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Closing the Fuel Cycle with Full
Actinide Recycle—Is It realistically
Feasible?—In the Near Term?

Open Cycle (Direct Disposal)

Closed Cycle Recycle Facilities + 1 Repository

Multiple Repositories
Multiple $B Capital/Operating Costs

Major constraints:
Minimizing capital/operating costs
Providing “sufficient”proliferation resistance
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The Starting Material—
Characteristics of LWR Spent Fuel
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The United States has accumulated more than 55,000 MT of heavy metal in spent fuel and is
generating ~2200 MT/year. The legacy fuel must be processed, and the actinides must be
recycled to minimize the number of high-level waste repositories required in the future
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Goal was to select a realistic scenario for
multicycle full-actinide partitioning-transmutation
(P-T) during the next ~100 years with emphasis
on cost minimization and provision of sufficient
proliferation resistance

Co-location/integration of
separation and fuel/target
fabrication

Heterogeneous vs homogeneous
actinide recycling

Options:

Spent fuel age

Blending strategy

Plant size

Irradiation
configuration

Cm
separation/storage

Use of IM for Am-Cm
target
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Benefits of Processing Oldest-Fuel-
First
Lower radioactive emissions

Less radiation damage to equipment/instrumentation/process fluids

Less heat emission from stored waste

Alters transmutation pathway to produce lighter plutonium nuclides
rather than heavy curium nuclides
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Blending Strategy

“Fresh”
Recycled Recycled LWR-UO2 (LEU)

MOX
Spent Fuel + Irradiated

Am-Cm Targets + Spent Fuel
LWR-UO2

= 2nd P-T Recycle
Feed

Np, MT/year 0.38 0.06 0.96 1.40

Pu, MT/year 9.7 1.6 17.4 28.7
238Pu, % 5.7 51.9 1.5 5.7
239Pu, % 33.5 25.1 66.6 53.1
240Pu, % 39.6 6.8 23.8 28.2
241Pu, % 4.8 1.0 3.6 3.9
242Pu, % 16.4 15.3 4.5 9.1

Am, MT/year 1.9 0.46 2.2 4.6
241Am, % 84.6 74.4 92.8 87.5
243Am, % 15.3 24.1 7.1 12.2

Cm, MT/year 0.095 0.068 0.018 0.18
243Cm, % 0.7 5.8 1.3 2.7
244Cm, % 70.5 61.1 83.7 68.3
245Cm, % 25.4 27.6 13.7 25.1
246Cm, % 3.3 5.5 1.0 3.9

Total HM/MT/yr 204 24 1772 2000
10.2% 1.2% 88.6% 100%
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Blending Strategy Conclusion
Utilization of a blending strategy in which recycled actinides are
blended with low-enriched uranium spent fuel at the head-end of
the separations plant will provide a sufficiently high fissile
content for subsequent recycle of the actinide mix and will enable
continuous, multicycle operation using LWRs, ABRs, or
combinations of the two types of reactors

239Pu+ 241Pu,%

Pu-Np (MT/y)

Am-Cm (MT/y)
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Plant Size

Utilization of large spent fuel processing (separations and
fuel/target fabrication) facilities with overall capabilities of 2000 to
3000 MT/year is practical and provides the lowest unit cost for
processing
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Co-location and Integration of Separations
and Fuel/Target Fabrication

Utilization of large co-located and integrated separations
and fuel/target fabrications operations located within a
physically protected facility will provide significant cost
reduction and maximized proliferation resistance

Fresh
Fuel
Assemblies

Spent
Fuel
Assemblies

Waste Materials

The Partitioning-Transmutation Process Must Be Economical and Proliferation Resistant

Waste Materials and Exiting Personnel
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Heterogeneous Actinide Recycling

Initial studies indicated no appreciable difference in actinide
transmutation using either heterogeneous or homogeneous cores

Major factor is less effort, time, and costs for fuel/target development
and fabrication
U-Pu MOX is already developed and proven
Pu-Np is ~90% of TRUs; Am-Cm is ~10%
Fuel/targets containing Am-Cm are less developed, and fabrication of any

fuel/targets containing Am-Cm require a shielded, remotely operated facility,
which is more expensive to build, operate, and maintain

Am-Cm provides no more proliferation resistance for Pu than dilution
with uranium

Separations process for Pu-Np is single step and industrially proven
Am-Cm separations process is less developed and not industrially proven
Group actinide separations is more complex and not industrially proven

Utilization of heterogeneous actinide recycling will provide
(1) cost reduction in separations processes, fuel development,
and fuel/target fabrication facilities and operation; (2) flexibility of
P-T deployment; and (3) improved technical performance.
Proliferation risk will not be increased
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Thermal Transmutation in LWRs—
Conclusions

239Pu+ 241Pu,%

Pu-Np (MT/y)

Am-Cm (MT/y)
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Use of multiple P-T cycles (continuous
recycle) using only existing and new
LWRs is feasible. Use of long decay
periods (≥30 years) in the P-T cycles
using LWRs will enable significant
suppression of the production of
curium and heavier actinides during
the continued multiple P-T cycles

Alternatively, use of short decay
periods (~5 years) for irradiation of
plutonium in LWRs, as currently
practiced in France and other
countries, would significantly
increase the production of heavier
actinides (e.g., 242Pu, 243Am, 244Cm)
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Fast Reactor Studies

Fast burner reactor transmutation scenario

LWR transmutation scenario
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Fast Burner Reactor Studies—
Conclusions

Transmutation of Pu is optimum in a fast spectrum
because production of 241Pu and heavier isotopes
(242Pu, 243Am, 244Cm, 252Cf) is suppressed

When the MAs, 241Am and 237Np, are initially present
(as they are in spent fuel produced by irradiation of
LEU), the destruction rates are slower in ABRs than in
LWRs

Optimum performance can be obtained by irradiating
Pu (or Pu-Np) in FRs and by irradiating Am-Cm in
LWRs (the “hybrid”case)
Shorter decay periods (~5 years) can be utilized because

production of 241Pu and heavier actinides is suppressed
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Cm Recycle Comparisons—Total
Recycle from 5th P-T Cycle

3.196.80.058871All LWRs–30-year
decay

841617.9666Hybrid–5-year decay

01000.0002381All FR/–0.25 CR–5-year
decay

CfCm
252Cf

(g/year)
244Cm

(kg/year)

Percent of
Neutrons
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ABR/LWR Transmutation Comparisons

The approach to equilibrium of the actinides during multiple P-T
cycles was not significantly different in cases evaluated for
(1) all-thermal-spectrum (LWR) irradiations, (2) all-fast-spectrum
(ABR) irradiations, or (3) hybrid irradiations (Pu-Np in fast
reactors and Am-Cm in thermal reactors)
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ABR/LWR Transmutation Comparisons
(continued)
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Because the ABR design size has been optimized at ~840 MW(t), a large number
(33–90) of ABRs would be required to transmute the ~23 MT/year TRU actinides
currently produced in ~2000 MT/year of low-enriched uranium spent fuel; in
comparison, 10–24 existing (or new) 3400-MW(t) LWRs would be sufficient

Based on these conclusions, full near-term implementation of P-T in the United
States using only ABRs will be difficult, whereas near-term deployment using
LWRs could be utilized. Similar results would be achieved if the oldest (legacy)
spent fuel is processed first

ABR (FR/0.25CR)
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More-Realistic Scenarios for the
Future

Early use of one P-T cycle (2020–2055)
using all LWRs, followed by transmutation
of Pu-Np in FRs and Am-Cm in LWRs
Evaluations using FRs with conversion ratios of

0.25 –0.5 –0.75 –1.0

Current Studies

Same for CR = 1, but using larger-size FRs

Optimization of irradiation configuration

Proposed Studies




