
Characterization of the optic disc in retinal imagery using a 
probabilistic approach 

 
Kenneth W. Tobin*a, Edward Chaumb, V. Priya Govindasamya, Thomas P. Karnowskia, Omer 

Sezerc 
 

aOak Ridge National Laboratory†, Oak Ridge, Tennessee 
bUniversity of Tennessee Health Science Center, Memphis, Tennessee 

cUniversity of Tennessee, Knoxville, Tennessee 
 

ABSTRACT 
The application of computer based image analysis to the diagnosis of retinal disease is rapidly becoming a reality due to 
the broad-based acceptance of electronic imaging devices throughout the medical community and through the collection 
and accumulation of large patient histories in picture archiving and communications systems.  Advances in the imaging 
of ocular anatomy and pathology can now provide data to diagnose and quantify specific diseases such as diabetic 
retinopathy (DR).  Visual disability and blindness have a profound socioeconomic impact upon the diabetic population 
and DR is the leading cause of new blindness in working-age adults in the industrialized world.  To reduce the impact of 
diabetes on vision loss, robust automation is required to achieve productive computer-based screening of large at-risk 
populations at lower cost.  Through this research we are developing automation methods for locating and characterizing 
important structures in the human retina such as the vascular arcades, optic nerve, macula, and lesions.  In this paper we 
present results for the automatic detection of the optic nerve using digital red-free fundus photography.  Our method 
relies on the accurate segmentation of the vasculature of the retina along with spatial probability distributions describing 
the luminance across the retina and the density, average thickness, and average orientation of the vasculature in relation 
to the position of the optic nerve.  With these features and other prior knowledge, we predict the location of the optic 
nerve in the retina using a two-class, Bayesian classifier.  We report 81% detection performance on a broad range of 
red-free fundus images representing a population of over 345 patients with 19 different pathologies associated with DR.   
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1. INTRODUCTION 
The World Health Organization estimates that 135 million people have diabetes mellitus worldwide and that the number 
of people with diabetes will increase to 300 million by the year 2025 [1].  More than 18 million Americans currently 
have diabetes and the number of adults with the disease is projected to more than double by the year 2050 [2]. An 
additional 16 million adults between the ages of 40-74 have pre-diabetes and are at high risk for developing diabetes.  
Visual disability and blindness have a profound socioeconomic impact upon the diabetic population and diabetic 
retinopathy (DR) is the leading cause of new blindness in working-age adults in the industrialized world [2].  The 
prevalence rates for DR and vision-threatening DR in adults over age 40 is 40.3% and 8.2%, respectively [3].  It is 
estimated that as much as $167 million dollars and 71,000-85,000 sight-years could be saved annually in the U.S. alone 
with improved screening methods just for DR [4]. 
 
One approach to address this issue is to develop inexpensive, broad-based screening programs for DR that would have a 
significant impact on the economic and social consequences of vision loss from this disease.  Treatment for DR is 
available; the challenge lies in finding a cost-effective approach with high sensitivity and specificity that can be applied 
to efficient, real-time population-based screening to identify those who are at risk in the early stages of the disease.  The 
application of computer based image analysis has the potential to provide low-cost, widely distributed systems.  
Advances in the imaging of ocular anatomy and pathology can now provide the digital data required to diagnose and 
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quantify specific diseases with computer-based systems, of which DR is only a subset.  What is required is robust image 
analysis and automation to achieve productive computer-based screening of large populations.  In this paper, we 
describe a method for the detection of the optic nerve based on segmentation of the vascular arcades.  Detection of these 
anatomic structures is fundamental to the subsequent characterization of the normal or disease state that may exist in the 
retina.   
 
The use of digital retinal imagery to analyze DR has been reported in numerous studies (see e.g., Refs. [5, 6, 7]).  Image 
analysis algorithms have demonstrated the ability to detect features of DR such as exudates and microaneurysms using 
color and monochromatic retinal images.  Fig. 1 shows an example of a red-free fundus image exhibiting several 
examples of lesions and hemorrhages.  These small pilot studies have shown that between 75% - 85% sensitivity and 
specificity for certain features of DR can be achieved. Other approaches to digital image analysis of the retina have 
included; scotoma mapping,[8] spectral imaging,[9] scanning laser ophthalmoscopy, image extraction algorithms, and 
artificial neural networks [10, 11].  Studies by these groups and established retinal reading centers such as the Joslin 
Vision Network (Boston, MA), and Inoveon Corp. (Oklahoma City, OK) have shown that digital photography is an 
excellent tool for identifying DR when performed by experienced, certified readers [12, 13].   
 
Moving beyond the current requirements of a 
certified human reader is a requisite for achieving 
broad-based, high-throughput, and low-cost 
screening.  To achieve increased levels of automation 
in the digital analysis of retinal disease it is required 
that the important structures of the eye be 
systematically and reliably located.  Key elements of 
this process include the ability to normalize a large 
population of images to accommodate acceptable 
variations in illumination and contrast from fundus 
cameras used for data acquisition [14].  Detection 
and segmentation of the vascular structure [15, 16, 
17] is just as critical due to the geometric relationship 
that exists between the vasculature and the position 
of the optic disk in the retina [18, 19].   
 
Through this paper we contribute a novel method for 
localizing the optic nerve.  This is a probabilistic 
approach using a two-class Bayesian decision rule for 
classifying an image pixel as optic nerve or not optic 
nerve.  This is achieved by using statistical features 
of the vasculature with a multivariate normal density function [20].  This multivariate density function is derived from 
statistical features of the vascular structure that include the density, thickness, and orientation for every image pixel.  
Detection of the optic nerve represents an early step in our research to place a coordinate system on the retina that will 
be used to describe the relationship between retinal lesions, edema, and hemorrhages, relative to the optic disc and 
macula positions.   

2. METHOD 
The literature contains many examples of optic nerve (ON) detection in fundus imagery.  These methods incorporate 
techniques such as dynamic contours [21], fuzzy convergence [22], and the application of geometric models [18].  In 
most cases, these methods rely on first segmenting the vasculature.  The vasculature that feeds the retina enters the eye 
through the ON and branches out accordingly.  Therefore, following or otherwise analyzing the structure of the vascular 
tree has proved to be a productive means of locating the ON.  For our research we have taken a similar approach, but 
unlike other methods that attempt to follow the branching of the vascular tree, we have developed a method that takes 
advantage of a number of visual attributes of the tree in a probabilistic framework.  Our goal is to accommodate a 
number of disease states, from mild to severe retinopathy, that result in large variations in the morphology of the visible 
retina.  Fig. 2  presents an overview of our method.  In (a) the original red-free fundus image undergoes analysis to 

 
Fig. 1.  Red-free fundus image showing the optic nerve, 
vascular arcades, and a variety of lesions.  



provide a segmentation of the vessels as shown on the top left of (b).  Note also in (a) that we have a prior probability 
for the location of the ON that comes from training data.  The prior probability shows the likely location of the center of 
the ON for all patients (i.e., both right and left eyes) in the training set.   
 

 
 
Since the vasculature emanates from the ON, we have opted to characterize the retina in terms of this vessel structure by 
defining three vessel-related features and one luminance feature.  These features are a density map of the vessels, ρ(i,j), 
an average thickness map, t(i,j), an average orientation map, θ(i,j), and a luminance map l(i,j).  These features are used 
along with a training set of data to classify each pixel in the image as either “ON” or “not ON”.  Once a classification 
map has been obtained, the prior probabilities are combined with the classification map to determine the most likely 
location of the ON as shown in Fig. 2 (c).  The process of segmentation, feature generation, and classification are 
detailed in the remainder of this section.   

2.1. Segmentation of the Vasculature 
We have chosen to segment the vessels in the retina using a mathematical morphology method as proposed by Zana and 
Klein [23].  This method was developed to detect vessel-like patterns in medical images by using a model that 
incorporates local linearity of the vessels, piece-wise connectivity, and vessel brightness with a Gaussian-like profile.  
In the paper, the method was applied to fluorescein angiography (FA) images of the retina.  FA results in florescence of 
a sodium fluorescein dye as it courses through the vasculature, therefore developing bright images of the vessel tree.  
For our application with red-free fundus images, our vessel structures are dark relative to the retinal surface (see for 
example the vessels in Fig. 1) and the algorithm was modified accordingly.   
 
Our goal is to produce a binary image of the vasculature, b(i,j), for an image of size I×J.  We want to achieve a robust 
segmentation for a wide variety of images representing various states of retinal disease.  Fig. 3 shows three examples of 
vessel segmentation applied to red-free fundus images for three patients with mild age-related macular degeneration 
(AMD).  These images (i.e., the top row) represent a variety of image textures, intensities, and long and short-term 
illumination variations due to patient physiology, settings on the fundus camera, and differing states of disease.   
 

 
 

Fig. 2.  Overview of optic nerve detection process. (a) Original input red-free fundus image and prior probability of optic 
nerve locations from training data. (b) Segmentation, feature analysis and classification process resulting in (c), detected 
optic nerve location in “+” position.  



 

2.2. Feature Generation 
We use the binary representation of the segmented vasculature along with a luminance representation of the retinal 
image to generate four descriptive features used in classifying image pixels as belonging to the ON.  These features 
encapsulate four separate characteristics of the vessel structure that we have empirically determined are relevant to the 
location of the ON.  These characteristics are as follows: 
 

Retina luminance, l(i,j) – It is characteristic of fundus imagery that the optic nerve efficiently reflects the 
camera illumination resulting in a brightness relative to the surrounding tissue.  This is due partly to the lack of 
pigmentation in this area that is characteristic of the retinal pigmented epithelial layer.  A feature that measures 
brightness can be helpful for locating the ON but can also create confusion since a myriad of retinal lesions 
also appear as bright objects in fundus imagery.   

 
Vessel density, ρ(i,j) – Since the vasculature that feeds the retina enters the eye through the ON, the vessels 
tend to be the most dense in this region; density being defined as the number of vessels existing in a unit area 
of the retina.   

 
Average vessel thickness, t(i,j) – Vessels are also observed to be thickest near the ON since most branching of 
both the arterial and venous structures does not take place until the tree is more distal from the ON.   

 
Average vessel orientation, θ(i,j) – Finally, for the datasets that we encounter in our work, the vessels 
entering the eye are roughly perpendicular to the horizontal raphe of the retina. i.e., the demarcation line 
running through the ON and fovea.  The result is an observation of vascular orientation being ± 90o relative to 
the horizontal raphe when entering the eye and becoming more parallel (i.e., 0o) as the distance from the ON 
increases.   

 

 
Fig. 3.  The binary image results, b(i,j), of a vascular segmentation for three patients with age-related macular 
degeneration.  Notice the variation in contrast and structure from left to right; a left eye with fairly uniform reflectance 
with low contrast of the vessel structure, a right eye with mottled texture due to a light retinal pigmented epithelial layer, 
and a left eye with a high contrast vasculature and a dark macula region (center).   
 



 
The region of support that we have chosen to determine statistical measurements of these quantities at a point (i,j) in the 
image has been defined according to an empirical observation.  Fig. 4 shows an example of a filter window of size 
M×N.  In (a) this has been superimposed over a circular representation of the location of the ON.  To measure our 
statistical properties of density, thickness, orientation, etc., we have chosen a rectangular convolution window that is 
roughly three times the diameter of the ON in height and one diameter wide.  This filter window is shown superimposed 
on the binary segmentation of the vessel structure, b(i,j), in (b) and (c).  The window shown in (d) represents a 
morphologically thinned version of b(i,j), denoted by bt(i,j).  Using this terminology, the vascular density is defined as, 
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which results in a measure of the number of vessel structures in a supporting M×N region for every point (i,j) in the 
image.  The average vascular thickness is defined as, 
 

            

∑∑

∑∑
−

=

−

=

−

=

−

=

−−

−−
= 1

0

1

0

1

0

1

0

),(

),(
),( M

m

N

n
t

M

m

N

n

njmib

njmib
jit   ,  Eq. 2 

 
which results in a measure of the average vessel thickness in a supporting M×N region for every point (i,j) in the image.  
Note that the thickness is independent of the quantity of vessels in the support region.  The luminance is determined 
using the same convolution window structure but it is applied to the original image, I(i,j), i.e.,  
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The average orientation is derived from the original image, I(i,j), after application of a steering filter.  For this research 
we have implemented the steering filter algorithm of Freeman and Adelson [24].  The steering filter we incorporate uses 
a second derivative Gaussian combined with a Hilbert transform of this derivative, i.e., E2(θ) = [G2

θ]2+[H2
θ]2, which 

can be expressed as a Fourier series in angle giving, E2(θ) = C1+C2cos(2θ)+C3sin(2θ)+…[high order terms].  The 
orientation image is then approximately expressed as θ = arg[C2,C3]/2.  Fig. 5 (a) shows a scaled example of the post 
filtered image displayed as cos[θ(i,j)].  The angles of interest in a support region, M×N, (i.e., Fig. 5 (b)) are obtained by 

 
Fig. 4.  Example of convolution window of size M×N in original image I(i,j), roughly 3 times the diameter of the ON tall 
by 1 diameter wide in (a).  Segmented vasculature in (b) showing filter window of size M×N for the binary image b(i,j) in 
(c) and corresponding morphologically thinned region bt(i,j) in (d).   



sampling the filtered image using the thinned binary image, bt(i,j), shown in Fig. 4 (d) resulting in a sampling as shown 
in Fig. 5 (c).  The average orientation function is therefore expressed as, 
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Fig. 6 shows examples of the vascular segmentation and the feature maps developed for four different fundus images in 
rows (a) through (d).  Each position in the original image, (i,j), now has associated with it a descriptive multivariate 
vector, v(i,j) = [l,ρ,θ,t]t, that will be used for ON classification as described in the following section.   

 

2.3. Classification 
For classification of each image pixel as ON or not ON, we assume a multivariate normal density function [20] for the 
distribution of the data.  A two-class Bayesian discriminant function is used to assign each location in the classification 
image, ω(i,j), a value of 0 or 1 according to,   
 

 
Fig. 5.  (a) Example of the result of the steering filter applied to the original red-free fundus image shown in Fig. 4.  (b) 
Filter region of size M×N and region after further filtering with the binary thinned image in (c).  The final result in (c) 
is used to determine the average orientation of the vasculature in the region.   
 

 
Fig. 6.  Visual representations of vessel segmentation and resulting feature maps for four different fundus images in rows 
(a) through (d).   
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The discriminant functions, g0 ad g1, are defined by, 
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where Σ0 and Σ1 are the covariance matrices and μ0 and μ1 are the population means generated from the training features 
for each class.  The function p(ωo) is the probability in the training data of a position (i,j) belonging to the ON region of 
the image.  The top row of Fig. 7 shows four examples of classification maps, ω(i,j), for the corresponding rows of data 
in Fig. 6. Once these maps have been obtained, the most likely ON coordinate (iON,jON) is determined by applying the 
prior probability map, P(i,j), introduced in Fig. 2 (a) as follows: 
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The bottom row of Fig. 7 shows corresponding estimates of the location of the ON for the classification maps shown in 
the top row.  Note that the “correct” versus “incorrect” classification of the ON coordinate is based on a comparison to a 
manually selected coordinate in the test data.  A “correct” location of the ON is defined for any estimated coordinate 
whose distance from the manually selected point is less than one ON diameter.   
 

 

3. RESULTS 
Fig. 7 represents the detection of the ON for a few examples.  To characterize our method over a larger population of 
images, we have performed an extensive analysis on two datasets.  We currently have a total population of 395 red-free 
fundus images representing 19 different retinal pathologies.  We have performed two separate tests on this dataset.  For 
our first test we have randomly extracted 100 images for evaluation of the efficacy of the four features defined in 
Section 2.2.  When considering fundus images such as those shown in Fig. 6 (a)-(d), it is apparent that the brightness of 
the ON can be a strong indicator of the ON location. For this reason we have performed an evaluation of classifier 

 
Fig. 7.  Pixel classification maps (top row) and detected ON locations (bottom row) corresponding to (a)-(d) in the 
previous figure.  Note that (a)-(c) show correct detection (i.e., within 1 diameter of the known ON location) and (d) shows 
an incorrect detection (within 2 diameters of the ON).   



performance when considering only the luminance feature, l, and then only the vascular features ρ, θ, and t.  Finally we 
tested performance using all four features on this set of 100 images.   
 
As briefly described in Section 2.3, we are defining a correct localization of the ON based on a comparison of the 
estimated coordinate, (iON,jON), to a coordinate that was manually selected to reside at the visual center of the ON, 
(im,jm).  A coordinate was defined to be correct if the distance between the calculated and manually selected points were 
less than 1 ON radius (1R), which is approximately 65 pixels on average for our dataset.  We also report performance 
for locations that are within 2R of the ON.   
 
To perform the test on the 100 image set, we trained the Bayesian classifier using 50 images. Training consisted of 
determining the covariance matrices, class means, and a-priori probability required for the discriminant functions g0 and 
g1 defined in Eq. 6.  The other 50 images were then processed to test the classifier.  Next, the test data were exchanged 
to train the classifier and the original 50 training data were used to test.  The aggregate performance across the 100 
images is shown in Table 1 for the different sets of features being evaluated. 
 
Table 1.  Performance of the optic nerve detection algorithm for a set of 100 red-free fundus images exhibiting 19 different 
pathologies.  Performance results are shown for estimates that are within one ON radius (1R) and two ON radius (2R) away 
from the manually selected ON coordinate.  Results are shown for three different feature sets.   
 

l ρ, θ, t l, ρ, θ, t Pathology No. of 
Examples %(1R) %(2R) %(1R) %(2R) %(1R) %(2R) 

Age-related macular degeneration (AMD) 14 57.1 78.6 85.7 100.0 92.9 100.0 
Cystoid macular edema (CME) 11 54.5 63.6 81.8 100.0 90.9 90.9 
Choroidal neovascularization (CNV) 5 60.0 80.0 80.0 80.0 100.0 100.0 
Choroidal lesion (ChL) 5 80.0 100.0 80.0 100.0 60.0 100.0 
Cone dystrophy (CoDy) 1 100.0 100.0 100.0 100.0 100.0 100.0 
Juxtafoveal telangiectasis (JFT) 5 40.0 40.0 100.0 100.0 80.0 100.0 
Metastasis (MET) 4 50.0 50.0 100.0 100.0 100.0 100.0 
Choroidal melanoma (ML) 3 100.0 100.0 66.7 100.0 66.7 100.0 
Normal fundus (NM) 5 80.0 80.0 60.0 80.0 80.0 100.0 
Non-proliferative diabetic retinopathy (NPDR) 19 73.7 84.2 78.9 89.5 94.7 94.7 
Ocular ischemia (OIS) 2 50.0 50.0 100.0 100.0 100.0 100.0 
Optic nerve lesion (ON) 3 100.0 100.0 0.0 100.0 33.3 100.0 
Proliferative diabetic retinopathy (PDR) 9 77.8 100.0 100.0 100.0 88.9 100.0 
Retinal artery occlusion (RAO) 4 25.0 50.0 100.0 100.0 100.0 100.0 
Retinal vein occlusion (RVO) 4 25.0 50.0 100.0 100.0 100.0 100.0 
Retinal detachment (ReD) 1 100.0 100.0 0.0 0.0 0.0 0.0 
Retinitis pigmentosa (ReP) 1 100.0 100.0 100.0 100.0 100.0 100.0 
Sickle cell disease (SC) 2 50.0 100.0 50.0 100.0 50.0 100.0 
Stargardt's disease (STAR) 2 100.0 100.0 100.0 100.0 100.0 100.0 

Total Performance 100 65.0 78.0 82.0 95.0 87.0 97.0 
 
Note that the 1R performance improves with the inclusion of features ranging from 65% for l-only to 87% for all 
features.  This result shows that the luminance is a reasonably strong indicator of ON location as previously discussed, 
but that the vascular features, ρ, θ, and t, are more discriminant (as a group) and that all four features add value to the 
classification and ON localization process.   
 
Our final test was performed to gain a better understanding of the performance of the method across a larger population.  
For this test we extracted 50 images from the original set of 395 for training and we tested on the remaining 345.  The 
results are listed in Table 2 for both 1R and 2R performance using all four features.  In summary the performance of the 
method on the larger set was 81% for the 1R criterion and 90% for the 2R criterion.  Both the 1R and 2R performances 
were lower than for the 100 image set, which performed at 87% and 97% respectively.  A slightly lower performance is 
to be expected across a larger, previously unseen image population due to the wider variation of examples in the set.   
 



Table 2.  Performance of the optic nerve detection algorithm for a set of 345 red-free fundus images exhibiting 19 different 
pathologies.  Performance results are shown for estimates that are within one ON radius (1R) and two ON radius (2R) away 
from the manually selected ON coordinate.  All features were used.   

l, ρ, θ, t Pathology No. of 
Examples %(1R) %(2R) 

Age-related macular degeneration (AMD) 35 82.9 91.4 
Cystoid macular edema (CME) 29 96.6 96.6 
Choroidal neovascularization (CNV) 28 75.0 85.7 
Choroidal lesion (ChL) 34 70.6 88.2 
Cone dystrophy (CoDy) 1 100.0 100.0 
Juxtafoveal telangiectasis (JFT) 13 69.2 76.9 
Metastasis (MET) 4 75.0 75.0 
Choroidal melanoma (ML) 29 82.8 93.1 
Normal fundus (NM) 18 88.9 88.9 
Non-proliferative diabetic retinopathy (NPDR) 37 94.6 94.6 
Ocular ischemia (OIS) 4 75.0 100.0 
Optic nerve lesion (ON) 12 66.7 91.7 
Proliferative diabetic retinopathy (PDR) 34 73.5 91.2 
Retinal artery occlusion (RAO) 12 75.0 100.0 
Retinal vein occlusion (RVO) 28 82.1 89.3 
Retinal detachment (ReD) 1 0.0 0.0 
Retinitis pigmentosa (ReP) 12 83.3 91.7 
Sickle cell disease (SC) 5 100.0 100.0 
Stargardt's disease (STAR) 9 62.5 75.0 

Total Performance 345 80.8 90.4 
 
Finally, examples of four problematic images are shown in Fig. 8 below.  In these examples the ON is primarily a dark 
feature in (a) and (b) suggesting that the luminance does not contribute to the ON identification.  In (c) the retinal 
pigmented epithelial later is not particularly pigmented resulting in a bright background field that strongly reflects the 
vasculature of the choriod region below the retina.  In (d) there are a large number of potentially confusing bright 
features associated with choroidal lesions.  In all these cases the ON was reasonably located by the method described 
herein.  

 

4. CONCLUSIONS 
We have presented a method for locating the optic nerve in red-free fundus imagery that takes advantage of the 
characteristics of the vascular structure in the retina to extract statistical features related to the vascular density, 
orientation, and thickness.  These features are used to train and apply a Bayesian classifier that assumes a multivariate 
normal distribution model to classify the pixels in the original image into the binary category of optic nerve or not optic 
nerve.  The overall performance of approximately 81%-87% correct optic nerve detection is encouraging and supports 
our continued research to detect other relevant structures of the retina including the macula and the variety of lesions 
that characterize retinal disease.   

 
Fig. 8.  Examples of correct ON detection in four fundus images of widely differing visual characteristics.  In examples 
(a), (b), and (d) the ON is uncharacteristically dark while (c) contains confusing structure from the choroidal region 
below the retinal pigmented epithelial layer (due to light pigmentation). Image (d) also contains a large number of 
choroidal lesions.   
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