2006 AIChE Fall Meeting
November 12 — 18, 2006
San Francisco - California

|
| Georgia insifiiuie
\I efffechnologyy

——

(¥l

Effects of Charge Discreteness on

ElectrostaticiInteractionsin

Colloidal Dispersions

Patricia Taboada-Serrano, Sotira Yiacoumi,
and Costas Tsouris

OAKRIDGE NATIONAL LABORATORY

|

Introduction u%“"""“ééf‘l‘“‘"‘“' e

Solid-liquid interfaces are ubiquitous in natural and engineered
environments.

Filtration, flocculation,
dispersion, flotation, deposition
and transport of particles are
processes governed by the
interaction of solid-liquid

interfaces.
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Traditionally, the Derjaguin-Landau- it
Verwey-Overbeek (DLVO) theory Hyhite | ot Ajusmentand Floceutaion |
has been employed to describe the i s e
behavior of solid-liquid interfaces. N
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Classical theory

The Derjaguin-Landau-Verwey-
Overbeek (DLVO):

»Dispersion or Van der Waals
»Electrostatic

Electrostatic Potential
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Interaction Potential Energy
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DLVO electrostatic component =
solution of the Poisson-Boltzmann
(PB) equation with two key
assumptions:

1. lons = point charges

2. No interactions between ions

DLVO interparticle
interaction potential
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DLVO vs experimental observations “w!;g;-% e

Process Observation DLVO Prediction

» No unfavorable deposition
» High sensitivity to
chemistry and geometry

» Unfavorable deposition
Filtration » Low sensitivity to
chemistry and geometry

» Instability of like-charged | > Stability expected at low |
Aggregation nanoparticles » No restrictions to
» Hindered aggregation aggregation

» Ordered phases in » No prediction of phase
colloidal dispersions behavior

» Condensation of » No capabilities for
biopolymers and asymmetric electrolytes
nanostructures and mixtures

Phase
behavior
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Objectives
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» Test the effects of discrete charge (i.e., ion
size and ion-ion correlations) on colloidal

interactions.

> Test if the discrete nature of surface and EDL
charge may explain some differences
between DLVO predictions and experimental

observations.
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Monte Carlo simulations
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EDL structure of a discretely charged surface via
Canonical Monte Carlo (CMC) simulations

® Counter-ion
® Co-ion
@ Surface group
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> lons and charged groups = charged hard spheres

» lons with higher charge = larger in size — i.e., larger
hydration shells

» Periodic boundary conditions in X and Y directions

» Long-range corrections = infinite, charged sheets
associated to all ions in the central simulation box

EDL thickness and EDL structure

e  CMC Counter-ion
4 CMC Co-ion
PB Counter-ion

—— PB Co-ion
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1:1 electrolyte, | ~ 1.0 M, 5, = -16.02 uC/cm?

lon-ion correlations and size-

asymmetry = “ordering” of

200

high local concentrations of

counterions and coions.
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Counterion charge = peak
concentration in first layer of fluid

Counterion size = microscopic
structure of EDL.
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1:1 and 2:1 electrolytes, | ~0.1 M, o,
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(Taboada-Serrano et al., J. Chem. Phys. 2005)

Size exclusion effects
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1:1 + 2:1 electrolyte, | ~ 1.0 M, o, =-16.02 nC/cm?

Minimization of energy = hlgher— .

valence counterion
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Mixtures of electrolytes =
counterion size determines

species next to surface

1:1 + 2:1 electrolyte, | ~ 1.0 M, o, =-16.02 nC/cm?

4
Large divalent ° COunter—!on (+2)
counterions (6.0 A) ® Counter-ion (+1)

3 4 Co-ion (-1)

S
SRR
3 °
! b R I S )
a
0 10 2 30 40 50

z[A]

Size effects = smaller counterion
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(Taboada-Serrano et al., J. Chem. Phys. 2005)
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High electrostatic coupling foegratnlngilivs
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(Taboada-Serrano et al., J. Chem. Phys. 2005)
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Interaction force between a
spherical colloidal particle and a
planar surface via CMC

Ly

simulations
QQ e’ X, — X Iy —12
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Qi (X;YiZiZm)
Two contributions: Coulombic and hard sphere i
Frm
Negative force = attraction \\
Positive force = repulsion
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Electrolyte-mediated attraction ,‘j:;wf,ﬁ el

0.10
1:1 electrolyte, 0.05 M pLvo | Force distance curves = short-
0.05 —e - CMC range and long-range local
— minima
g 0.00 o o
T S~ o o —
-0.05 0.10
o, =-1.78 uClem? (y, = -32.6 mV) 2:1 electrolyte, 0.05 M
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“ordering” of consecutive high 0051
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Taboada-Serrano et al., J. Chem. Phys. 2006
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High surface charge densities o

L

— DLVO | Steeper minima with increasing
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Increased electrostatic 005
coupling = stronger “ordering”

of ions in high local 010 !
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D/IRm
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Origins of like-charge attraction

i e

0.10 H H
1 electrole, 0.05 1 Electrolyte-mgdlated like-
0.05 - charge attraction
z
T 5 Electrostatic effects =
, = -5.23 uClem? (y, = -95.8 mV) .
g |0 =700 uClom (v, = 3115 mv) local concentrations

0 2 4 6 s 10 of counterions and
D/Rm coions = ION-ION

Depletion effects = CORRELATIONS

entropic effect due
to displacement of
lons = ION SIZE
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(Taboada-Serrano et al., J. Chem. Phys. 2006)
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AFM imaging of surface charge

Atomic force microscopy (AFM) = “force maps” of
surfaces

m

Set-point altitude

A S
Silica
™\ <g/ Force voIpme_(FV) AFM = (1)_ force-
- e based height image, (2) force image, (3)
a force curve for each sampling spot
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Discrete surface charge mﬁgﬁgﬁﬁ

Surface charge = non-homogeneous due to discrete
nature of surface-bound ionic groups
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Separation Distance (nm)

{125 Force image and force separation

¥m  curves between the silica plate and the
gnm silicon nitride tip at pH =5.5 (1 ~ 0.1 M)

- Taboada-Serrano et al., Env. Sci. Technol. 2005
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Heterogeneous surface charge W'@Q@r*

Non-indifferent electrolytes = localized modifications of
surface charge
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- .,5 Force image and force separation curves
wm  between the silica plate and the silicon
nitride tip at pH = 5.5 and [Cu]; = 0.0076 M
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(Taboada-Serrano et al., Env. Sci. Technol. 2005)
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Discrete nature of ions on surface and EDL = ion-size
and ion-ion correlations:

» EDL structure = determined by a balance of energy
and size-exclusion effects

» Occurrence of like charge attraction of electrostatic
and entropic origins

» Development of non-homogeneous and
heterogeneous surface charge
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Implications !Mm%?

Experimental Observations

Observations in this work

» Instability of like-charged
nanoparticles

» Unfavorable aggregation and
deposition

» Like-charge attractive interactions

» Localized attractive interactions
(surface charge heterogeneity)

» Ordered phases in colloidal
dispersions

» Steep attractive minima at
intermediate and short separations

» Condensation of biopolymers and
nanostructures

» Like-charge attraction

» Localized attractions (surface
charge heterogeneity)
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