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Why Studying Gas Hydrate Formation

Natural gas hydrates exist in ocean
sediments and in permafrost

They are considered a vast future
energy source

Gas hydrates form in gas pipelines
causing clogging problems

Here, we study formation and dissociation of CO,
nydrate for the purpose of ocean carbon sequestration

However, CO, hydrate can be used for diverse
applications, including water purification and gas
separations



Gas Hydrate Structure
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Concept for CO, Hydrate Formation
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The density of the solid produced depends highly on the
conversion of liquid CO, to hydrate. West et al., AIChE J., 2003



The Continuous-Jet Hydrate Reactor
Contacts Two Fluids to Form a Solid

Water

Liquid CO,
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Formation of dense CO, hydrate composite was demonstrated in
the laboratory using the CJHR reactor. Lee et al., ES&T, 2003



From the Laboratory to the Field
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Tsouris et al., ES&T, 2004; Riestenberg et al., ES&T, 2005



From the Field to the NETL HWTF FaC|I|ty
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Time-Series Images of Sinking CO,
Hydrate Composite Particles
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Velocity Profiles Produced in the Center of the
Viewing Section by the Lower Flow Conditioner
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CO, hydrate composite particles are levitated in the HWTF
allowing particle velocity and size measurements with time.



Experimental Data Obtained from HWTF
and Comparison with Modeling Results
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Scale-up CJHR Reactors
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Reactor scaleup is the next step in employing CO, hydrate
formation in ocean carbon sequestration.
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Experimental Setup for Scale-up Studies

Haskel CO, Pump
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The experimental setup for the scale-up experiments included a
submersible water pump operating at a high pressure and an
externally mounted pulsed CO, pump.



The CJHR Reactor Works
INn Different Modes
(video clips)



Temperature-Pressure Histories for a
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Ohnesorge-Reynolds Diagram is Used to
Select Geometry and Flowrates
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CO, Hydrate Dissolves as it Descends
In Seawater

3.E-02

3.E-02
2.E-02

2.E-02

Mass-transfer modeling
based on single particle

1.E-02 -

Particle Diameter (m)

5.E-03 -

0.E+00

0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)

0.08
Additional effects occur in a plume, _ o007,
allowing the particles to descend & o.06 -
for as much as 1000 m before ‘§ 0.05 -
dissolution: 2 004
« Solute density effect: Seawater é 0031
density increases due to CO, e ggi
dissolution .
» Plume effect: Particles sink with 0 1000 2000 3000 4000
plume velocity plus settling velocity Time (s)

Riestenberg et al., ES&T, 2005



Summary and Conclusions

CO, hydrate formation and dissociation were studied in the
laboratory (ORNL-SPS and NETL-HWTF) and in the field.

A Continuous-Jet Hydrate Reactor was developed for the
continuous formation of CO, hydrate from liquid CO, and
surrounding seawater.

Hydrate formation produced dense particles that could
sink, carrying CO, to depths well below the injection point.

A mass-transfer model coupled with the particle velocity
and drag force was developed to predict the particle
diameter and depth with time.

Scaleup of the CIJHR reactor was successful. The
throughput was scaled-up by two orders of magnitude
without loosing the important properties of the particles,
l.e., density and cohesiveness.
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