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From “Carbon Sequestration Research and Development”,

DOE Report, 1999.

175 GtC must be
sequestered over a
period of 50 years

IS92a = “business as usual”
or global warming

WRE 550 = atmospheric
stabilization or reduction of
CO, concentration to 550 ppm

Ocean carbon sequestration
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For CO,-ocean sequestration purposes: minimum required conversion
is dictated by injection depth and temperature (typically 0.20-0.25)
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What are gas hydrates?

Crystalline, ice-like structures, stable at temperatures
near 0 °C and pressures above 0.12 MPa, with large

gas storage capacity

Water molecule ‘cage’
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Hydrate thermodynamic equilibrium

Multiphase equilibrium
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“If a standard-state hydrate chemical potential is
known at conditions (P, T), the only accountable
change in energy is due to the occupation of
hydrate cavities”
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Salt affects CO, hydrate equilibria

Water in hydrate phase

Cell potential function of || Water molecule ‘cage’

guest J in cage m:
r’dr Kihara potential p.o.

(Ballard & Sloan, Fluid Phase Equil. 2002)
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P-T diagram for pure CO,
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« Salt (3.5 w%) acts like an
inhibitor, displacing hydrate
stability zones to higher pressures
and lower temperatures.

« Intermediate ocean depths are
ideal for CO, hydrate formation.

» Ocean CO, sequestration in the
form of hydrate is possible.

C02(|) +Nn H20(|) <> COZ . nHZO(

s) (Physical reaction)

Instantaneous, exothermic reaction limited by:
1. mass transfer barriers at the interface between reactants
2. dissipation rate of heat generated during reaction

A three-phase reactor for CO, hydrate formation

» The continuous-jet hydrate reactor (CJHR) rapidly mixes two
fluids to create a solid composite
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West et al., AIChE J. (2003); Lee et al., Env. Sci. &Technol. (2003)
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The continuous-jet hydrate reactor (CJHR)

Testing the CJHR
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CO, mass loading: 2.5-10 g/s
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Determination of the operation

conditions and injector design that

allows the CJHR to achieve
conversions greater than 0.2 at

conditions of ocean intermediate

depths

» Seafloor process
simulator (SPS), a
hastelloy vessel of 72 L

* Pressure and
temperature monitoring

 Visualization
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The CJHR in operation

Hydrodynamics inside the CJHR
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. Single-capillary

injectors with
internal diameter
[mm]: 3.969,
75925381
1.588, 1.191,
0.794, 0.397

. Multiple-capillary

injectors with
internal diameter
[mm]: 1.588,
1.191, 0.794,
0.397

All injectors tested = mixing conditions in spray regime




CO2 vs. H20 as dispersed phase

CO, dispersed H,O dispersed

Injector | D [mm] T[°C] | P[MPa] Injector | D [mm] T[°C] | P[MPa]

Single | 3.175 4.0 L Single | 3.969 4.5 |
Single | 2.381 5.0 7.6 Single | 3.175 45 EX
[Multiple | 1.191 5.1 6.9 ||| Multiple | 1.588 4.0 il
Multiple | 0.397 4.2 6.2 Multiple | 1.191 2.5 13.1

CO, as dispersed phase = consolidated, sinking hydrate at
pressures as low as 6.2 MPa (~ 610 m) and typical intermediate
depth ocean temperatures

Multiple-capillary injectors = lower operation pressures

X > 0.2 = effective control over mass-transfer barriers

Distilled water vs. seawater

Distilled water Seawater

P [MPa] | H,0:CO, | T[°C] | Hydrate | | P [MPa] | H,0:CO, | T[°C] | Hydrate
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C = consolidated, U = unconsolidated, S = sinking, NB = neutrally buoyant

Seawater:

= decrease in activity of water due to dissolved salt

= displacement of hydrate equilibrium towards lower T and
higher P

Lower conversions in seawater = thermal effects?

Thermal effects
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The CJHR in the field
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Sequestering CO,, with the CJHRs

Valuable information obtained from the field
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Production of consolidated,
sinking hydrate particles at

}Qﬁ intermediate ocean depths
3 = (1200 — 2000 m)
; - CO, as dispersed phase

* H,O as dispersed phase
more effective in the field

* Plume of slowly dissolving
particles (average life time
18 min)

* Maximum pH increase at
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Hydrate plume formation
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Sonars:
1500 m
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Plume modeling = assessment
of feasibility and impact of large-
scale injection operations
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Hydrate behavior in the ocean: plume modeling

Conclusions

(100 kg/s CO,, 1 cm diameter spheres, release depth 800 m, Q_/Q,, = A = 0.49)

Percent Hydrates Formed (xh)
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A. Chow and E. Adams

» Design, construction, and testing of a pilot scale
CJHR: produces solid, denser than water,
composite particles

» Key component for success: increase in interfacial
area between reactants

» Thermal effects: important and more difficult to
control than mass transfer barriers

» Successful field CO,-injection with the CJHR
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