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The Challenge of 
Electricity Production:

Matching Production with Demand



Electricity Demand Varies with 
Time of Day, Weekly, and Seasonally
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The Price (and Cost) of Electricity at 
Times of Peak Demand is High
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Different Electricity Sources have  
Different Characteristics

HighLowFossil

LowHighNuclear and 
Renewables

Operating 
Cost

Capital 
Cost

Energy 
Source

“Base-Load” Operations are Required for
Low-Cost Nuclear and Renewable Electricity



Fossil Fuels are Used to Match 
Electricity Demand with Production

• Fossil fuels are inexpensive to store (coal piles, oil 
tanks, etc.)

• Carbon dioxide sequestration is likely to be very 
expensive for peak-load fossil-fueled plants

• If fossil fuel consumption is limited by greenhouse or 
other constraints, what are the alternatives for peak 
power production?

• Systems to convert 
fossil fuels to 
electricity have 
relatively low capital 
costs



Changing Load Characteristics are 
Creating a Power Quality Challenge
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The Special Problems with 
Small Electric Grids



Large-Grid Reliability is High Because of 
Averaging of Generation and Demand
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Small-Grid Reliability is Lower Because 
of Less Averaging of Generation and 

Demand
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The Nuclear-Fossil 
Combined-Cycle Plant



Nuclear-Fossil Combined-Cycle Power Plant
(Base-Load Nuclear; Nuclear and Fossil for Peak Electricity Production)
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Combined Cycle: 
Base-Load Electricity
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• Compress air
• Heat air

− Nuclear heat (helium or liquid-
salt intermediate loop from 
reactor to power cycle)

− 700 to 800°C

• No fossil fuel in combustor
− Temperature 700 to 800°C

• Hot air through Brayton 
turbine that generates 
electricity

• Exhaust gas to heat 
recovery boiler

• Steam from boiler for 
electricity production



Combined Cycle: 
Peak Electricity
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• Compress air
• Heat air

− Nuclear heat (helium or liquid-
salt intermediate loop from 
reactor to power cycle)

− 700 to 800°C

• Fossil fuel to combustor
− Temperature to 1300°C

• Hot air through Brayton 
turbine that generates 
electricity

• Exhaust gas to heat 
recovery boiler

• Steam from boiler for 
electricity production



Nuclear-Fossil 
Combined Cycle
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• Base load electricity 
with nuclear heat only

• Peak load with nuclear 
and fossil heat
− Reduce use of 

expensive natural gas
• Lower-cost nuclear 

heat to raise air 
temperature to >700°C

• Natural gas only for 
high-temperature heat

− Minimize release of CO2

• Match demand and 
electrical generation



Nuclear-Hydrogen 
Combined Cycle
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• Base-load electricity 
with nuclear heat 

• Peak-load electricity 
with nuclear and 
hydrogen heat
− Longer term option
− Can meet peak 

electricity demands in 
a carbon-dioxide-
constrained world

− Nuclear heat to 
minimize use of 
expensive hydrogen



A Nuclear-Fossil Combined Cycle can 
Match Variable Electric Power Demands
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• Variable power output, 
from base load to 
maximum peak load 

• High-temperature 
nuclear heat raises air 
temperature above the  
fuel auto-ignition 
temperature
− No need to match air-to-

fuel ratio
− No power generation 

constraint on output



Examples of Real Electric 
Utility Markets

Highly Variable Demand

No Flat Electric Loads



Seattle:  Marginal Price of Electricity
vs Hours per Year

(Low-Cost Renewable Hydro in the Spring)
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Southern:  Marginal Price of 
Electricity vs Hours/Year

(Balanced Home/Commercial/Industrial Load)
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Arizona Public Service:  Marginal 
Price of Electricity vs Hours/Year

(Base-Load Nuclear/Fossil and a Hot Summer)
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Los Angeles Department of Water and 
Power:  Marginal Electric Price vs 

Hours/Year
(Massive Daily Swing:  Low Demand for 5 Hours per Day)
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Nuclear-Fossil Combined Cycle can have 
Short Response Times (Milliseconds?)
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• Normal power 
systems are slow to 
speed up

• Very rapid response 
for spinning reserve 
and frequency control
− Nuclear heats air above the 

fuel auto-ignition 
temperature:  any fuel-air 
ratio works

− No compressor inertia to slow 
the response to changing 
electric demand

• Addresses the small-
grid challenge



The Combined Cycle Coupled to the  
Advanced High-Temperature Reactor
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Example:  Nuclear-Fossil Combined 
Cycle
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• Simple cycle option
• Brayton turbine: 

similar to GE Model 
MS7001FA 

• Nuclear heat
− 175 MW(t)
− 800°C
− 68.5 MW(e)

• Fossil (max output)
− 323 MW(t)
− 1300°C
− 208 MW(e)



Previous Experience Exists with 
Nuclear-Heated Air Brayton Cycles

ORNL Aircraft Reactor Experiment

• Aircraft Nuclear 
Propulsion Program
− Jet bomber
− Unlimited range

• Accomplishments
− 2.5 MW(t) and 882°C achieved in 

Aircraft Reactor Test
− Jet engine development including 

heat exchanger
− Full design of reactor
− Cancelled because of accident risk 

and reactor shielding weight

• Previous experience base 
that demonstrates 
technical feasibility

INL Shielded Aircraft Hanger



Previous Experience Exists with 
Nuclear-Fossil Power Systems

• Nuclear steam production with oil-fired 
super heaters

• Benefits
− Higher efficiency
− Avoid wet steam in turbine 

• Previous experience
− Indian Point I
− Garigliano, Italy
− Lingen, Germany



Research and Development Needs
• Analysis of alternative power cycles (limited studies to date)

− Many variants exist
• Steam injection after compressor
• Nuclear feedwater heating (rather than from hot Brayton-cycle 

exhaust)
− Cycle choices have major impacts

• Base-load efficiency
• Fraction of nuclear versus fossil heat input

• Development of the heat exchanger and intermediate loop 
between the reactor and the combined-cycle plant

• Assessment, optimization, and development of rapid-response 
Brayton cycle
− All existing air Brayton-cycle machine designs have constraints

• Need to control air-to-fuel ratio for flame stability
• Slow compressor acceleration under increased load

− With the historic Brayton-cycle constraints removed, what really 
limits variable-power performance?

• System optimization, economic assessments, and market 
assessments



Conclusions
• The mismatch between electricity generation and demand is a a 

major grid operating challenge today
− Fossil fuels are used for variable loads but there may be 

restrictions on fossil fuel use
− Problems in matching generation and load in small electrical grids
− Need for fast-response spinning reserve and frequency control

• Nuclear-fossil combined-cycle option addresses the challenge
• This option requires a high-temperature reactor so that the air 

after nuclear heating is above the auto-ignition temperature
− Eliminates constraints of matching fuel-to-air ratio in fossil 

Brayton cycles
• Nuclear-fossil combined cycle is in an early stage of 

development
− Need to understand design options and trade-offs that strongly 

impact base-load efficiency (preheat boiler water with nuclear heat, 
steam injection, etc.)

− Significant technical challenges remain
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The nuclear-fossil combined-cycle power plant couples a high-temperature nuclear reactor (such as the Advanced High-Temperature Reactor) to an open-air 
Brayton combined-cycle plant with a design similar to that of the combined-cycle plants that burn natural gas to produce electricity.  Nuclear heat is used for 
base-load power production, and nuclear heat with supplemental natural gas or jet fuel is used to meet peak electricity demands.  For base-load operation, (1) the 
air is compressed, (2) the compressed air is heated by a heat exchanger with heat from a high-temperature reactor, (3) the hot gases exit a turbine that produces 
electricity, (4) a steam heat recovery boiler further cools the gases that go to the stack, and (5) the steam produces more electricity.  If peak power is to be 
produced, natural gas, jet fuel, or hydrogen (long-term option) is added to the hot gas after the nuclear heat exchanger to increase the peak gas temperature and 
thus increase power levels in the plant.

This combination has several advantages:  (1) higher efficiency, (2) unique capabilities for small electrical grids (see below), (3) reduced carbon dioxide 
emissions via the use of using nuclear heat to preheat air for peak power production, and (4) potentially improved economics achieved by combining low-cost 
base-load nuclear heat production that allows full utilization of the nuclear heat source with peak power production using low-capital-cost combined-cycle 
systems.  If there are constraints on the use of fossil fuels, there is the longer term option of using hydrogen rather than fossil fuels with the nuclear system 
designed to minimize the use of expensive hydrogen.

Compared with traditional combined-cycle plants, this plant has two radically different characteristics that together offer the unique possibility of using high-
temperature reactors to address the frequency control and spinning reserve challenges associated with small electrical grids.  The requirement to solve these 
challenges is the ability to vary electrical power output very rapidly to match production with demand. No existing nuclear reactor or fossil plant has this 
capability.  This may be a unique mission for high-temperature reactors to address a major challenge.

Infinitely variable power output.  The air temperature after the nuclear heat exchanger is between 700 and 800°C, above the auto-ignition temperature of natural 
gas or jet fuel. The natural gas burns.  Any power level from base-load nuclear to full nuclear-fossil power output can be produced. In conventional gas 
turbines,  a precise ratio of air to fuel is required to maintain flame stability and heat the natural gas or jet fuel to a temperature sufficiently hot that it burns. 
Power outputs over only a limited range are possible.  The nuclear-fossil combined cycle avoids this problem.

Millisecond response time.  The rate of change in electrical output of a steam-electric plant is relatively slow because it takes time to turn up the flame or 
reactor, speed up the boiler feed pump, transfer heat from the flame through the boiler tubes or from the uranium dioxide through clad to increase steam 
production, and transport of steam to the turbine.  Traditional Brayton power cycles have similar constraints.  To boost power levels, the compressor must speed 
up to provide more air; only when more air is sent to the combustion chamber can more fuel be added.  This is the reason for slow acceleration in jet aircraft. 
Time is required to speed up the air compressor.  In contrast, in the nuclear-fossil combined cycle, the nuclear base load implies that the air compressor is 
operating at full speed with constant power input and constant air flow, with no acceleration of the compressor required when there is a change in power 
demand.  Fuel can be injected as fast as the fuel valves open, with the initial power increase in milliseconds as the hot gas reaches the first turbine blades.  No 
existing utility power system has the potential to so rapidly increase power levels.

There are major challenges and questions, however, this technology potentially implies that high-temperature reactors (such as the Advanced High-Temperature 
Reactor) have unique capabilities of variable power production with rapid response for meeting the needs for frequency control and spinning reserve.  This 
would assist large electrical grids and be a major revolution for small grids where the grid size makes it difficult to ensure reliable electric generation and quality 
electricity.

A Nuclear-Fossil Combined-Cycle Power Plant for Base-Load and Peak Electricity


