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Greenhouse gases — the challenge
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From “Carbon Sequestration Research and Development”,
DOE Report, 1999.

175 GtC must be
seguestered over a
period of 50 years




Ocean carbon sequestration
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Adapted from Brewer et al., Science, 1999, 284, 943 — 945.

|. Rising plume of liquid
CO, droplets

Il. Sinking plume of CO,
hydrate

lll. Sinking plume of liquid
CO, (lake in the
bottom of the ocean)

Factors to consider:
1. Environmental impacts

2. Residence time of
carbon in the ocean

3. Operational costs



CO, hydrate

Crystalline, ice-like
structure stable at
temperatures near O °C,
and pressures above
0.113 MPa, with large CO,,
storage capacity

16-Hedron
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Individual hydrate cages combine
to form sl or sll structures,
depending on the host gas




CO, hydrate formation

COZ(I) + N HZO(I) <> COZ -nH ZO(S)

Instantaneous, exothermic reaction limited

0%

1. mass transfer barriers at the interface between

reactants

2. dissipation rate of heat generated during

reaction

CO,-ocean sequestration purposes = minimum conversion
dictated by injection depth and temperature (typically 0.2)
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From laboratory- to pilot scale

Liquid CO; Details of mixing zone
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Tubular reactor = vigorous mixing of reactants via
Injection of one into the other

Laboratory-scale: Pilot-scale:
CO, mass load = 0.2 - 0.8 g/s CO, mass load: up to 10 g/s

Conversion = 0.15 - 0.20 Conversion: > 0.20

Operation pressure = 13.0 MPa ‘ Operation pressure: <13.0 MPa
Temperature =2 -6 °C Temperature =2 -6 °C
Diameter = 0.5 cm Diameter: 2.54 cm




Design criterion for the pilot-scale reactor
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Maximization of interfacial area between reactants to
diminish mass transfer limitations and thermal effects



The continuous-jet hydrate reactor (CJHR)
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Testing the CIJHR

Determination of the operation
conditions and injector design that
allows the CJHR to achieve
conversions greater than 0.2 at
conditions of ocean intermediate
depths -1

« Seafloor process
simulator (SPS), a
hastelloy vessel of 72 |

e Pressure and
temperature monitoring

e Visualization
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The CJHR in operation
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Hydrodynamics inside the CJHR

1. Single-capillary
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CO, vs. H,0 as dispersed phase

CO, dispersed H,O dispersed
Injector | D [mm] | T[°C] [P [MPa]| | Injector | D [mm] | T[°C] |P [MPa]
Single Sl s 4.0 — Single 3.969 4.5 —
Single 2.381 5.0 Ti) Single Seli/S 4.5 —
Multiple LK) B 6.9 Multiple 1.588 4.0 —
Multiple 0.39/ 4.2 6.2 Multiple ik 19t 2 13.1

CO, as dispersed phase = consolidated, sinking hydrate at
pressures as low as 6.2 MPa (~ 800 m) and typical intermediate
depth ocean temperatures

Multiple-capillary injectors = lower operation pressures

X > 0.2 = effective control over mass-transfer barriers




Distilled water vs. seawater

Distilled water Seawater
RAMPajpF-@:C€@®; | ik~ Cls sEydrates o R MPal i O:€@s J8EC] sEydrate
1187 3.0 4.4 C,S 13.1 4.5 1.9 C,S
7.6 3.0 il C.S 34 b 4.5 1.6 @S
6.7 3.0 4.1 C,S 517 3.0 1.5 C,S/NB
6.2 3.0 4.2 U,NB 1.7 3.0 3.0 C,NB

C = consolidated, U = unconsolidated, S = sinking, NB = neutrally buoyant

Seawater:

— decrease In activity of water due to dissolved salt
= displacement of hydrate equilibrium towards lower T and

1 &

higher

P

Lower conversions Iin seawater = thermal effects?




Thermal effects
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The CJHR in the field

Monterey Bay, Calif COSD) N B e Battery of four
Mg @ o O -~ D o

CO, load = 30 g/s

Depth = 1200 —
2000 m




Sequestering CO, with the CJHRs
Y . | Production of consolidated,
1V v ) sinking hydrate particles at

Intermediate ocean depths
(1200 — 2000 m)

 H,O as dispersed phase
more effective in the field

* Plume of slowly dissolving
particles (average life time
18 min)

« Maximum pH increase at
Injection point = 0.15

« H,0 as dispersed phase



Valuable information obtained from the field
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Time: 1 min 37 sec Time: 3 min 50 sec Time: 11 min 44 sec

Plume modeling = assessment
of feasibility and impact of large-
scale injection operations
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Relation to other reactors

e The CJHR has the characteristics of an intensified
reactor

e |tis compact and effective in producing high surface
area and consolidated hydrate

 The residence time in the reactor Is relatively small
 |ts geometry allows effective heat transfer in the ocean

o A static mixer reactor does not produce consolidated
hydrate, and does not allow good control of mixing

o A stirred-tank reactor that has been proposed by
others would have several disadvantages



Conclusions

e Design, construction, and testing of a CJHR: more
than ten-fold increase in production capacity, with
Increase In conversion and effectiveness

« Key component for success: increase Iin interfacial
area between reactants

 Thermal effects: important and more difficult to
control than mass transfer barriers

» Successful field CO,-injection with the CJHR
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