95°F — Max speed, nominal design capacity,
acceptable S/T ratio

» 32°F—  Min speed, min capacity,
acceptable S/T ratio

4 Heating Mode
 47°F— Min speed, min capacity,
acceptable min supply temp
* 17°F—  Min speed, max capacity



4 Nominal Design (at 95°F) Determines
e Compressor size and maximum airflows

e Required motor sizes
e Hx area ratio and configuration
4+ Off—Design Analyses (at 82°F, 47°F, 17°F)
e Determine air and refrigerant flow-control variables
— fan speeds
— condenser subcooling
e At min or max compressor speeds



4+ Optimization Variables

e Interdependent
— Compressor displacement
— Nominal airflow rates -- indoor and outdoor
— Indoor fraction of total area
— Condenser subcooling
* Weakly-interacting

— # of coil rows and circuits -- indoor and outdoor



4 Assumptions
» Design capacity of 2 1/2 tons cooling

o Auto-sizing of motors to nominal conditions
— compressor motor sized to 130% of rated Hp
— fan motors sized to 75% of rated Hp

e External AP of 0.15 inches water

* 10 F° evaporator superheat



COOLING EER AND CAPACITY AT 95 F AMBIENT

capacity-constrained optimum
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COOLING EER AND CAPACITY AT 95 F AMBIENT
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STEADY-STATE DESIGN APPROACH (continued)

Off-Dn Anais

4 Variables Optimized
 Indoor and outdoor fan operating speed ratios
* Condenser subcooling
4 Design Constraints
 Capacity -- Minimum or Maximum
 Comfort Conditions -- S/T Ratios and Supply Temps
— comparable to SOA reference unit
— relaxed S/T ratio



COOLING EER AT 82 F AMBIENT

x = constrained-optimum for S/T of 0.83
o = constrained-optimum for S/T of 0.71
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SENSIBLE-TO-TOTAL CAPACITY RATIO AT 82 F AMBIENT
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HEATING COP AT 47 F AMBIENT

supply-temperature-constrained optimum
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MODULATION RATIO
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EFFICIENCY (%)

Drive and Overall Component Efficiencies
Vary Considerably Over Operating Ranges

OPTIMAL OPERATING EFFICIENCIES
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COMPARISON OF STEADY STATE RESULTS |
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COMPARISON OF STEADY STATE RESULTS

Heating COP
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HEATING COP

high-speed design point
low-speed design point
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REQUIRED REFRIGERANT CHARGE —— HEATING MODE

x = high-speed design point
o = low-speed design point
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4 Binned Weather For DOE Region IV City
e Columbus, Ohio

4+ 1800 ft* House
« HUD minimum insulation
4+ Nominal Unit Sizing Per DOE Procedure
e Scaled unit capacity as needed
4+ Full Speed vs Ambient SS Performance Mapping

4 Default Cy's of 0.25



SEASONAL PERFORMANCE RESULT

4 Normalized Region IV Weather Profile
4 Minimum DHR
4+ DOE Unit Performance Specification

e Min, max, and intermediate speeds

e At selected ambients
4 Default Cy's of 0.25



Predicted Seasonal Performance Factors

- For SOA Reference and ECM Benchmark
(DOE Region IV--Nominal Unit Sizing)
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HSPF Gain for ECM Benchmark

Is Overpredicted By DOE Rating Procedure
(DOE Region IV -- Nominal Unit Sizing)
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4 For a Best-Case Optimized Design |
* Upper limit SEER of 20 with relaxed S/T ratios
* Steady-state heating gains greater than cooling

* Only 8% HSPF gains vs 29% SEER increase
— for standard unit sizing

4+ Opversizing More Beneficial For Modulating Heat Pumps
4+ Lower-Cost Alternatives To Oversizing Need Evaluation
* More compressor overspeed in heating mode
* Use of a scroll compressor |
4+ DOE Ratings Overestimate Typical HSPFs



- CONCLUSIONS (continued)

4 An Optimized Modulating Design Can Be Obtained
* With 4-point approach |
4 Decisions Remain With Design Engineer
* Rather than with black-box routines
4 Modulating Design Model Is A Viable Desktop Tool
* For optimizing air-to-air heat pumps
— using built-in parametrics
— and available contour plotting software
4 Program Is Available To HVAC Industry

* Can be used to optimize designs
for pure refrigerant alternatives

— e.g., Spatz -- 1991 CFC Alternatives Conference



4 First Level

* Relaxed S/T ratios at lower speeds (cooling only)
* Optimal air flow control

* Internal and external H.T. augmentation
4 Second Level

* Closer motor sizing
— fans -- especially indoor

* Optimal refrigerant flow control
4 Third Level

* No line or reversing valve losses
* No filters/chokes on ECM drives

* Ideal circuiting and flow arrangement assumptions



